1
|
Pei R, de Vries E, Estévez A, Sousa J, Dijkman H, Tamis J, Werker A. Demonstrating performance in scaled-up production and quality control of polyhydroxyalkanoates using municipal waste activated sludge. WATER RESEARCH 2025; 275:123160. [PMID: 39884051 DOI: 10.1016/j.watres.2025.123160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 02/01/2025]
Abstract
Significant progress has been made over the past decade with pilot scale polyhydroxyalkanoate (PHA) production by direct accumulation using municipal waste activated sludge (WAS). However, industrial upscaling experiences are still lacking in the research literature. In this study, a demonstration scale (4 m3) PHA production process was operated using industrially relevant equipment and compared favourably to those from parallel pilot scale (200 L) production runs. WAS grab samples from a Dutch full scale municipal wastewater treatment plant (WWTP) was used as the biomass source. Final biomass PHA contents and production yields, that are critical for technology viability, were statistically the same between the experiments conducted at pilot scale (0.41 ± 0.02 gPHA/gVSS and 0.42 ± 0.02 gCOD/gCOD) and demonstration scale (0.45 ± 0.05 gPHA/gVSS and 0.39 ± 0.07 gCOD/gCOD). The results furthermore aligned with previous 1 m3 piloting experiences and five year old historical data that similarly used WAS sourced from the same WWTP. Scalability for the technology and a robustness of the applied PHA production methods using WAS were demonstrated. Temperature and foaming control were identified to be critical to upscaled process engineering and design towards successful industrial implementations. The results of the present study, combined with previously produced PHAs and those historical data, support that feedstock quality predictably determines both the average PHA co-monomer content, as well as the blend distribution. PHA solvent extraction from WAS is inherently a blending process. Extraction homogeneously mixes polymer contributions from collectively stored granules from all species of microorganisms in the biomass. Dried PHA-rich biomass batches can be stockpiled and batches can be blended in extraction processes for both recovery and formulation to reach consistent polymer qualities across production batches. More centralized extraction facilities are therefore anticipated to offer economic benefits due to scale and greater opportunities for product quality specification and control. Research findings are presented herein of the production scale comparative study along with practical perspectives of technological readiness for realizing WAS based industrial scale PHA production, quality control, and the supply chains that will be necessary for successful commercial implementation.
Collapse
Affiliation(s)
- Ruizhe Pei
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands.
| | - Erik de Vries
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands
| | - Angel Estévez
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands
| | - João Sousa
- Paques Biomaterials, Balk, The Netherlands
| | | | | | - Alan Werker
- Department of Biotechnology, Delft University of Technology, Delft, The Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Leeuwarden, The Netherlands; School of Chemical Engineering, University of Queensland, St. Lucia, Australia.
| |
Collapse
|
2
|
Yao J, Zeng Y, Hong X, Wang M, Zhang Q, Chen Y, Gou M, Xia ZY, Tang YQ. Phages-bacteria interactions underlying the dynamics of polyhydroxyalkanoate-producing mixed microbial cultures via meta-omics study. mSystems 2025; 10:e0020025. [PMID: 40152616 PMCID: PMC12013262 DOI: 10.1128/msystems.00200-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
The dynamics of the structure of polyhydroxyalkanoate-producing mixed microbial cultures (PHA-MMCs) during enrichment and maintenance is an unsolved problem. The effect of phages has been proposed as a cause of dynamic changes in community structure, but evidence is lacking. To address this question, five PHA-MMCs were enriched, and biological samples were sampled temporally to study the interactions between phage and bacterial members by combining metagenomics and metatranscriptomics. A total of 963 metagenome-assembled genomes (MAGs) and 4,294 phage operational taxonomic units (pOTUs) were assembled from bulk metagenomic data. The dynamic changes in the structure of phage and bacterial communities were remarkably consistent. Structural equation modeling analysis showed that phages could infect and lyse dominant species to vacate ecological niches for other species, resulting in a community succession state in which dominant species alternated. Seven key auxiliary metabolic genes (AMGs), phaC, fadJ, acs, ackA, phbB, acdAB, and fadD, potentially contributing to PHA synthesis were identified from phage sequences. Importantly, these AMGs were transcribed, indicating that they were in an active expression state. The meta-analysis provides the first catalog of phages in PHA-MMCs and the AMGs they carry, as well as how they affect the dynamic changes in bacterial communities. This study provides a reference for subsequent studies on understanding and regulating the microbial community structure of open microbial systems.IMPORTANCEThe synthesis of biodegradable plastic PHA from organic waste through mixed microbial cultures (PHA-MMCs), at extremely low cost, has the potential for expanded production. However, the dynamics of dominant species in PHA-MMCs are poorly understood. Our results demonstrate for the first time the impact of phages on the structure of bacterial communities in the PHA-MMCs. There are complex interactions between the PHA producers (e.g., Azomonas, Paracoccus, and Thauera) and phages (e.g., Casadabanvirus and unclassified Hendrixvirinae). Phage communities can regulate the activity and structure of bacterial communities. In addition, the AMGs related to PHA synthesis may hitchhike during phage-host infection cycles, enabling their dissemination across bacterial communities, and phages may act as a critical genetic reservoir for bacterial members, facilitating access to PHA synthesis-related functional traits. This study highlights the impact of phages on bacterial community structure, suggesting that phages have the potential to be used as a tool for better controlling the microbial community structure of PHA-MMCs.
Collapse
Affiliation(s)
- Jian Yao
- College of Architecture and Environment, Sichuan University, , Chengdu, Sichuan, China
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, Chengdu, Sichuan, China
| | - Yan Zeng
- College of Architecture and Environment, Sichuan University, , Chengdu, Sichuan, China
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, Chengdu, Sichuan, China
| | - Xia Hong
- Sinopec Shanghai Engineering Co. Ltd., Shanghai, China
| | - Meng Wang
- Sinopec (Dalian) Research Institute of Petroleum and Petrochemicals Co. Ltd., Dalian, Liaoning, China
| | - Quan Zhang
- Sinopec (Dalian) Research Institute of Petroleum and Petrochemicals Co. Ltd., Dalian, Liaoning, China
| | - Yating Chen
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, Chengdu, Sichuan, China
- Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan, China
| | - Min Gou
- College of Architecture and Environment, Sichuan University, , Chengdu, Sichuan, China
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, Chengdu, Sichuan, China
- Engineering Research Centre of Alternative Energy Materials and Devices, Ministry of Education, Chengdu, Sichuan, China
| | - Zi-Yuan Xia
- College of Architecture and Environment, Sichuan University, , Chengdu, Sichuan, China
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, Chengdu, Sichuan, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, , Chengdu, Sichuan, China
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Awasthi MK, Ganeshan P, Gohil N, Kumar V, Singh V, Rajendran K, Harirchi S, Solanki MK, Sindhu R, Binod P, Zhang Z, Taherzadeh MJ. Advanced approaches for resource recovery from wastewater and activated sludge: A review. BIORESOURCE TECHNOLOGY 2023; 384:129250. [PMID: 37286046 DOI: 10.1016/j.biortech.2023.129250] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 06/09/2023]
Abstract
Due to resource scarcity, current industrial systems are switching from waste treatment, such as wastewater treatment and biomass, to resource recovery (RR). Biofuels, manure, pesticides, organic acids, and other bioproducts with a great market value can be produced from wastewater and activated sludge (AS). This will not only help in the transition from a linear economy to a circular economy, but also contribute to sustainable development. However, the cost of recovering resources from wastewater and AS to produce value-added products is quite high as compared to conventional treatment methods. In addition, most antioxidant technologies remain at the laboratory scale that have not yet reached the level at industrial scale. In order to promote the innovation of resource recovery technology, the various methods of treating wastewater and AS to produce biofuels, nutrients and energy are reviewed, including biochemistry, thermochemistry and chemical stabilization. The limitations of wastewater and AS treatment methods are prospected from biochemical characteristics, economic and environmental factors. The biofuels derived from third generation feedstocks, such as wastewater are more sustainable. Microalgal biomass are being used to produce biodiesel, bioethanol, biohydrogen, biogas, biooils, bioplastics, biofertilizers, biochar and biopesticides. New technologies and policies can promote a circular economy based on biological materials.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China.
| | - Prabakaran Ganeshan
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Andhra Pradesh, India
| | - Nisarg Gohil
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Vinay Kumar
- Ecotoxicity and Bioconversion Laboratory, Department of Community Medicine, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai 602105, India
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana 382715, Gujarat, India
| | - Karthik Rajendran
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Andhra Pradesh, India
| | - Sharareh Harirchi
- Swedish Centre for Resource Recovery, University of Borås, Borås 50190, Sweden
| | - Manoj Kumar Solanki
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Poland
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China
| | | |
Collapse
|
4
|
Pereira J, Neves P, Nemanic V, Pereira MA, Sleutels T, Hamelers B, Heijne AT. Starvation combined with constant anode potential triggers intracellular electron storage in electro-active biofilms. WATER RESEARCH 2023; 242:120278. [PMID: 37413745 DOI: 10.1016/j.watres.2023.120278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/13/2023] [Accepted: 06/26/2023] [Indexed: 07/08/2023]
Abstract
The accumulation of electrons in the form of Extracellular Polymeric Substances (EPS) and poly-hydroxyalkanoates (PHA) has been studied in anaerobic processes by adjusting the access of microorganisms to the electron donor and final electron acceptor. In Bio-electrochemical systems (BESs), intermittent anode potential regimes have also recently been used to study electron storage in anodic electro-active biofilms (EABfs), but the effect of electron donor feeding mode on electron storage has not been explored. Therefore, in this study, the accumulation of electrons in the form of EPS and PHA was studied as a function of the operating conditions. EABfs were grown under both constant and intermittent anode potential regimes and fed with acetate (electron donor) continuously or in batch. Confocal Laser Scanning Microscopy (CLSM) and Fourier-Transform Infrared Spectroscopy (FTIR) were used to assess electron storage. The range of Coulombic efficiencies, from 25 to 82%, and the biomass yields, between 10 and 20%, indicate that storage could have been an alternative electron consuming process. From image processing, a 0.92 pixel ratio of poly-hydroxybutyrate (PHB) and amount of cells was found in the batch fed EABf grown under a constant anode potential. This storage was linked to the presence of living Geobacter and shows that energy gain and carbon source starvation were the triggers for intracellular electron storage. The highest EPS content (extracellular storage) was observed in the continuously fed EABf under an intermittent anode potential, showing that constant access to electron donor and intermittent access to the electron acceptor leads to the formation of EPS from the excess energy gained. Tailoring operating conditions can thus steer the microbial community and result in a trained EABf to perform a desired biological conversion, which can be beneficial for a more efficient and optimized BES.
Collapse
Affiliation(s)
- João Pereira
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, the Netherlands; Environmental Technology, Wageningen University, Bornse Weilanden 9, P.O. Box 17, 6700 AA, Wageningen, the Netherlands
| | - Patrícia Neves
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, the Netherlands; Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Vivian Nemanic
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, the Netherlands
| | - Maria Alcina Pereira
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS -Associate Laboratory, Braga/Guimarães, Portugal
| | - Tom Sleutels
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, the Netherlands; Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, the Netherlands
| | - Bert Hamelers
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, the Netherlands; Environmental Technology, Wageningen University, Bornse Weilanden 9, P.O. Box 17, 6700 AA, Wageningen, the Netherlands
| | - Annemiek Ter Heijne
- Environmental Technology, Wageningen University, Bornse Weilanden 9, P.O. Box 17, 6700 AA, Wageningen, the Netherlands.
| |
Collapse
|
5
|
Pei R, Tarek-Bahgat N, Van Loosdrecht MCM, Kleerebezem R, Werker AG. Influence of environmental conditions on accumulated polyhydroxybutyrate in municipal activated sludge. WATER RESEARCH 2023; 232:119653. [PMID: 36758350 DOI: 10.1016/j.watres.2023.119653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/14/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Poly(3-hydroxybutyrate) (PHB) was accumulated in full-scale municipal waste activated sludge at pilot scale. After accumulation, the fate of the PHB-rich biomass was evaluated over two weeks as a function of initial pH (5.5, 7.0 and 10), and incubation temperature (25, 37 and 55°C), with or without aeration. PHB became consumed under aerobic conditions as expected with first order rate constants in the range of 0.19 to 0.55 d-1. Under anaerobic conditions, up to 63 percent of the PHB became consumed within the first day (initial pH 7, 55°C). Subsequently, with continued anaerobic conditions, the polymer content remained stable in the biomass. Degradation rates were lower for acidic anaerobic incubation conditions at a lower temperature (25°C). Polymer thermal properties were measured in the dried PHB-rich biomass and for the polymer recovered by solvent extraction using dimethyl carbonate. PHB quality changes in dried biomass, indicated by differences in polymer melt enthalpy, correlated to differences in the extent of PHB extractability. Differences in the expressed PHB-in-biomass melt enthalpy that correlated to the polymer extractability suggested that yields of polymer recovery by extraction can be influenced by the state or quality of the polymer generated during downstream processing. Different post-accumulation process biomass management environments were found to influence the polymer quality and can also influence the extraction of non-polymer biomass. An acidic post-accumulation environment resulted in higher melt enthalpies in the biomass and, consequently, higher extraction efficiencies. Overall, acidic environmental conditions were found to be favourable for preserving both quantity and quality after PHB accumulation in activated sludge.
Collapse
Affiliation(s)
- R Pei
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands.
| | - N Tarek-Bahgat
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands
| | - M C M Van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - R Kleerebezem
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands
| | - A G Werker
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands
| |
Collapse
|
6
|
Werker A, Pei R, Kim K, Moretto G, Estevez-Alonso A, Vermeer C, Hernandez MA, Dijkstra J, de Vries E. Thermal pre-processing before extraction of polyhydroxyalkanoates for molecular weight quality control. Polym Degrad Stab 2023. [DOI: 10.1016/j.polymdegradstab.2023.110277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
7
|
Brison A, Rossi P, Derlon N. Single CSTR can be as effective as an SBR in selecting PHA-storing biomass from municipal wastewater-derived feedstock. WATER RESEARCH X 2023; 18:100165. [PMID: 37250287 PMCID: PMC10214291 DOI: 10.1016/j.wroa.2023.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A key step for the production of polyhydroxyalkanoates (PHAs) from organic waste streams is the selection of a biomass with a high PHA-storage capacity (selection-step), which is usually performed in sequencing batch reactors (SBR). A major advancement would be to perform such selection in continuous reactors to facilitate the full-scale implementation of PHA production from municipal wastewater (MWW)-derived feedstock. The present study therefore investigates to what extent a simple continuous-flow stirred-tank reactor (CSTR) represents a relevant alternative to anSBR. To this end, we operated two selection reactors (CSTR vs. SBR) on filtered primary sludge fermentate while performing a detailed analysis of the microbial communities, and monitoring PHA-storage over long-term (∼150 days) and during accumulation batches. Our study demonstrates that a simple CSTR is as effective as an SBR in selecting biomass with high PHA-storage capacity (up to 0.65 gPHA gVSS-1) while being 50% more efficient in terms of substrate to biomass conversion yields. We also show that such selection can occur on VFA-rich feedstock containing nitrogen (N) and phosphorus (P) in excess, whereas previously, selection of PHA-storing organisms in a single CSTR has only been studied under P limitation. We further found that microbial competition was mostly affected by nutrient availability (N and P) rather than by the reactor operation mode (CSTR vs. SBR). Similar microbial communities therefore developed in both selection reactors, while microbial communities were very different depending on N availability. Rhodobacteraceae gen. were most abundant when growth conditions were stable and N-limited, whereas dynamic N- (and P-) excess conditions favoured the selection of the known PHA-storer Comamonas, and led to the highest observed PHA-storage capacity. Overall, we demonstrate that biomass with high storage capacity can be selected in a simple CSTR on a wider range of feedstock than just P-limited ones.
Collapse
Affiliation(s)
- Antoine Brison
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- ETH Zürich, Institute of Environmental Engineering, 8093 Zürich, Switzerland
| | - Pierre Rossi
- Central Environmental Laboratory, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | - Nicolas Derlon
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| |
Collapse
|
8
|
Wongmoon C, Napathorn SC. Optimization for the efficient recovery of poly(3-hydroxybutyrate) using the green solvent 1,3-dioxolane. Front Bioeng Biotechnol 2022; 10:1086636. [PMID: 36561051 PMCID: PMC9763598 DOI: 10.3389/fbioe.2022.1086636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/17/2022] [Indexed: 12/12/2022] Open
Abstract
In this study, a simple non-toxic recovery process of biodegradable poly(3-hydroxybutyrate) (PHB) using the green solvent 1,3-dioxolane and water was successfully developed. The critical parameters were optimized, and the process platform was scaled up from 2 ml to 1,000 ml for the efficient recovery of PHB. The physical parameters including continuous shaking, ultrasonication, extraction using the Soxhlet extractor, diluted 1,3-dioxolane, reused 1,3-dioxolane, and cell rupture by steam explosion prior to solvent extraction were carefully investigated. The results showed that continuous shaking played a major role in increasing the recovery efficiency during the scale-up process. The PHB extraction at 2 ml from dried cells at 80°C with 100 rpm of shaking speed for 5 h resulted in a recovery yield of 96.6 ± 0.1% with purity up to 99.1 ± 0.6% and that from wet cells under the same condition resulted in a recovery yield of 94.6 ± 4.8% and purity of 97.0 ± 0.1%. It should be noted that the PHB extracted from wet cells at room temperature with 150 rpm of shaking speed for 36 h resulted in a recovery yield of 93.5 ± 0.7% and purity of 97.7 ± 1.3% and had an MW of 3.1×105, MN of 2.7×105, and polydispersity index of 1.1. The direct scale-up process at 1,000 ml showed comparable results in purity, recovery yield, molecular weight distribution, thermal properties, and mechanical properties. The PHB extraction from dried cells gave the highest purity of 99.3 ± 0.5% and recovery of 94.0 ± 0.3%, whereas the PHB extraction from wet cells gave a purity of 90.3 ± 1.5% and recovery of 92.6 ± 1.0%. The novel recovery process showed its feasibility to be applied on an industrial scale.
Collapse
Affiliation(s)
- Chanakarn Wongmoon
- Programme in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Suchada Chanprateep Napathorn
- Programme in Biotechnology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand,Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand,*Correspondence: Suchada Chanprateep Napathorn,
| |
Collapse
|
9
|
Estévez-Alonso Á, Arias-Buendía M, Pei R, van Veelen HPJ, van Loosdrecht MCM, Kleerebezem R, Werker A. Calcium enhances polyhydroxyalkanoate production and promotes selective growth of the polyhydroxyalkanoate-storing biomass in municipal activated sludge. WATER RESEARCH 2022; 226:119259. [PMID: 36323202 DOI: 10.1016/j.watres.2022.119259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 10/05/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Activated sludge from municipal wastewater treatment processes can be used directly for the production of biodegradable polyesters from the family of polyhydroxyalkanoates (PHAs). However, municipal activated sludge typically cannot accumulate PHAs to very high levels and often low yields of polymer produced on substrate are observed. In the present work, it was found that the presence of calcium promotes selective growth and enrichment of the PHA-storing biomass fraction and significantly improved both PHA contents and yields. Calcium addition resulted in PHA contents of 0.60 ± 0.03 gPHA/gVSS and average PHA yields on substrate of 0.49 ± 0.03 gCODPHA/gCODHAc compared to 0.35 ± 0.01 gPHA/gVSS and 0.19 ± 0.01 gCODPHA/gCODHAc without calcium addition. After 48 h, three times more PHA was produced compared to control experiments without calcium addition. Higher PHA content and selective biomass production is proposed to be a consequence of calcium dependent increased levels of passive acetate uptake. Such more efficient substrate uptake could be related to a formation of calcium acetate complexes. Findings lead to bioprocess methods to stimulate a short-term selective growth of PHA-storing microorganisms and this enables improvements to the techno-economic feasibility for municipal waste activated sludge to become a generic resource for industrial scale PHA production.
Collapse
Affiliation(s)
- Ángel Estévez-Alonso
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands.
| | - María Arias-Buendía
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands
| | - Ruizhe Pei
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands
| | - H Pieter J van Veelen
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Robbert Kleerebezem
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Alan Werker
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA, Leeuwarden, The Netherlands
| |
Collapse
|
10
|
Zhao L, Zhang J, Xu Z, Cai S, Chen L, Cai T, Ji XM. Bioconversion of waste activated sludge hydrolysate into polyhydroxyalkanoates using Paracoccus sp. TOH: Volatile fatty acids generation and fermentation strategy. BIORESOURCE TECHNOLOGY 2022; 363:127939. [PMID: 36100183 DOI: 10.1016/j.biortech.2022.127939] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/05/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
The expensive carbon matrix is a bottleneck restricting the industrialization of polyhydroxyalkanoates (PHAs). Volatile fatty acids (VFAs) derived from waste activated sludge via anaerobic fermentation might be alternative carbon matters for PHAs synthesis. In this study, the effect of enzymes on VFAs yields and the feasibility of the produced VFAs for PHAs fermentation by Paracoccus sp. TOH were investigated. The optimum cumulative VFAs concentration reached 4076.6 mg-COD·L-1 in the lysozyme treatment system. Correspondingly, the highest poly(3-hydroxybuturate-co-3-hydroxyvalerate) (PHBV) concentration (119.1 mg·L-1) containing 20.3 mol% 3-hydroxyvalerate was obtained. It proved that Paracoccus sp. TOH possesses the capability for PHBV accumulation. The functional hydrolytic-acidogenic microorganisms, such as Clostridium sensu stricto and Bacteroides sp. were accumulated. The functional genes encoding hydrolysis, carbohydrates metabolism, VFAs generation were enriched. This study offered a possible strategy for VFAs production and verified the feasibility of sludge hydrolysate as a high-quality carbon substrate for PHAs fermentation.
Collapse
Affiliation(s)
- Leizhen Zhao
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiaqi Zhang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Ziyu Xu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shu Cai
- Department of Biological and Agricultural Engineering, University of California, Davis, CA 95616, United States
| | - Liwei Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianming Cai
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao-Ming Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
11
|
Estévez-Alonso Á, Altamira-Algarra B, Arnau-Segarra C, van Loosdrecht MCM, Kleerebezem R, Werker A. Process conditions affect properties and outcomes of polyhydroxyalkanoate accumulation in municipal activated sludge. BIORESOURCE TECHNOLOGY 2022; 364:128035. [PMID: 36182016 DOI: 10.1016/j.biortech.2022.128035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/19/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
The developments of mixed culture polyhydroxyalkanoate production has been directed to maximize the biomass PHA content with limited attention to polymer quality. Direct comparison of PHA accumulation literature is challenging, and even regularly contradicting in reported results, due to underlying differences that are not well expressed. A study was undertaken to systematically compare the commonly reported process conditions for PHA accumulation by full-scale municipal activated sludge. A biomass acclimation step combined with a pulse-wise feeding strategy resulted in maximum average PHA contents and product yields. pH control and active nitrification did not result in observable effects on the PHA productivity. Under these conditions a high molecular weight polymer (1536 ± 221 kDa) can be produced. Polymer extraction recoveries were influenced by the PHA molecular weight. A standard protocol for an activated sludge PHA accumulation test including downstream processing and standardized extraction has been developed and is available as supplementary material.
Collapse
Affiliation(s)
- Ángel Estévez-Alonso
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, The Netherlands.
| | - Beatriz Altamira-Algarra
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, The Netherlands
| | - César Arnau-Segarra
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, The Netherlands
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Robbert Kleerebezem
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Alan Werker
- Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911, MA, Leeuwarden, The Netherlands
| |
Collapse
|