1
|
Beloki Ezker I, Yuan B, Bohlin-Nizzetto P, Borgen AR, Wang T. Polychlorinated alkanes in indoor environment: A review of levels, sources, exposure, and health implications for chlorinated paraffin mixtures. CHEMOSPHERE 2024; 365:143326. [PMID: 39306115 DOI: 10.1016/j.chemosphere.2024.143326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 08/29/2024] [Accepted: 09/10/2024] [Indexed: 10/03/2024]
Abstract
Polychlorinated n-alkanes (PCAs) are the main components of chlorinated paraffins (CPs) mixtures, that have been commonly grouped into short-chain (SCCPs, C10-13), medium-chain (MCCPs, C14-17), and long-chain (LCCPs, C18-30) CPs. PCAs pose a significant risk to human health as they are broadly present in indoor environments and are potentially persistent, bioaccumulative, and toxic. The lack of specific terminology and harmonization in analytical methodologies for PCA analysis complicates direct comparisons between studies. The present work summarizes the different methodologies applied for the analysis of PCAs in indoor dust, air, and organic films. The large variability between the reviewed studies points to the difficulties to assess PCA contamination in these matrices and to mitigate risks associated with indoor exposure. Based on our review of physicochemical properties of PCAs and previously reported sum of measurable S/M/LCCPs levels, the homologue groups PCAs-C10-13 are found to be mostly present in the gas phase, PCAs-C14-17 in particulate matter and organic films, and PCAs-C≥18 in settled dust. However, we emphasized that mapping PCA sources and distribution in the indoors is highly dependent on the individual homologues. To further comprehend indoor PCA distribution, we described the uses of PCA in building materials and household products to apportion important indoor sources of emissions and pathways for human exposure. The greatest risk for indoor PCAs were estimated to arise from dermal absorption and ingestion through contact with dust and CP containing products. In addition, there are several factors affecting indoor PCA levels and exposure in different regions, including legislation, presence of specific products, cleaning routines, and ventilation frequency. This review provides comprehensive analysis of available indoor PCA data, the physicochemical properties, applied analytical methods, possible interior sources, variables affecting the levels, human exposure to PCAs, as well as need for more information, thereby providing perspectives for future research studies.
Collapse
Affiliation(s)
- Idoia Beloki Ezker
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83, Linköping, Sweden
| | - Bo Yuan
- Department of Chemistry, Norwegian University of Science and Technology, 7491, Trondheim, Norway.
| | | | | | - Thanh Wang
- Department of Physics, Chemistry and Biology (IFM), Linköping University, 581 83, Linköping, Sweden; Department of Thematic Studies - Environmental Change, Linköping University, 581 83, Linköping, Sweden
| |
Collapse
|
2
|
McGrath TJ, Hägele C, Schweizer S, Vetter W, Dodson RE, Le Bizec B, Covaci A, Dervilly G, Cariou R. Application of pattern deconvolution strategies for the estimation of bromochloro alkane concentrations in indoor dust samples. CHEMOSPHERE 2024; 366:143370. [PMID: 39306103 DOI: 10.1016/j.chemosphere.2024.143370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024]
Abstract
Bromochloro alkanes (BCAs) are a class of flame retardants similar in structure to polychlorinated alkanes (PCAs), which are the major component of short-chain chlorinated paraffins (SCCPs) listed as Persistent Organic Pollutants under the Stockholm Convention. BCAs have recently been detected for the first time in environmental samples. Due to the complete lack of commercially available analytical standards, no method for quantifying BCAs has been reported to date. In this study, 16 custom-synthesised standards with mixed bromine and chlorine halogenation and carbon chain lengths ranging from C10 to C17 were characterized by liquid chromatography and Orbitrap high-resolution mass spectrometry and used to assess the applicability of pattern deconvolution quantification strategies for BCAs in indoor dust. Br1-9 and Cl1-8 BCAs were detected as [M + Cl]- adduct ions among the C10 to C17 standards, as well as numerous PCA homologues. After applying correction factors to account for the presence of PCAs in the standards, triplicate fortification experiments using varied halogenation composition and concentration determined an average measurement accuracy of 81% over the carbon chain lengths studied and coefficient of variance ≤20% between replicates. Overall, approximately 89% of the ΣBCA concentrations quantified in the fortification trials met the European Union Reference Laboratory's accuracy acceptability criteria recommended for PCAs, between 50 and 150%. Application of the BCA pattern deconvolution quantification procedure to seven representative indoor dust samples from the United States of America revealed a low correlation between the homologue distribution in the samples and the prototype standards (R2 ≤ 0.40), which precluded reliable quantification. This study indicates that pattern deconvolution is an appropriate strategy for quantifying BCAs in environmental samples, but that a large set of appropriate mixture standards will be required before more reliable estimates of BCA concentrations can be achieved in indoor dust.
Collapse
Affiliation(s)
- Thomas J McGrath
- Oniris, INRAE, LABERCA, 44300, Nantes, France; Institute of Health and Environment, Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Clara Hägele
- University of Hohenheim, Institute of Food Chemistry (170b), 70599, Stuttgart, Germany
| | - Sina Schweizer
- University of Hohenheim, Institute of Food Chemistry (170b), 70599, Stuttgart, Germany
| | - Walter Vetter
- University of Hohenheim, Institute of Food Chemistry (170b), 70599, Stuttgart, Germany
| | | | | | - Adrian Covaci
- Toxicological Centre, University of Antwerp, 2610, Wilrijk, Belgium
| | | | | |
Collapse
|
3
|
McGrath TJ, Saint-Vanne J, Hutinet S, Vetter W, Poma G, Fujii Y, Dodson RE, Johnson-Restrepo B, Muenhor D, Le Bizec B, Dervilly G, Covaci A, Cariou R. Detection of Bromochloro Alkanes in Indoor Dust Using a Novel CP-Seeker Data Integration Tool. Anal Chem 2024; 96:4942-4951. [PMID: 38478960 DOI: 10.1021/acs.analchem.3c05800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Bromochloro alkanes (BCAs) have been manufactured for use as flame retardants for decades, and preliminary environmental risk screening suggests they are likely to behave similarly to polychlorinated alkanes (PCAs), subclasses of which are restricted as Stockholm Convention Persistent Organic Pollutants (POPs). BCAs have rarely been studied in the environment, although some evidence suggests they may migrate from treated-consumer materials into indoor dust, resulting in human exposure via inadvertent ingestion. In this study, BCA-C14 mixture standards were synthesized and used to validate an analytical method. This method relies on chloride-enhanced liquid chromatography-electrospray ionization-Orbitrap-high resolution mass spectrometry (LC-ESI-Orbitrap-HRMS) and a novel CP-Seeker integration software package for homologue detection and integration. Dust sample preparation via ultrasonic extraction, acidified silica cleanup, and fractionation on neutral silica cartridges was found to be suitable for BCAs, with absolute recovery of individual homologues averaging 66 to 78% and coefficients of variation ≤10% in replicated spiking experiments (n = 3). In addition, a total of 59 indoor dust samples from six countries, including Australia (n = 10), Belgium (n = 10), Colombia (n = 10), Japan (n = 10), Thailand (n = 10), and the United States of America (n = 9), were analyzed for BCAs. BCAs were detected in seven samples from the U.S.A., with carbon chain lengths of C8, C10, C12, C14, C16, C18, C24 to C28, C30 and C31 observed overall, though not detected in samples from any other countries. Bromine numbers of detected homologues in the indoor dust samples ranged Br1-4 as well as Br7, while chlorine numbers ranged Cl2-11. BCA-C18 was the most frequently detected, observed in each of the U.S.A. samples, while the most prevalent degrees of halogenation were homologues of Br2 and Cl4-5. Broad estimations of BCA concentrations in the dust samples indicated that levels may approach those of other flame retardants in at least some instances. These findings suggest that development of quantification strategies and further investigation of environmental occurrence and health implications are needed.
Collapse
Affiliation(s)
- Thomas J McGrath
- Oniris, INRAE, LABERCA, 44307 Nantes, France
- Toxicological Centre, University of Antwerp, 2610 Wilrijk, Belgium
| | | | | | - Walter Vetter
- University of Hohenheim, Institute of Food Chemistry, 70599, Stuttgart, Germany
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, 2610 Wilrijk, Belgium
| | - Yukiko Fujii
- Toxicological Centre, University of Antwerp, 2610 Wilrijk, Belgium
- Daiichi University of Pharmacy, Fukuoka, 815-8511, Japan
| | - Robin E Dodson
- Silent Spring Institute, Newton, Massachusetts 02460, United States
| | - Boris Johnson-Restrepo
- Environmental Chemistry Research Group, School of Exact and Natural Sciences, Campus of San Pablo, University of Cartagena, Cartagena 130015, Colombia
| | - Dudsadee Muenhor
- Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Health Impact Assessment Research Center, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
- Center of Excellence on Hazardous Substance Management (HSM), Bangkok 10330, Thailand
| | | | | | - Adrian Covaci
- Toxicological Centre, University of Antwerp, 2610 Wilrijk, Belgium
| | | |
Collapse
|
4
|
He C, Thai PK, Bertrand L, Jayarathne A, van Mourik L, Phuc DH, Banks A, Mueller JF, Wang XF. Calibration and Application of PUF Disk Passive Air Samplers To Assess Chlorinated Paraffins in Ambient Air in Australia, China, and Vietnam. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21061-21070. [PMID: 37939218 DOI: 10.1021/acs.est.3c06703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Ambient air samples were collected in Brisbane (Australia), Dalian (China), and Hanoi (Vietnam) during Mar 2013-Feb 2018 using polyurethane foam based passive air samplers. A sampling rate calibration experiment was conducted for chlorinated paraffins (CPs, i.e., short-chain, medium-chain, and long-chain CPs), where the sampling rates were 4.5 ± 0.7, 4.8 ± 0.3, and 4.8 ± 2.1 m3 day-1 for SCCPs, MCCPs, and LCCPs, respectively. The atmospheric concentration of CPs was then calculated and the medians of ∑CPs were 0.079, 1.0, and 0.89 ng m-3 in Brisbane, Dalian, and Hanoi, respectively. The concentration of CPs in Brisbane's air remained at low levels, with no significant differences observed between the city background site and the city center site, indicating limited usage and production of CPs in this city. The highest concentration of MCCPs was detected in Dalian, while the highest concentration of SCCPs was detected in Hanoi. A decrease of SCCP concentration and an increase of MCCPs' were found in Brisbane's air from 2016 to 2018, while increasing trends for both SCCPs and MCCPs were observed in Dalian. These results indicated impacts from different sources of CPs in the investigated cities.
Collapse
Affiliation(s)
- Chang He
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, P. R. China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, P. R. China
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 4102 Brisbane, Australia
| | - Phong K Thai
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 4102 Brisbane, Australia
| | - Lidwina Bertrand
- CIBICI- CONICET and Universidad Nacional de Córdoba, Facultad Ciencias Químicas, Dpto. Bioquímica Clínica, 5000 Córdoba, Argentina
| | - Ayomi Jayarathne
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 4102 Brisbane, Australia
| | - Louise van Mourik
- Department of Environment and Health, Vrije Universiteit, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands
| | - Dam Hoang Phuc
- Hanoi University of Science and Technology, Hanoi 10999, Viet Nam
| | - Andrew Banks
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 4102 Brisbane, Australia
- Racing Science Centre, Queensland Racing Integrity Commission, 4010 Brisbane, Australia
| | - Jochen F Mueller
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 4102 Brisbane, Australia
| | - Xianyu Fisher Wang
- QAEHS, Queensland Alliance for Environmental Health Sciences, The University of Queensland, 4102 Brisbane, Australia
| |
Collapse
|