1
|
Wang Y, Lan T, Han L, Pensa E, Shen Y, Li X, Xu Z, Chen X, Wang M, Xue X, Li Y, Xie M, Cortés E, Zhang D. Non-Precious Metal Catalysts with Gradient Oxidative Dual Sites Boost Bimolecular Activation for Catalytic Oxidation Reactions. Angew Chem Int Ed Engl 2025:e202506018. [PMID: 40202179 DOI: 10.1002/anie.202506018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/05/2025] [Accepted: 04/07/2025] [Indexed: 04/10/2025]
Abstract
Catalytic oxidation emerges as a highly promising and cost-effective approach for eliminating gaseous pollutants, greenhouse gases, and volatile organic compounds (VOCs) from industrial exhaust streams. However, achieving the simultaneous activation of O2 and substrate molecules at low temperatures using non-precious metal catalysts remains a significant challenge. In this study, we introduce gradient oxidative Cu─O─Ti/Cu─O─Cu dual sites that enhance bimolecular activation for catalytic oxidation reactions. The catalyst, Ti-doped CuO, is synthesized on a TiO2 support through the immobilization of Cu2⁺ on NO3⁻-grafted TiO2, followed by thermal treatment. The resulting gradient oxidative Cu─O─Ti/Cu─O─Cu sites exhibit exceptional catalytic oxidation activity for NH3 and various VOCs at low temperatures, matching the performance of precious metal-based catalysts. Notably, during NH₃ oxidation, Cu─O─Ti sites enhance the activation of both O₂ and NH₃. HNO intermediates formed on Cu─O─Ti sites react with NH intermediates on neighboring Cu─O─Cu sites-producing N₂ and H₂O via an imide mechanism-which effectively lowers the reaction barrier for catalytic NH₃ oxidation. As such, dual sites in non-precious metal catalysts show promising results for advancing future catalytic oxidation technologies.
Collapse
Affiliation(s)
- Yufei Wang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, P.R. China
| | - Tianwei Lan
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, P.R. China
| | - Lupeng Han
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, P.R. China
| | - Evangelina Pensa
- Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität (LMU), Munich, 80539, Germany
| | - Yongjie Shen
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, 001-0021, Japan
| | - Xingchi Li
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, P.R. China
| | - Zixiang Xu
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, P.R. China
| | - Xin Chen
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, P.R. China
| | - Mengxue Wang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, P.R. China
| | - Xiaoya Xue
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, P.R. China
| | - Yanqing Li
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, P.R. China
| | - Ming Xie
- Department of Chemical Engineering, University of Bath, Bath, BA27AY, UK
| | - Emiliano Cortés
- Nanoinstitute Munich, Faculty of Physics, Ludwig-Maximilians-Universität (LMU), Munich, 80539, Germany
| | - Dengsong Zhang
- International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Innovation Institute of Carbon Neutrality, Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, P.R. China
| |
Collapse
|
2
|
An Q, Zhang M, Liu J, Chen T, He Y, Liu D, Yu Y, Xu G, He H. Tandem Reaction on Ru/Cu-CHA Catalysts for Ammonia Elimination with Enhanced Activity and Selectivity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2849-2860. [PMID: 39824755 DOI: 10.1021/acs.est.4c10396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2025]
Abstract
Ammonia emissions from vehicles and power plants cause severe environmental issues, including haze pollution and nitrogen deposition. Selective catalytic oxidation (SCO) is a promising technology for ammonia abatement, but current catalysts often struggle with insufficient activity and poor nitrogen selectivity, leading to the formation of secondary pollutants. In this study, we developed a bifunctional Ru/Cu-CHA zeolite catalyst for ammonia oxidation, incorporating both SCO sites (Ru) and selective catalytic reduction sites (SCR, Cu). Various characterizations, including HAADF-STEM, XAFS, and H2-TPR, revealed that Cu2+ cations are dispersed within the CHA zeolite, while RuOx clusters and nanoparticles are present both inside and on the surface of the zeolite. Operando DRIFTS-MS, in situ Raman spectroscopy, and DFT calculations confirmed that NH3 adsorbed on Cu2+ Lewis acid sites efficiently reduced RuO2 with a lower energy barrier, significantly enhancing the low-temperature activity of the Ru/Cu-CHA catalyst. Additionally, Cu2+ cations further facilitated the elimination of byproducts (NOx) via the tandem SCR reaction, thus greatly improving the nitrogen selectivity. This synergistic effect contributed to high catalytic activity (>94% at 200 °C) and excellent nitrogen selectivity (>90% even at high temperatures above 325 °C) for Ru2.5/Cu-CHA during practical ammonia elimination in the presence of NOx and water vapor.
Collapse
Affiliation(s)
- Qi An
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Mengyuan Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianhua Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tingxu Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yueqing He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Diru Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunbo Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Guangyan Xu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
3
|
Yang Z, Peng L, Yang L, Fu M, Ye D, Chen P. Low-temperature NH 3 abatement via selective oxidation over a supported copper catalyst with high Cu + abundance. J Environ Sci (China) 2024; 143:12-22. [PMID: 38644010 DOI: 10.1016/j.jes.2023.05.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 04/23/2024]
Abstract
Selective catalytic NH3-to-N2 oxidation (NH3-SCO) is highly promising for abating NH3 emissions slipped from stationary flue gas after-treatment devices. Its practical application, however, is limited by the non-availability of low-cost catalysts with high activity and N2 selectivity. Here, using defect-rich nitrogen-doped carbon nanotubes (NCNT-AW) as the support, we developed a highly active and durable copper-based NH3-SCO catalyst with a high abundance of cuprous (Cu+) sites. The obtained Cu/NCNT-AW catalyst demonstrated outstanding activity with a T50 (i.e. the temperature to reach 50% NH3 conversion) of 174°C in the NH3-SCO reaction, which outperformed not only the Cu catalyst supported on N-free O-functionalized CNTs (OCNTs) or NCNT with less surface defects, but also those most active Cu catalysts in open literature. Reaction kinetics measurements and temperature-programmed surface reactions using NH3 as a probe molecule revealed that the NH3-SCO reaction on Cu/NCNT-AW follows an internal selective catalytic reaction (i-SCR) route involving nitric oxide (NO) as a key intermediate. According to mechanistic investigations by X-ray photoelectron spectroscopy, Raman spectroscopy, and X-ray absorption spectroscopy, the superior NH3-SCO performance of Cu/NCNT-AW originated from a synergy of surface defects and N-dopants. Specifically, surface defects promoted the anchoring of CuO nanoparticles on N-containing sites and, thereby, enabled efficient electron transfer from N to CuO, increasing significantly the fraction of SCR-active Cu+ sites in the catalyst. This study puts forward a new idea for manipulating and utilizing the interplay of defects and N-dopants on carbon surfaces to fabricate Cu+-rich Cu catalysts for efficient abatement of slip NH3 emissions via selective oxidation.
Collapse
Affiliation(s)
- Zhiming Yang
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Lin Peng
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Leneng Yang
- Guangdong Chengyi Environmental Technology Corp., Shaoguan 512158, China
| | - Mingli Fu
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Daiqi Ye
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Peirong Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, Guangzhou 510006, China.
| |
Collapse
|
4
|
Cao M, Zhang H, Wei X, Tian Y. Ultrafine CuO/graphene oxide cellulose nanocomposites with complementary framework for polycyclic aromatic hydrocarbon pollutants removal. WATER RESEARCH 2024; 258:121816. [PMID: 38823284 DOI: 10.1016/j.watres.2024.121816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/10/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024]
Abstract
Efficient and sustainable methods for eliminating polycyclic aromatic hydrocarbon pollutants (PAHPs) are in highly desired. Proven technologies involve physical and chemical reactions that absorb PAHPs, however they encounter formidable challenges. Here, a bottom-up refining-grain strategy is proposed to rationally design ultrafine CuO/graphene oxide-cellulose nanocomposites (LCelCCu) with a mirror-like for tetracycline (TC) to substantially improve the efficient of the purification process by active integrated-sorption. The LCelCCu captures TC with a higher affinity and lower energy demand, as determined by sorption kinetic, isotherms, thermodynamics, and infrared and X-ray Photoelectron Spectroscopy. The resulting material could achieve ultra-high sorption capacity (2775.23 mg/g), kinetic (1.2499 L g-1 h-1) and high selectivity (up to 99.9 %) for TC, nearly surpassing all recent adsorbents. This study simultaneously unveils the pioneering role of simultaneous multi-site match sorption and subsequent advanced oxidation synergistically, fundamentally enhancing understanding of the structure-activity-selectivity relationship and inspires more sustainable water purification applications and broader material design considerations.
Collapse
Affiliation(s)
- Mengbo Cao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Xingyue Wei
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
5
|
Lei H, Chen D, Yang JY, Khetan A, Jiang J, Peng B, Simon U, Ye D, Chen P. Revealing the Formation and Reactivity of Cage-Confined Cu Pairs in Catalytic NO x Reduction over Cu-SSZ-13 Zeolites by In Situ UV-Vis Spectroscopy and Time-Dependent DFT Calculation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12465-12475. [PMID: 37556316 DOI: 10.1021/acs.est.3c00458] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
The low-temperature mechanism of chabazite-type small-pore Cu-SSZ-13 zeolite, a state-of-the-art catalyst for ammonia-assisted selective reduction (NH3-SCR) of toxic NOx pollutants from heavy-duty vehicles, remains a debate and needs to be clarified for further improvement of NH3-SCR performance. In this study, we established experimental protocols to follow the dynamic redox cycling (i.e., CuII ↔ CuI) of Cu sites in Cu-SSZ-13 during low-temperature NH3-SCR catalysis by in situ ultraviolet-visible spectroscopy and in situ infrared spectroscopy. Further integrating the in situ spectroscopic observations with time-dependent density functional theory calculations allows us to identify two cage-confined transient states, namely, the O2-bridged Cu dimers (i.e., μ-η2:η2-peroxodiamino dicopper) and the proximately paired, chemically nonbonded CuI(NH3)2 sites, and to confirm the CuI(NH3)2 pair as a precursor to the O2-bridged Cu dimer. Comparative transient experiments reveal a particularly high reactivity of the CuI(NH3)2 pairs for NO-to-N2 reduction at low temperatures. Our study demonstrates direct experimental evidence for the transient formation and high reactivity of proximately paired CuI sites under zeolite confinement and provides new insights into the monomeric-to-dimeric Cu transformation for completing the Cu redox cycle in low-temperature NH3-SCR catalysis over Cu-SSZ-13.
Collapse
Affiliation(s)
- Huarong Lei
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Dongdong Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Jia-Yue Yang
- Optics & Thermal Radiation Research Center, Shandong University, Qingdao 266237 China
| | - Abhishek Khetan
- Fuel Science Center, RWTH Aachen University, Schinkelstr. 8, 52074 Aachen, Germany
| | - Jiuxing Jiang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275 China
| | - Baoxiang Peng
- Laboratory of Industrial Chemistry, Ruhr-University Bochum, Universitätsstr. 150, Bochum 44780 Germany
| | - Ulrich Simon
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
- Fuel Science Center, RWTH Aachen University, Schinkelstr. 8, 52074 Aachen, Germany
| | - Daiqi Ye
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| | - Peirong Chen
- Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, School of Environment and Energy, South China University of Technology, 510006 Guangzhou, China
| |
Collapse
|
6
|
Zhou L, Zhang M, Liu C, Zhang Y, Wang H, Zhang Z. Catalytic activity and mechanism of selective catalytic oxidation of ammonia by Ag-CeO 2 under different preparation conditions. RSC Adv 2023; 13:10239-10248. [PMID: 37006358 PMCID: PMC10065061 DOI: 10.1039/d2ra06381f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/22/2023] [Indexed: 04/03/2023] Open
Abstract
Given the problem of the high-temperature window of CeO2 catalyst activity, this study evaluated the catalytic properties of Ag/CeO2 prepared by changing the preparation methods and loadings. Our experiments showed that Ag/CeO2-IM catalysts prepared by the equal volume impregnation method could have better activity at lower temperatures. The Ag/CeO2-IM catalyst achieves 90% NH3 conversion at 200 °C, and the main reason is that the Ag/CeO2-IM catalyst has more vital redox properties, and the NH3 catalytic oxidation temperature is lower. However, its high-temperature N2 selectivity still needs to be improved and may be related to the less acidic sites on the catalyst surface. On both catalyst surfaces, the i-SCR mechanism governs the NH3-SCO reaction.
Collapse
Affiliation(s)
- Lidai Zhou
- School of Chemistry and Environmental Engineering, Liaoning University of Technology Jinzhou 121001 China
| | - Min Zhang
- School of Environmental Science and Engineering, Tianjin University Tianjin 300350 China
| | - Caixia Liu
- School of Environmental Science and Engineering, Tianjin University Tianjin 300350 China
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University Tianjin 300350 China
| | - Yan Zhang
- School of Environmental Science and Engineering, Tianjin University Tianjin 300350 China
| | - Huijun Wang
- School of Environmental Science and Engineering, Tianjin University Tianjin 300350 China
| | - Ziyin Zhang
- Langfang City Beichen Entrepreneurship Resin Materials Incorporated Company Langfang 065000 China
- Hebei Province New Resin Material Technology Innovation Center Langfang 065000 China
- New Catalytic Materials Engineering Research Center for Air Pollutant Control Langfang 065000 China
| |
Collapse
|
7
|
Xiong W, Liu L, Guo A, Chen D, Shan Y, Fu M, Wu J, Ye D, Chen P. Economical and Sustainable Synthesis of Small-Pore Chabazite Catalysts for NO x Abatement by Recycling Organic Structure-Directing Agents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:655-665. [PMID: 36563090 DOI: 10.1021/acs.est.2c07239] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The application of small-pore chabazite-type SSZ-13 zeolites, key materials for the reduction of nitrogen oxides (NOx) in automotive exhausts and the selective conversion of methane, is limited by the use of expensive N,N,N-trimethyl-1-ammonium adamantine hydroxide (TMAdaOH) as an organic structure-directing agent (OSDA) during hydrothermal synthesis. Here, we report an economical and sustainable route for SSZ-13 synthesis by recycling and reusing the OSDA-containing waste liquids. The TMAdaOH concentration in waste liquids, determined by a bromocresol green colorimetric method, was found to be a key factor for SSZ-13 crystallization. The SSZ-13 zeolite synthesized under optimized conditions demonstrates similar physicochemical properties (surface area, porosity, crystallinity, Si/Al ratio, etc.) as that of the conventional synthetic approach. We then used the waste liquid-derived SSZ-13 as the parent zeolite to synthesize Cu ion-exchanged SSZ-13 (i.e., Cu-SSZ-13) for ammonia-mediated selective catalytic reduction of NOx (NH3-SCR) and observed a higher activity as well as better hydrothermal stability than Cu-SSZ-13 by conventional synthesis. In situ infrared and ultraviolet-visible spectroscopy investigations revealed that the superior NH3-SCR performance of waste liquid-derived Cu-SSZ-13 results from a higher density of Cu2+ sites coordinated to paired Al centers on the zeolite framework. The technoeconomic analysis highlights that recycling OSDA-containing waste liquids could reduce the raw material cost of SSZ-13 synthesis by 49.4% (mainly because of the higher utilization efficiency of TMAdaOH) and, meanwhile, the discharging of wastewater by 45.7%.
Collapse
Affiliation(s)
- Wuwan Xiong
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou510006, China
| | - Linhui Liu
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou510006, China
| | - Anqi Guo
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou510006, China
| | - Dongdong Chen
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou510006, China
| | - Yulong Shan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Mingli Fu
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou510006, China
| | - Junliang Wu
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou510006, China
| | - Daiqi Ye
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou510006, China
| | - Peirong Chen
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou510006, China
| |
Collapse
|