1
|
Tang L, Liu J, Xiang C, Gao W, Chen Z, Jiang J, Guo J, Xue S. Colloid mobilization and transport in response to freeze-thaw cycles: Insights into the heavy metal(loid)s migration at a smelting site. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135959. [PMID: 39341196 DOI: 10.1016/j.jhazmat.2024.135959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/14/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024]
Abstract
Smelting sites often exhibit significant heavy metal(loid)s (HMs) contamination in the soil and groundwater, which are inevitably subjected to environmental disturbances. However, there is limited information available regarding the migration behaviors of HMs in a disturbed scenario. Thus, this work explored the migration of HMs-bearing colloids in response to freeze-thaw treatments by laboratory simulation and pore-scale study. Ultrafiltration results of soil effluents revealed that 61.5 %, 47.6 %, 68.0 %, and 59.2 % of Zn, Cd, Pb, and As were present in colloidal phase, and co-transported during treatments. Nanoparticle tracking analysis (NTA) further confirmed that freeze-thaw cycles were conducive to the generation of colloidal particles and showed the heteroagglomeration among different particles. Pore-network model (PNM) was used to quantify the soil macropore characteristics (macropore diameter, macropore number, coordination number, and Euler value) after treatments. It is evident that freeze-thaw cycles induced the formation of larger macropores while simultaneously enhancing macropore connectivity, thereby establishing an optimal pathway for colloid migration. These findings underscored the importance of environmental disturbances as a trigger for the release and migration of HMs in the smelting site, offering valuable insights for controlling HMs pollution. ENVIRONMENTAL IMPLICATION: The contaminated site has been subjected to prolonged environmental disturbances, causing the exacerbation of pollutants leaching and frequent occurrences of unstable pollution situations. This work explored the migration of HMs-bearing colloids in response to freeze-thaw treatments by laboratory simulation and pore-scale study. The distinct effects of freeze-thaw treatment on colloidal particle number concentration and macropore characteristics may explain the generation and migration of colloid-associated HMs driven by environmental disturbances. This work revealed the underlying mechanisms driving the redistribution of HMs under freeze-thaw cycles, offering valuable insights for risk assessment of soil and groundwater associated with HMs migration.
Collapse
Affiliation(s)
- Lu Tang
- School of Metallurgy and Environment, Central South University, Hunan 410083, PR China
| | - Jie Liu
- School of Metallurgy and Environment, Central South University, Hunan 410083, PR China
| | - Chao Xiang
- School of Metallurgy and Environment, Central South University, Hunan 410083, PR China
| | - Wenyan Gao
- School of Metallurgy and Environment, Central South University, Hunan 410083, PR China
| | - Zhengshan Chen
- School of Metallurgy and Environment, Central South University, Hunan 410083, PR China
| | - Jun Jiang
- School of Metallurgy and Environment, Central South University, Hunan 410083, PR China
| | - Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Hunan 410083, PR China; School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| |
Collapse
|
2
|
Zhao Z, Lou W, Zhong D, Shi Y, Zhang F, Wang L, Wu X, Sheng A, Chen J. Time-varying contributions of Fe II and Fe III to As V immobilization under anoxic/oxic conditions: The impacts of biochar and dissolved organic carbon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175241. [PMID: 39098410 DOI: 10.1016/j.scitotenv.2024.175241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/20/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Engineering black carbon (e.g. biochar) has been widely found in natural environments due to natural processes and extensive applications in engineering systems, and could influence the geochemical processes of coexisting arsenic (AsV) and FeII, especially when they are exposed to oxic conditions. Here, we studied time-varying kinetics and efficiencies of AsV immobilization by solid-phase FeII (FeIIsolid) and FeIII (FeIIIsolid) in FeII-AsV-biochar systems under both anoxic and oxic conditions at pH 7.0, with focuses on the effects of biochar surface and biochar-derived dissolved organic carbon (DOC). Under anoxic conditions, FeII could rapidly immobilize AsV via co-adsorption onto biochar surfaces, which also serves as the dominant pathway of AsV immobilization at the initial stage of reaction (0-5 min) under oxic conditions at high biochar concentrations. Subsequently, with increasing biochar concentrations, FeIIIsolid precipitation from aqueous FeII (FeIIaq) oxidation (5-60 min) starts to play an important role in AsV immobilization but in decreased efficiencies of AsV immobilization per unit iron. In the following stage (60-300 min), FeIIsolid oxidation is suppressed and leads to AsV release into solutions at >1.0 g·L-1 biochar. The decreasing efficiency of AsV immobilization over time is attributed to the gradual release of DOC into solution from biochar particles, which significantly inhibit AsV immobilization when FeIIIsolid is generated from FeIIsolid oxidation in the vicinity of biochar surfaces. Specifically, 4.06 mg·L of biochar-derived DOC can completely inhibit the immobilization of AsV in the 100 μM FeII system under oxic conditions. The findings are crucial to comprehensively understand and predict the behavior of FeII and AsV with coexisting engineering black carbon in natural environments.
Collapse
Affiliation(s)
- Zezhou Zhao
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Lou
- Hunan Provincial Engineering Research Center for Resource Recovery and Safe Disposal of Industrial Solid Waste, Hunan Heqing Environmental Technology Company Limited, Changsha 410032, China
| | - Delai Zhong
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Yao Shi
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fengjiao Zhang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Linling Wang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaohui Wu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Anxu Sheng
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Jing Chen
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
3
|
Wang K, Holm PE, van Genuchten CM. Alkali Extraction of Arsenic from Groundwater Treatment Sludge: An Essential Initial Step for Arsenic Recovery. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11175-11184. [PMID: 38857431 PMCID: PMC11210475 DOI: 10.1021/acs.est.4c00939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/03/2024] [Accepted: 04/09/2024] [Indexed: 06/12/2024]
Abstract
Arsenic (As)-bearing Fe(III) precipitate groundwater treatment sludge has traditionally been viewed by the water sector as a disposal issue rather than a resource opportunity, partly due to assumptions of the low value of As. However, As has now been classified as a Critical Raw Material (CRM) in many regions, providing new incentives to recover As and other useful components of the sludge, such as phosphate (P) and the reactive hydrous ferric oxide (HFO) sorbent. Here, we investigate alkali extraction to separate As from a variety of field and synthetic As-bearing HFO sludges, which is a critical first step to enable sludge upcycling. We found that As extraction was most effective using NaOH, with the As extraction efficiency increasing up to >99% with increasing NaOH concentrations (0.01, 0.1, and 1 M). Extraction with Na2CO3 and Ca(OH)2 was ineffective (<5%). Extraction time (hour, day, week) played a secondary role in As release but tended to be important at lower NaOH concentrations. Little difference in As extraction efficiency was observed for several key variables, including sludge aging time (50 days) and cosorbed oxyanions (e.g., Si, P). However, the presence of ∼10 mass% calcite decreased As release from field and synthetic sludges considerably (<70% As extracted). Concomitant with As release, alkali extraction promoted crystallization of poorly ordered HFO and decreased particle specific surface area, with structural modifications increasing with NaOH concentration and extraction time. Taken together, these results provide essential information to inform and optimize the design of resource recovery methods for As-bearing treatment sludge.
Collapse
Affiliation(s)
- Kaifeng Wang
- Department
of Geochemistry, Geological Survey of Denmark
and Greenland (GEUS), Øster Voldgade 10, Copenhagen1350, Denmark
| | - Peter E. Holm
- Department
of Plant and Environmental Sciences, University
of Copenhagen, Thorvaldsensvej
40, 1871 Frederiksberg
C, Denmark
| | - Case M. van Genuchten
- Department
of Geochemistry, Geological Survey of Denmark
and Greenland (GEUS), Øster Voldgade 10, Copenhagen1350, Denmark
| |
Collapse
|
4
|
Tang L, Gao W, Lu Y, Tabelin CB, Liu J, Li H, Yang W, Tang C, Feng X, Jiang J, Xue S. The formation of multi-metal(loid)s contaminated groundwater at smelting site: Critical role of natural colloids. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134408. [PMID: 38678716 DOI: 10.1016/j.jhazmat.2024.134408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/22/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
The occurrence and migration of colloids at smelting sites are crucial for the formation of multi-metal(loid)s pollution in groundwater. In this study, the behavior of natural colloids (1 nm-0.45 µm) at an abandoned smelting site was investigated by analyzing groundwater samples filtered through progressively decreasing pore sizes. Smelting activities in this site had negatively impacted the groundwater quality, leading to elevated concentrations of zinc (Zn), lead (Pb), arsenic (As), and cadmium (Cd). The results showed that heavy metal(loid)-bearing colloids were ubiquitous in the groundwater with the larger colloidal fractions (∼75 -450 nm) containing higher abundances of pollutants. It was also observed that the predominant colloids consisted of Zn-Al layered double hydroxide (LDH), sphalerite, kaolinite, and hematite. By employing multiple analytical techniques, including leaching experiments, soil colloid characterization, and Pb stable isotope measurements, the origin of groundwater colloids was successfully traced to the topsoil colloids. Most notably, our findings highlighted the increased risk of heavy metal(loid)s migration from polluted soils into adjacent sites through the groundwater because of colloid-mediated transport of contaminants. This field-scale investigation provides valuable insights into the geochemical processes governing heavy metal(loid) behavior as well as offering pollution remediation strategies specifically tailored for contaminated groundwater.
Collapse
Affiliation(s)
- Lu Tang
- School of Metallurgy and Environment, Central South University, Hunan 410083, China
| | - Wenyan Gao
- School of Metallurgy and Environment, Central South University, Hunan 410083, China
| | - Yongping Lu
- China Railway Seventh Bureau Group Nanjing Engineering Co. Ltd., Nanjing 210012, China
| | - Carlito Baltazar Tabelin
- Department of Materials and Resources Engineering and Technology, College of Engineering, Mindanao State University-Iligan Institute of Technology, Iligan City 9200, Philippines
| | - Jie Liu
- School of Metallurgy and Environment, Central South University, Hunan 410083, China
| | - Haifeng Li
- China Railway Seventh Bureau Group Nanjing Engineering Co. Ltd., Nanjing 210012, China
| | - Weichun Yang
- School of Metallurgy and Environment, Central South University, Hunan 410083, China
| | - Chongjian Tang
- School of Metallurgy and Environment, Central South University, Hunan 410083, China
| | - Xiang Feng
- Henan Academy of Geology, Henan 450001, China
| | - Jun Jiang
- School of Metallurgy and Environment, Central South University, Hunan 410083, China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Hunan 410083, China.
| |
Collapse
|
5
|
Ahmad A, van Genuchten CM. Deep-dive into iron-based co-precipitation of arsenic: A review of mechanisms derived from synchrotron techniques and implications for groundwater treatment. WATER RESEARCH 2024; 249:120970. [PMID: 38064786 DOI: 10.1016/j.watres.2023.120970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/25/2023] [Accepted: 12/02/2023] [Indexed: 01/03/2024]
Abstract
The co-precipitation of Fe(III) (oxyhydr)oxides with arsenic (As) is one of the most widespread approaches to treat As-contaminated groundwater in both low- and high-income settings. Fe-based co-precipitation of As occurs in a variety of conventional and decentralized treatment schemes, including aeration and sand filtration, ferric chloride addition and technologies based on controlled corrosion of Fe(0) (i.e., electrocoagulation). Despite its ease of deployment, Fe-based co-precipitation of As entails a complex series of chemical reactions that often occur simultaneously, including electron-transfer reactions, mineral nucleation, crystal growth, and As sorption. In recent years, the growing use of sophisticated synchrotron-based characterization techniques in water treatment research has generated new detailed and mechanistic insights into the reactions that govern As removal efficiency. The purpose of this critical review is to synthesize the current understanding of the molecular-scale reaction pathways of As co-precipitation with Fe(III), where the source of Fe(III) can be ferric chloride solutions or oxidized Fe(II) sourced from natural Fe(II) in groundwater, ferrous salts or controlled Fe(0) corrosion. We draw primarily on the mechanistic knowledge gained from spectroscopic and nano-scale investigations. We begin by describing the least complex reactions relevant in these conditions (Fe(II) oxidation, Fe(III) polymerization, As sorption in single-solute systems) and build to multi-solute systems containing common groundwater ions that can alter the pathways of As uptake during Fe(III) co-precipitation (Ca, Mg bivalent cations; P, Si oxyanions). We conclude the review by providing a perspective on critical knowledge gaps remaining in this field and new research directions that can further improve the understanding of As removal via Fe(III) co-precipitation.
Collapse
Affiliation(s)
- A Ahmad
- Department of Sustainable Development, Environmental Science and Engineering, KTH Royal Institute of Technology, Stockholm, Sweden; SIBELCO, Ankerpoort NV, Op de Bos 300, 6223 EP, Maastricht, the Netherlands
| | - C M van Genuchten
- Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, Copenhagen, Denmark.
| |
Collapse
|
6
|
Wang K, Holm PE, Trettenes UB, Bandaru SRS, van Halem D, van Genuchten CM. Molecular-scale characterization of groundwater treatment sludge from around the world: Implications for potential arsenic recovery. WATER RESEARCH 2023; 245:120561. [PMID: 37688856 DOI: 10.1016/j.watres.2023.120561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023]
Abstract
Iron (Fe)-based treatment methods are widely applied to remove carcinogenic arsenic (As) from drinking water, but generate toxic As-laden Fe (oxyhydr)oxide waste that has traditionally been ignored for resource recovery by the water sector. However, the European Commission recently classified As as a Critical Raw Material (CRM), thus providing new incentives to re-think As-laden groundwater treatment sludge. Before As recovery techniques can be developed for groundwater treatment waste, detailed information on its structure and composition is essential. To this end, we comprehensively characterized sludge generated from a variety of As-rich groundwater treatment plants in different geographic regions by combining a suite of macroscopic measurements, such as total digestions, leaching tests and BET surface area with molecular-scale solid-phase analysis by Fe and As K-edge X-ray absorption spectroscopy (XAS). We found that the As mass fraction of all samples ranged from ∼200-1200 mg As/kg (dry weight) and the phosphorous (P) content reached ∼0.5-2 mass%. Notably, our results indicated that the influent As level was a poor predictor of the As sludge content, with the highest As mass fractions (940-1200 mg As/kg) measured in sludge generated from treating low groundwater As levels (1.1-22 µg/L). The Fe K-edge XAS data revealed that all samples consisted of nanoscale Fe(III) precipitates with less structural order than ferrihydrite, which is consistent with their high BET surface area (up to >250 m2/g) and large As and P mass fractions. The As K-edge XAS data indicated As was present in all samples predominantly as As(V) bound to Fe(III) precipitates in the binuclear-corner sharing (2C) geometry. Overall, the similar structure and composition of all samples implies that As recovery methods optimized for one type of Fe-based treatment sludge can be applied to many groundwater treatment sludges. Our work provides a critical foundation for further research to develop resource recovery methods for As-rich waste.
Collapse
Affiliation(s)
- K Wang
- Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, Copenhagen, Denmark
| | - P E Holm
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | | | - S R S Bandaru
- University of California, Berkeley, Berkeley, California, USA
| | - D van Halem
- Technical University of Delft, Delft, The Netherlands
| | - C M van Genuchten
- Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, Copenhagen, Denmark.
| |
Collapse
|
7
|
Tang L, Chen W, Luo X, Zhang G, Feng X, Guo L, Gao W, He J, Zhao G, Jiang J, Xue S. Multi-technological integration in a smelting site: Visualizing pollution characteristics and migration pattern. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132135. [PMID: 37506644 DOI: 10.1016/j.jhazmat.2023.132135] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/09/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Heavy metal(loid)s pollution of industrial legacies has become a severe environmental issue worldwide. Linking soil pollution to groundwater contaminant plumes would make invisible pollution features visible across the site, but related studies are lacking and require the convergence of multiple technologies. This study uniformly managed the soil and groundwater data in a 3D visualization model to pellucidly assess the spatial distribution of critical contaminants beyond simple drilling information. The distribution of Pb, Zn, As, and Cd in soil-groundwater system has a strong correlation to historical production, substance type, soil property, and groundwater flow direction. Over 2600 measurements of High-density electrical resistivity tomography (ERT) data were used to guarantee the exactness of soil structures. Hydraulic conductivity showed a strongest correlation (R2 = 0.86), yielding a calibrated model to reveal the anisotropic and contaminant transport in the region, with the consequent minimize the drilling tests. This study provides a template for the description of a verifiable scenario of hydrogeological conditions and pollution characteristics at smelting sites, coupled with traditional exploration and non-invasive techniques. The findings highlight the significance of visualizing the internal state of the soil-groundwater system under consideration, thus providing a basis for targeted control measures against site contamination.
Collapse
Affiliation(s)
- Lu Tang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Wenwan Chen
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Xinghua Luo
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Gubin Zhang
- Henan Academy of Geology, Zhengzhou, Zhengzhou 450001, PR China
| | - Xiang Feng
- Henan Academy of Geology, Zhengzhou, Zhengzhou 450001, PR China
| | - Lin Guo
- Henan Academy of Geology, Zhengzhou, Zhengzhou 450001, PR China
| | - Wenyan Gao
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Jin He
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Guizhang Zhao
- College of Geosciences and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, PR China
| | - Jun Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China.
| |
Collapse
|