1
|
Jones SE, Gutkowski N, Demick S, Curello M, Pavia A, Robuck AR, Li ML. Assessing Bivalves as Biomonitors of Per- and Polyfluoroalkyl Substances in Coastal Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5202-5213. [PMID: 40036337 DOI: 10.1021/acs.est.4c11215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are widely used chemicals that enter coastal ecosystems through various pathways. Despite the ecological and economic significance of coastal environments, monitoring efforts to identify PFAS in these regions are limited. Bivalves have been used as biomonitors for many pollutants, but their effectiveness in reflecting environmental PFAS contamination and the mechanisms of PFAS bioaccumulation is poorly understood. This study examined the impact of biological, chemical, and ecological variables on PFAS bioaccumulation in two bivalve species (i.e., Eastern oyster and Atlantic ribbed mussel) and developed a statistical model to predict the PFAS content in wild bivalves. Overall, the summed PFAS concentration in the bivalves closely mirrors that in water. We observed higher bioaccumulation factors for some perfluoroalkyl sulfonamides and branched PFAS isomers than for terminal PFAS of equivalent chain length. The isomer distribution and precursor-to-terminal compound ratios provide compelling evidence that the biotransformation of PFAS precursors likely drives these elevated factors. Additionally, the bioaccumulation factors of PFAS decrease with increasing organism size and age, suggesting that smaller and younger bivalves have greater bioaccumulation potential and are more susceptible to PFAS contamination. These findings provide critical information that guides the use of bivalves as biomonitors to evaluate PFAS contamination in aquatic environments.
Collapse
Affiliation(s)
- Shannon E Jones
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716, United States
| | - Nicole Gutkowski
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716, United States
| | - Shayna Demick
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716, United States
| | - Max Curello
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716, United States
| | - Ashley Pavia
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716, United States
| | - Anna R Robuck
- Center for Environmental Measurement and Modeling, US Environmental Protection Agency, Office of Research and Development, Narragansett, Rhode Island 02882-1153, United States
| | - Mi-Ling Li
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
2
|
Gust KA, Kimble AN, Mylroie JE, Mayo ML, Wilbanks MS, Steward CSC, Chapman KA, Lotufo GR, Garcia-Reyero N, Moore DW. Bioconcentration, maternal transfer, and toxicokinetics of PFOS in a multi-generational zebrafish exposure. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:207-219. [PMID: 39887274 PMCID: PMC11790210 DOI: 10.1093/etojnl/vgae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 02/01/2025]
Abstract
To enable risk characterization of perfluorooctane sulfonic acid (PFOS) in extended chronic and multi-generational exposures, we assessed PFOS bioconcentration in zebrafish (Danio rerio) exposed continuously to environmentally-relevant PFOS concentrations (0, 0.1, 0.6, 3.2, 20, and 100 µg/L PFOS) through 180 days postfertilization (dpf) in parental (P) and first filial generation (F1) fish. Exposures included five replicate tanks per treatment where whole-body PFOS concentrations were measured using 20-35 fish per replicate at 14 and 29 dpf in the P generation and one fish of each sex per replicate at 180 dpf for the P and F1 generations. Perfluorooctane sulfonic acid accumulation reached an apparent steady state at ≤ 14 dpf where whole-body wet-weight concentrations remained constant through 180 dpf in the P and F1 generations. The median bioconcentration factor (BCF) of 934 L/kg was observed for all PFOS exposures with a range from 255 to 2,136 L/kg which varied with PFOS exposure concentration and sex of adult fish. Significantly lower BCFs were observed in 20 and 100 µg/L PFOS exposures versus 0.1 and 0.6 µg/L indicating exposure-concentration dependance. Additionally, males had significantly increased (∼2×) PFOS accumulation and BCFs versus females in both P and F1 generations. Maternal transfer of PFOS was observed from P females to F1 eggs where maternal whole-body and egg PFOS burdens were equivalent, suggesting PFOS transfer to eggs was not a depuration pathway. Finally, a toxicokinetic model was developed that reliably reproduced PFOS whole-body burdens (data within 1.64-fold of predicted values) across all exposure durations spanning the P and F1 generations, providing a tool for PFOS bioaccumulation predictions relevant for risk assessment of acute, chronic, and multi-generational exposures.
Collapse
Affiliation(s)
- Kurt A Gust
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, United States
| | - Ashley N Kimble
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, United States
| | - J Erik Mylroie
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, United States
| | - Michael L Mayo
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, United States
| | - Mitch S Wilbanks
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, United States
| | | | - Kacy A Chapman
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, United States
| | - Guilherme R Lotufo
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, United States
| | - Natalia Garcia-Reyero
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, United States
| | - David W Moore
- US Army, Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi, United States
| |
Collapse
|
3
|
Pickard HM, Ruyle BJ, Haque F, Logan JM, LeBlanc DR, Vojta S, Sunderland EM. Characterizing the Areal Extent of PFAS Contamination in Fish Species Downgradient of AFFF Source Zones. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19440-19453. [PMID: 39412174 PMCID: PMC11526379 DOI: 10.1021/acs.est.4c07016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024]
Abstract
Most monitoring programs next to large per- and polyfluoroalkyl substances (PFAS) sources focus on drinking water contamination near source zones. However, less is understood about how these sources affect downgradient hydrological systems and food webs. Here, we report paired PFAS measurements in water, sediment, and aquatic biota along a hydrological gradient away from source zones contaminated by the use of legacy aqueous film-forming foam (AFFF) manufactured using electrochemical fluorination. Clustering analysis indicates that the PFAS composition characteristic of AFFF is detectable in water and fishes >8 km from the source. Concentrations of 38 targeted PFAS and extractable organofluorine (EOF) decreased in fishes downgradient of the AFFF-contaminated source zones. However, PFAS concentrations remained above consumption limits at all locations within the affected watershed. Perfluoroalkyl sulfonamide precursors accounted for approximately half of targeted PFAS in fish tissues, which explain >90% of EOF across all sampling locations. Suspect screening analyses revealed the presence of a polyfluoroketone pharmaceutical in fish species, and a fluorinated agrochemical in water that likely does not accumulate in biological tissues, suggesting the presence of diffuse sources such as septic system and agrochemical inputs throughout the watershed in addition to AFFF contamination. Based on these results, monitoring programs that consider all hydrologically connected regions within watersheds affected by large PFAS sources would help ensure public health protection.
Collapse
Affiliation(s)
- Heidi M. Pickard
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Bridger J. Ruyle
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department
of Global Ecology, Carnegie Institution
for Science, Stanford, California 94305, United States
| | - Faiz Haque
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - John M. Logan
- Massachusetts
Division of Marine Fisheries, New
Bedford, Massachusetts 02744, United States
| | - Denis R. LeBlanc
- U.S.
Geological Survey, Emeritus Scientist, New
England Water Science Center, Northborough, Massachusetts 01532, United States
| | - Simon Vojta
- Graduate
School of Oceanography, University of Rhode
Island, Narragansett, Rhode Island 02882, United States
| | - Elsie M. Sunderland
- Harvard
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department
of Earth and Planetary Sciences, Harvard
University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
4
|
Hill NI, Becanova J, Vojta S, Barber LB, LeBlanc DR, Vajda AM, Pickard HM, Lohmann R. Bioconcentration of Per- and Polyfluoroalkyl Substances and Precursors in Fathead Minnow Tissues Environmentally Exposed to Aqueous Film-Forming Foam-Contaminated Waters. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1795-1806. [PMID: 38896102 PMCID: PMC11552075 DOI: 10.1002/etc.5926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/06/2024] [Accepted: 05/03/2024] [Indexed: 06/21/2024]
Abstract
Exposure to per- and polyfluoroalkyl substances (PFAS) has been associated with toxicity in wildlife and negative health effects in humans. Decades of fire training activity at Joint Base Cape Cod (MA, USA) incorporated the use of aqueous film-forming foam (AFFF), which resulted in long-term PFAS contamination of sediments, groundwater, and hydrologically connected surface waters. To explore the bioconcentration potential of PFAS in complex environmental mixtures, a mobile laboratory was established to evaluate the bioconcentration of PFAS from AFFF-impacted groundwater by flow-through design. Fathead minnows (n = 24) were exposed to PFAS in groundwater over a 21-day period and tissue-specific PFAS burdens in liver, kidney, and gonad were derived at three different time points. The ∑PFAS concentrations in groundwater increased from approximately 10,000 ng/L at day 1 to 36,000 ng/L at day 21. The relative abundance of PFAS in liver, kidney, and gonad shifted temporally from majority perfluoroalkyl sulfonamides (FASAs) to perfluoroalkyl sulfonates (PFSAs). By day 21, mean ∑PFAS concentrations in tissues displayed a predominance in the order of liver > kidney > gonad. Generally, bioconcentration factors (BCFs) for FASAs, perfluoroalkyl carboxylates (PFCAs), and fluorotelomer sulfonates (FTS) increased with degree of fluorinated carbon chain length, but this was not evident for PFSAs. Perfluorooctane sulfonamide (FOSA) displayed the highest mean BCF (8700 L/kg) in day 21 kidney. Suspect screening results revealed the presence of several perfluoroalkyl sulfinate and FASA compounds present in groundwater and in liver for which pseudo-bioconcentration factors are also reported. The bioconcentration observed for precursor compounds and PFSA derivatives detected suggests alternative pathways for terminal PFAS exposure in aquatic wildlife and humans. Environ Toxicol Chem 2024;43:1795-1806. © 2024 The Author(s). Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Nicholas I Hill
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Jitka Becanova
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | - Simon Vojta
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| | | | | | - Alan M Vajda
- Department of Integrative Biology, University of Colorado Denver, Denver, Colorado, USA
| | - Heidi M Pickard
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts, USA
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA
| |
Collapse
|
5
|
Pickard HM, Haque F, Sunderland EM. Bioaccumulation of Perfluoroalkyl Sulfonamides (FASA). ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:350-356. [PMID: 38645703 PMCID: PMC11027762 DOI: 10.1021/acs.estlett.4c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Hundreds of sites across the United States have high concentrations of perfluoroalkyl sulfonamides (FASA), but little is known about their propensity to accumulate in fish. FASA are precursors to terminal per- and polyfluoroalkyl substances (PFAS) that are abundant in diverse consumer products and aqueous film-forming foams manufactured using electrochemical fluorination (ECF AFFF). In this study, FASA with C3-C8 carbon chain lengths were detected in all fish samples from surface waters up to 8 km downstream of source zones with ECF AFFF contamination. Short-chain FASA ≤ C6 have rarely been included in routine screening for PFAS, but availability of new standards makes such analyses more feasible. Bioaccumulation factors (BAF) for FASA were between 1 and 3 orders of magnitude greater than their terminal perfluoroalkyl sulfonates. Across fish species, BAF for FASA were greater than for perfluorooctanesulfonate (PFOS), which is presently the focus of national advisory programs. Similar concentrations of the C6 FASA (<0.36-175 ng g-1) and PFOS (0.65-222 ng g-1) were detected in all fish species. No safety thresholds have been established for FASA. However, high concentrations in fish next to contaminated sites and preliminary findings on toxicity suggest an urgent need for consideration by fish advisory programs.
Collapse
Affiliation(s)
- Heidi M Pickard
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Faiz Haque
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Elsie M Sunderland
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States; Department of Environmental Health, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts 02115, United States
| |
Collapse
|
6
|
Torralba-Sanchez TL, Di Toro DM, Dmitrenko O, Murillo-Gelvez J, Tratnyek PG. Modeling the Partitioning of Anionic Carboxylic and Perfluoroalkyl Carboxylic and Sulfonic Acids to Octanol and Membrane Lipid. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:2317-2328. [PMID: 37439660 DOI: 10.1002/etc.5716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/30/2023] [Accepted: 07/10/2023] [Indexed: 07/14/2023]
Abstract
Perfluoroalkyl carboxylic and sulfonic acids (PFCAs and PFSAs, respectively) have low acid dissociation constant values and are, therefore, deprotonated under most experimental and environmental conditions. Hence, the anionic species dominate their partitioning between water and organic phases, including octanol and phospholipid bilayers which are often used as model systems for environmental and biological matrices. However, data for solvent-water (SW) and membrane-water partition coefficients of the anion species are only available for a few per- and polyfluoroalkyl substances (PFAS). In the present study, an equation is derived using a Born-Haber cycle that relates the partition coefficients of the anions to those of the corresponding neutral species. It is shown via a thermodynamic analysis that for carboxylic acids (CAs), PFCAs, and PFSAs, the log of the solvent-water partition coefficient of the anion, log KSW (A- ), is linearly related to the log of the solvent-water partition coefficient of the neutral acid, log KSW (HA), with a unity slope and a solvent-dependent but solute-independent intercept within a PFAS (or CA) family. This finding provides a method for estimating the partition coefficients of PFCAs and PFSAs anions using the partition coefficients of the neutral species, which can be reliably predicted using quantum chemical methods. In addition, we have found that the neutral octanol-water partition coefficient, log KOW , is linearly correlated to the neutral membrane-water partition coefficient, log KMW ; therefore, log KOW , being a much easier property to estimate and/or measure, can be used to predict the neutral log KMW . Application of this approach to KOW and KMW for PFCAs and PFSAs demonstrates the utility of this methodology for evaluating reported experimental data and extending anion property data for chain lengths that are unavailable. Environ Toxicol Chem 2023;42:2317-2328. © 2023 SETAC.
Collapse
Affiliation(s)
| | - Dominic M Di Toro
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| | - Olga Dmitrenko
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| | - Jimmy Murillo-Gelvez
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware, USA
| | - Paul G Tratnyek
- OHSU-PSU School of Public Health, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|