1
|
Li G, Li X, Hao X, Li Q, Zhang M, Jia H. Ti 3+/Ti 4+ and Co 2+/Co 3+ redox couples in Ce-doped Co-Ce/TiO 2 for enhancing photothermocatalytic toluene oxidation. J Environ Sci (China) 2025; 149:164-176. [PMID: 39181631 DOI: 10.1016/j.jes.2023.10.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 08/27/2024]
Abstract
Cerium and cobalt loaded Co-Ce/TiO2 catalyst prepared by impregnation method was investigated for photothermal catalytic toluene oxidation. Based on catalyst characterizations (XPS, EPR and H2-TPR), redox cycle between Co and TiO2 (Co2+ + Ti4+ ↔ Co3+ + Ti3+) results in the formation of Co3+, Ti3+ and oxygen vacancies, which play important roles in toluene catalytic oxidation reaction. The introduction of Ce brings in the dual redox cycles (Co2+ + Ti4+ ↔ Co3+ + Ti3+, Co2+ + Ce4+ ↔ Co3+ + Ce3+), further promoting the elevation of reaction sites amount. Under full spectrum irradiation with light intensity of 580 mW/cm2, Co-Ce/TiO2 catalyst achieved 96% of toluene conversion and 73% of CO2 yield, obviously higher than Co/P25 and Co/TiO2. Co-Ce/TiO2 efficiently maintains 10-hour stability test under water vapor conditions and exhibits better photothermal catalytic performance than counterparts under different wavelengths illumination. Photothermal catalytic reaction displays improved activities compared with thermal catalysis, which is attributed to the promotional effect of light including photocatalysis and light activation of reactive oxygen species.
Collapse
Affiliation(s)
- Guanghui Li
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaolan Li
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinhui Hao
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiang Li
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Zhang
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| | - Hongpeng Jia
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Luo S, Fan S, Yuan J, Xiao J, Sun X, Wang L, Zhang Y, Zhang Z, Fu X, Dai W. Regulation of electron density in Pt nanoparticles via bimetallic metal-organic frameworks for enhancing photothermal catalysis of toluene decomposition. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136561. [PMID: 39571375 DOI: 10.1016/j.jhazmat.2024.136561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/27/2024] [Accepted: 11/16/2024] [Indexed: 01/26/2025]
Abstract
Volatile Organic Compounds (VOCs) are omnipresent in the sphere of human industrial, harboring latent adverse consequences for health and the ecological system. The photothermal catalytic oxidation of VOCs is an advanced integrated technology that harnesses the combined effects of light and heat energy to enhance the efficiency of VOCs degradation. Herein, a bimetallic Metal-Organic Framework (MOF) was synthesized with the incorporation of Ce into the UiO-66-NH2(Zr) (i.e., UNH(Zr)), UiO-66-NH2(Zr2Ce) (i.e., UNH(Z2C)), which was achieved with Ce atom substituting for a portion of Zr atom within the Zr-oxo clusters. Pt nanoparticles (NPs) are integrated with MOFs to form composites using the dual-solvent method. Ce-oxo fulfills a bifunctional role: it not only facilitates the enhancement of the ligand-to-metal charge transfer (LMCT), but also establishes interaction with Pt NPs. Ce-oxo mediates an enhancement of electron density on Pt NPs. This phenomenon enhances the adsorption and activation of oxygen, significantly boosting the photocatalytic performance for toluene degradation, as demonstrated by a reduction of 30 ℃ for complete mineralization of toluene as compared to that of Pt@UiO-66-NH2(Zr) (i.e., PUNH(Zr)). This study potentially offers new insights into the relationship between electron transfer effects in bimetallic MOF-based catalysts and their efficient catalytic performance for VOCs degradation.
Collapse
Affiliation(s)
- Songyu Luo
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China; Qingyuan Innovation Laboratory, Quanzhou 362801, China
| | - Shipeng Fan
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jie Yuan
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jianyu Xiao
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Xu Sun
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Liang Wang
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yongfan Zhang
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zizhong Zhang
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China; Qingyuan Innovation Laboratory, Quanzhou 362801, China
| | - Xianzhi Fu
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Wenxin Dai
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China; Qingyuan Innovation Laboratory, Quanzhou 362801, China.
| |
Collapse
|
3
|
Guo L, Liao H, Wang Z, Han S, Li D, Wang B, Shen J, Dai W, Xu H, Wang X, Zhang Z. Pt position determining efficiency and stability for photocatalytic toluene degradation over Pt decorated TiO 2. CHEMOSPHERE 2024; 368:143773. [PMID: 39566686 DOI: 10.1016/j.chemosphere.2024.143773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/01/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Highly durable photocatalytic degradation of gas toluene pollutants is a great challenge due to the easy deactivation of photocatalysts. Herein, we synthesized the Pt embedded at interface of TiO2 nanocomposites (TiO2/Pt/TiO2) and Pt exposed on the surface of TiO2 nanocomposites (Pt/TiO2/TiO2) to investigate the effect of Pt position on the photocatalytic performance of toluene degradation. It was found that the Pt-exposed samples showed inactivation as the reaction progressed because carbonaceous intermediates such as phenol and benzoic acid were observed to be deposited on the exposed Pt to restrain the role of Pt in electron transfer for the production of reactive oxygen species. Whereas, Pt-embedded nanocomposites had excellent activity and stability for toluene degradation and CO2 production more than 60 h. This was attributed to the protective effect of the TiO2 outerlayer. The embedded Pt was not easily poisoned by the degradation intermediates, resulting in a good electron transfer and the continuous production of reactive oxygen species for photocatalytic reaction. Therefore, this work provides an efficient approach for designing of the stability of metal-decorated photocatalyst for the highly durable photocatalytic performance.
Collapse
Affiliation(s)
- Liuhan Guo
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China.
| | - Hehua Liao
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China.
| | - Zhaoliang Wang
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China.
| | - Shitong Han
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China.
| | - Dongmiao Li
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China.
| | - Bing Wang
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China.
| | - Jinni Shen
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China.
| | - Wenxin Dai
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China; Qingyuan Innovation Laboratory, Quanzhou, 362801, PR China.
| | - Hailing Xu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, PR China.
| | - Xuxu Wang
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China.
| | - Zizhong Zhang
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, PR China; Qingyuan Innovation Laboratory, Quanzhou, 362801, PR China.
| |
Collapse
|
4
|
Chu P, Zhang L, Wang Z, Wei L, Liu Y, Dai H, Guo G, Duan E, Zhao Z, Deng J. Regulation Lattice Oxygen Mobility via Dual Single Atoms for Simultaneously Enhancing VOC Oxidation and NO x Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17475-17484. [PMID: 39283811 DOI: 10.1021/acs.est.4c03049] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Synergistic catalytic removal of multipollutants (e.g., volatile organic compound (VOC) oxidation and nitrogen oxide (NOx) reduction) is highly demanded due to the increasingly strict emission standards. The prevention of the key reactive intermediate species nitrite excessive oxidation over the supported noble-metal catalysts, rather than the traditional low-efficiency transition metal oxide catalysts, remains a great challenge. Herein, a sound strategy of Pd single atoms saturated with acidic transition element ligands is proposed. The coexistence of Pd and V dual single atoms strengthens the adsorption of reactants, while synergistic interaction between dual atoms and surface oxygen weakens activation of lattice oxygen, thus significantly reducing the overoxidation of nitrite. Meanwhile, the neutralization of the active Pd and inert V sites results in a rational decrease in the redox property of Pd and an obvious increase in that of V. The Pd1V1/CeO2 dual single-atom catalyst achieves 90% conversion of NOx and toluene at 238 and 230 °C and has a large temperature window (>150 °C) for NOx reduction. This research makes a breakthrough in the development of efficient supported noble-/transition-metal dual single-atom catalysts for VOC and NOx simultaneous purification.
Collapse
Affiliation(s)
- Peiqi Chu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Long Zhang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Zhiwei Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Lu Wei
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yuxi Liu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Guangsheng Guo
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Erhong Duan
- School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang,Hebei 050018, China
| | - Zhenxia Zhao
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jiguang Deng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
5
|
Wang X, Li Z, Gao R, Yu X, Feng Y, Wang Z, Jing L, Wei Z, Liu Y, Dai H, Zhao Z, Deng J. Photothermal Catalytic Removal of 1,2-DCE with High HCl Selectivity over the Brønsted Acid-Enriched Sulfur-Doped MOFs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39270042 DOI: 10.1021/acs.est.4c07755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Chlorinated volatile organic compounds come from a wide range of sources and are highly toxic, posing a serious threat to biological health and the environment. Herein, a high-efficiency and energy-saving photothermal synergistic catalytic oxidation method was developed for the removal of 1,2-dichloroethane (1,2-DCE). Compared to traditional thermocatalysis, the 1,2-DCE conversion over Ru-U6S in photothermal synergistic catalysis at 340 °C increased by approximately 44% not only reducing energy consumption but also avoiding the instability of MOF structure caused by high reaction temperature. The excellent photothermal catalytic oxidation activity was derived from the synergistic effect of photo- and thermocatalysis. Ru-U6S demonstrated excellent 1,2-DCE adsorption capacity and stronger light utilization and could produce more reactive oxygen species (•OH and •O2-) after light illumination, which participated in the oxidation reaction, promoting the release of the active site of the catalyst. The results of H2O-TPD and NH3-DRIFTS exhibited that the use of S-containing ligands in the synthesis process increased the hydroxyl groups and Brønsted acid sites, significantly improved the selectivity of CO2 and HCl in the oxidation process, and reduced the release of chlorine-containing byproducts. This work provides a high-efficiency and energy-saving strategy for removing chlorinated volatile organic compounds and increasing the selectivity of ideal products directly with MOFs directly.
Collapse
Affiliation(s)
- Xun Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Zeya Li
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Ruyi Gao
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Xiaohui Yu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Ying Feng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Zhiwei Wang
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Lin Jing
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Zhen Wei
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Yuxi Liu
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Hongxing Dai
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| | - Zhenxia Zhao
- Key Laboratory of New Low-Carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Jiguang Deng
- Beijing Key Laboratory for Green Catalysis and Separation, Key Laboratory of Beijing on Regional Air Pollution Control, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
6
|
Lv B, Li S, Yu Y, Liu Y, Xu Y, Fan X. A 2.5-Dimensional biomimetic dual-functional bifacial-evaporator for high efficient evaporation and water purification. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134993. [PMID: 38943885 DOI: 10.1016/j.jhazmat.2024.134993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/20/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
Nowadays, solar-driven interfacial steam generation (SISG) is a sustainable and green technology for mitigating the water shortage crisis. Nevertheless, SISG is suffering from the enrichment of volatile organic compounds in condensate water and non-volatile organic compounds in feed water in practical applications. Herein, taking inspiration from nature, a dual-functional bifacial-CuCoNi (Bi-CuCoNi) evaporator with a special biomimetic urchin-like microstructure was successfully prepared. The unique design with 2.5-Dimensional bifacial working sides and urchin-like light absorption microstructure provided the Bi-CuCoNi evaporator with remarkable evaporation performance (1.91 kg m-2 h-1 under 1 kW m-2). Significantly, due to the urchin-like microstructure, the adequately exposed catalytic active sites enabled the Bi-CuCoNi/peroxydisulfate (PDS) system to degrade non-volatile organic pollutants (removal rate of 99.3 % in feed water, close to 100 % in condensate water) and the volatile organic pollutants (removal rate of 99.1 % in feed water, 98.2 % in condensate water) simultaneously. Moreover, the Bi-CuCoNi evaporator achieved non-radical pathway degradation at whole-stages. The dual-functional evaporator successfully integrated advanced oxidation processes (AOPs) into SISG, providing a new idea for high-quality freshwater production from polluted wastewater. ENVIRONMENTAL IMPLICATION: Inspired by nature, a dual-functional bifacial CuCoNi evaporator with a special biomimetic urchin-like microstructure formed by CuCoNi oxide nanowires grown on nickel foam by the hydrothermal synthesis method was successfully prepared. The prepared Bi-CuCoNi evaporator can effectively degrade organic pollutants in feed water and condensate water simultaneously during SISG, thus generating high-quality fresh water. Meanwhile, the health risks associated with the accumulation of organic pollutants in water during traditional SISG were reduced via green and sustainable way. The spatial 2.5-Dimensional structural design of Bi-CuCoNi provided new insights for achieving efficient water evaporation and fresh water generation from various polluted wastewater.
Collapse
Affiliation(s)
- Bowen Lv
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Sheng Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yueling Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yanming Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yuanlu Xu
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China
| | - Xinfei Fan
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
7
|
Park C, Shin G, Chung MW, Koo MS, Ham DJ, Lee HC, Weon S, Kim W. Time-resolved spectroscopic investigation for the practical application of a photocatalytic air purifier. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134382. [PMID: 38703675 DOI: 10.1016/j.jhazmat.2024.134382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/06/2024] [Accepted: 04/20/2024] [Indexed: 05/06/2024]
Abstract
The photocatalytic efficiency for removing volatile organic compounds (VOCs) is significantly influenced by operational parameters like humidity and flow velocity, exhibiting notable and inconsistent fluctuations in both lab-scale and large-scale demonstrations. In this study, operando spectroscopy and isotope analysis were employed to investigate the correlation between humidity levels and degradation of gaseous acetaldehyde using TiO2 photocatalysts, aiming to demonstrate the scaling-up of photocatalytic air purifier. It was observed that rate constants for the mineralization of acetaldehyde rapidly decreased by 30% as relative humidity increased from 25% to 80% in the flow system (with an air velocity, v = 0.78 m/s). However, batch system showed smaller change with only a 10% reduction of the rate constant. Humidity fluctuations were more pronounced under high-speed conditions and were amplified in air purifier (v = 3.8 m/s). Time-resolved operando spectroscopy using an 13C isotope of acetaldehyde revealed that humidity's distinct role in dark adsorption and photocatalytic reactions. Water was found to inhibit the formation of crotonaldehyde during aldol condensation reaction in dark condition. Moreover, water suppressed photocatalytic mineralization by inhibiting acetate oxidation to formate. These findings provide valuable insights for improving realistic air purification processes, underscoring the importance of identifying key intermediates and controlling humidity to enhance the selectivity of gaseous pollutant oxidation reactions.
Collapse
Affiliation(s)
- Cheolwoo Park
- Department of Energy Engineering/KENTECH Institute for Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju 58330, Republic of Korea
| | - Gahye Shin
- Department of Energy Engineering/KENTECH Institute for Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju 58330, Republic of Korea
| | - Myoung Won Chung
- School of Health and Environmental Science & Department of Health and Safety Convergence Science, Korea University, 145 Anam-Ro, Seoul 02841, Republic of Korea
| | - Min Seok Koo
- Air Science Research Center (ASRC), Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Dong Jin Ham
- Air Science Research Center (ASRC), Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea
| | - Hyun Chul Lee
- Air Science Research Center (ASRC), Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Co., Ltd., 130 Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do 16678, Republic of Korea.
| | - Seunghyun Weon
- School of Health and Environmental Science & Department of Health and Safety Convergence Science, Korea University, 145 Anam-Ro, Seoul 02841, Republic of Korea.
| | - Wooyul Kim
- Department of Energy Engineering/KENTECH Institute for Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju 58330, Republic of Korea.
| |
Collapse
|
8
|
Xiang Y, Xie X, Zhong H, Xiao F, Xie R, Liu B, Guo H, Hu D, Zhang P, Huang H. Efficient Catalytic Elimination of Toxic Volatile Organic Compounds via Advanced Oxidation Process Wet Scrubbing with Bifunctional Cobalt Sulfide/Activated Carbon Catalysts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8846-8856. [PMID: 38728579 DOI: 10.1021/acs.est.4c00481] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Advanced oxidation process (AOP) wet scrubber is a powerful and clean technology for organic pollutant treatment but still presents great challenges in removing the highly toxic and hydrophobic volatile organic compounds (VOCs). Herein, we elaborately designed a bifunctional cobalt sulfide (CoS2)/activated carbon (AC) catalyst to activate peroxymonosulfate (PMS) for efficient toxic VOC removal in an AOP wet scrubber. By combining the excellent VOC adsorption capacity of AC with the highly efficient PMS activation activity of CoS2, CoS2/AC can rapidly capture VOCs from the gas phase to proceed with the SO4•- and HO• radical-induced oxidation reaction. More than 90% of aromatic VOCs were removed over a wide pH range (3-11) with low Co ion leaching (0.19 mg/L). The electron-rich sulfur vacancies and low-valence Co species were the main active sites for PMS activation. SO4•- was mainly responsible for the initial oxidation of VOCs, while HO• and O2 acted in the subsequent ring-opening and mineralization processes of intermediates. No gaseous intermediates from VOC oxidation were detected, and the highly toxic liquid intermediates like benzene were also greatly decreased, thus effectively reducing the health toxicity associated with byproduct emissions. This work provided a comprehensive understanding of the deep oxidation of VOCs via AOP wet scrubber, significantly accelerating its application in environmental remediation.
Collapse
Affiliation(s)
- Yongjie Xiang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Xiaowen Xie
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Huanran Zhong
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Fei Xiao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Ruijie Xie
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Biyuan Liu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Hao Guo
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, P. R. China
| | - Di Hu
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, P. R. China
| | - Pan Zhang
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, P. R. China
| | - Haibao Huang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- School of Chemical Engineering and Technology, Xinjiang University, Urumchi 830017, P. R. China
| |
Collapse
|
9
|
Wang H, Zhao Q, Li D, Zhang Z, Liu Y, Guo X, Li X, Liu Z, Wang L, Ma J, He H. Boosting Photothermocatalytic Oxidation of Toluene Over Pt/N-TiO 2: The Gear Effect of Light and Heat. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7662-7671. [PMID: 38578018 DOI: 10.1021/acs.est.3c10459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Photothermal catalysis is extremely promising for the removal of various indoor pollutants owing to its photothermal synergistic effect, while the low light utilization efficiency and unclear catalytic synergistic mechanism hinder its practical applications. Here, nitrogen atoms are introduced, and Pt nanoparticles are loaded on TiO2 to construct Pt/N-TiO2-H2, which exhibits 3.5-fold higher toluene conversion rate than the pure TiO2. Compared to both photocatalytic and thermocatalytic processes, Pt/N-TiO2-H2 exhibited remarkable performance and stability in the photothermocatalytic oxidation of toluene, achieving 98.4% conversion and 98.3% CO2 yield under a light intensity of 260 mW cm-2. Furthermore, Pt/N-TiO2-H2 demonstrated potential practical applicability in the photothermocatalytic elimination of various indoor volatile organic compounds. The synergistic effect occurs as thermocatalysis accelerates the accumulation of carboxylate species and the degradation of aldehyde species, while photocatalysis promotes the generation of aldehyde species and the consumption of carboxylate species. This ultimately enhances the photothermocatalytic process. The photothermal synergistic effect involves the specific conversion of intermediates through the interplay of light and heat, providing novel insights for the design of photothermocatalytic materials and the understanding of photothermal mechanisms.
Collapse
Affiliation(s)
- Huihui Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qian Zhao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Daiqiang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhilin Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- School of Criminology, People's Public Security University of China, Beijing 100038, China
| | - Yuan Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueli Guo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Xiaotong Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhi Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lian Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinzhu Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Dong C, Yang C, Ren Y, Sun H, Wang H, Xiao J, Qu Z. Local Electron Environment Regulation of Spinel CoMn 2O 4 Induced Effective Reactant Adsorption and Transformation of Lattice Oxygen for Toluene Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21888-21897. [PMID: 38081063 DOI: 10.1021/acs.est.3c06782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
In contrast to numerous studies on oxygen species, the interaction of volatile organic compounds (VOCs) with oxides is also critical to the catalytic reaction but has hardly been considered. Herein, we develop a highly efficient Pt atom doped spinel CoMn2O4 (Pt-CoMn) for oxidation of toluene at low temperature, and the toluene conversion rate increased by 18.3 times (129.7 versus 7.1 × 10-11 mol/(m2·s)) at 160 °C compared to that of CoMn2O4. Detailed characterizations and density functional theory calculations reveal that the local electron environment of the Co sites is changed after Pt doping, and the formed electron-deficient Co sites in turn strengthen the interaction with toluene. Adsorbed toluene will react with lattice oxygen in Pt-CoMn and CoMn catalysts and convert into benzoate intermediates, and the consumption rate of benzoate is closely related to the activation of gaseous oxygen. Significantly, the abundant bulk defects of Pt-CoMn help to open the reaction channel in the CoMn spinel, which acts as an oxygen pump to promote the transformation of bulk lattice oxygen into surface lattice oxygen at lower temperatures, thus accelerating the conversion rate of benzoate intermediates into CO2 and enhancing low-temperature combustion of toluene. Pt-CoMn developed here emphasizes the regulation of VOCs adsorption strength and lattice oxygen transformation processes on CoMn2O4 by adjusting the local electron environment, which will provide new guidance for the design of efficient oxide catalysts for catalytic oxidation.
Collapse
Affiliation(s)
- Cui Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Chenyu Yang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yewei Ren
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Hongchun Sun
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Hui Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| | - Jianping Xiao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenping Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, 2 Linggong Road, Dalian 116024, China
| |
Collapse
|
11
|
Zhang Y, Ju S, Casals G, Tang J, Lin Y, Li X, Liang L, Jia Z, Zeng M, Casals E. Facile aqueous synthesis and comparative evaluation of TiO 2-semiconductor and TiO 2-metal nanohybrid photocatalysts in antibiotics degradation under visible light. RSC Adv 2023; 13:33187-33203. [PMID: 37954413 PMCID: PMC10636657 DOI: 10.1039/d3ra06231g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/05/2023] [Indexed: 11/14/2023] Open
Abstract
Advanced oxidation processes using TiO2-based nanomaterials are sustainable technologies that hold great promise for the degradation of many types of pollutants including pharmaceutical residues. A wide variety of heterostructures coupling TiO2 with visible-light active nanomaterials have been explored to shift its photocatalytic properties to harness sun irradiation but a systematic comparison between them is lacking in the current literature. Furthermore, the high number of proposed nanostructures with different size, morphology, and surface area, and the often complex synthesis processes hamper the transition of these materials into commercial and effective solutions for environmental remediation. Herein, we have designed a facile and cost-effective method to synthesize two heterostructured photocatalysts representative of two main families of novel structures proposed, hybrids of TiO2 with metal (Au) and semiconductor (CeO2) nanomaterials. The photocatalysts have been extensively characterized to ensure a good comparability in terms of co-catalyst doping characteristics, morphology and surface area. The photocatalytic degradation of ciprofloxacin and sulfamethoxazole as target pollutants, two antibiotics of high concern polluting water sources, has been evaluated and CeO2/TiO2 exhibited the highest activity, achieving complete antibiotic degradation at very low photocatalyst concentrations. Our study provides new insights into the development of inexpensive heterostructured photocatalysts and suggests that the non-stoichiometry and characteristic d and f electronic orbital configuration of CeO2 have a significantly improved role in the enhancement of the photocatalytic reaction.
Collapse
Affiliation(s)
- Yuping Zhang
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen 529020 PR China
| | - Shijie Ju
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen 529020 PR China
| | - Gregori Casals
- Biochemistry and Molecular Genetics Department, Clinical and Provincial Hospital of Barcelona Barcelona 08036 Spain
- IDIBAPS Research Center Barcelona 08036 Spain
| | - Jie Tang
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen 529020 PR China
| | - Yichao Lin
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen 529020 PR China
| | - Xiaofang Li
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen 529020 PR China
| | - Lihua Liang
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen 529020 PR China
| | - Zhiyu Jia
- Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology Beijing 100081 PR China
| | - Muling Zeng
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen 529020 PR China
| | - Eudald Casals
- School of Biotechnology and Health Sciences, Wuyi University Jiangmen 529020 PR China
| |
Collapse
|
12
|
Li Q, Zhou W, Deng C, Lu C, Huang P, Xia D, Tan L, Zhou C, Zhang YW, Dong L. Hydroxyl-Decorated Pt as a Robust Water-Resistant Catalyst for Catalytic Benzene Oxidation. Inorg Chem 2023; 62:13544-13553. [PMID: 37561968 DOI: 10.1021/acs.inorgchem.3c01979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
In catalytic oxidation reactions, the presence of environmental water poses challenges to the performance of Pt catalysts. This study aims to overcome this challenge by introducing hydroxyl groups onto the surface of Pt catalysts using the pyrolysis reduction method. Two silica supports were employed to investigate the impact of hydroxyl groups: SiO2-OH with hydroxyl groups and SiO2-C without hydroxyl groups. Structural characterization confirmed the presence of Pt-Ox, Pt-OHx, and Pt0 species in the Pt/SiO2-OH catalysts, while only Pt-Ox and Pt0 species were observed in the Pt/SiO2-C catalysts. Catalytic performance tests demonstrated the remarkable capacity of the 0.5 wt % Pt/SiO2-OH catalyst, achieving complete conversion of benzene at 160 °C under a high space velocity of 60,000 h-1. Notably, the catalytic oxidation capacity of the Pt/SiO2-OH catalyst remained largely unaffected even in the presence of 10 vol % water vapor. Moreover, the catalyst exhibited exceptional recyclability and stability, maintaining its performance over 16 repeated cycles and a continuous operation time of 70 h. Theoretical calculations revealed that the construction of Pt-OHx sites on the catalyst surface was beneficial for modulating the d-band structure, which in turn enhanced the adsorption and activation of reactants. This finding highlights the efficacy of decorating the Pt surface with hydroxyl groups as an effective strategy for improving the water resistance, catalytic activity, and long-term stability of Pt catalysts.
Collapse
Affiliation(s)
- Qun Li
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Wenyu Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
- Institute of High Performance Computing (IHPC), Agency of Science, Technology and Research (A*STAR), Singapore 138632, Singapore
| | - Chunyan Deng
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Chenyang Lu
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Peng Huang
- Department of Materials, The University of Manchester, Manchester M13 9PL, U.K
| | - Dong Xia
- Manchester Fuel Cell Innovation Centre, Department of Natural Sciences, Manchester Metropolitan University, Manchester M15 6BH, U.K
| | - Luxi Tan
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Cailong Zhou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yong-Wei Zhang
- Institute of High Performance Computing (IHPC), Agency of Science, Technology and Research (A*STAR), Singapore 138632, Singapore
| | - Lichun Dong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
13
|
Zhang M, Li G, Li Q, Chen J, Elimian EA, Jia H, He H. In Situ Construction of Manganese Oxide Photothermocatalysts for the Deep Removal of Toluene by Highly Utilizing Sunlight Energy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4286-4297. [PMID: 36857121 DOI: 10.1021/acs.est.2c09136] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The alternative use of electric energy by renewable energy to supply power for catalytic oxidation of pollutants is a sustainable technology, requiring a competent catalyst to realize efficient utilization of light and drive the catalytic reaction. Herein, in situ-synthesized manganese oxide heterostructure composites are developed through solvothermal reduction and subsequent calcination of amorphous manganese oxide (AMO). 95% of toluene conversion and 80% of CO2 mineralization were achieved over amorphous manganese oxide calcined at 250 °C (AMO-250) under light irradiation, and catalyst stability was maintained for at least 40 h. Highly utilization of light energy, uniformly dispersed nanoparticles, large specific surface area, improved metal reducibility, and oxygen desorption and migration ability at low temperature contribute to the good catalytic oxidation activity of AMO-250. Light activated more lattice oxygen to participate in the reaction via the Mars-van Krevelen (MvK) mechanism, and traditional e--h+ photocatalytic behavior exists over the AMO-250 heterostructure composite as an auxiliary degradation path. The reaction pathways of photothermocatalysis and thermocatalysis are close, except for the emergence of different copolymers, where light enhances the deep conversion of intermediates. A proof-of-concept study under natural sunlight has confirmed the feasibility of practical application in the photothermocatalytic degradation of pollutants.
Collapse
Affiliation(s)
- Meng Zhang
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guanghui Li
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Qiang Li
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Chen
- Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ehiaghe Agbovhimen Elimian
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham, Ningbo, Zhejiang 315100, China
| | - Hongpeng Jia
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, Fujian 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
14
|
Li X, Xiong J, Tang Z, He W, Wang Y, Wang X, Zhao Z, Wei Y. Recent Progress in Metal Oxide-Based Photocatalysts for CO 2 Reduction to Solar Fuels: A Review. Molecules 2023; 28:molecules28041653. [PMID: 36838641 PMCID: PMC9961657 DOI: 10.3390/molecules28041653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/30/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
One of the challenges in developing practical CO2 photoconversion catalysts is the design of materials with a low cost, high activity and good stability. In this paper, excellent photocatalysts based on TiO2, WO3, ZnO, Cu2O and CeO2 metal oxide materials, which are cost-effective, long-lasting, and easy to fabricate, are evaluated. The characteristics of the nanohybrid catalysts depend greatly on their architecture and design. Thus, we focus on outstanding materials that offer effective and practical solutions. Strategies to improve CO2 conversion efficiency are summarized, including heterojunction, ion doping, defects, sensitization and morphology control, which can inspire the future improvement in photochemistry. The capacity of CO2 adsorption is also pivotal, which varies with the morphological and electronic structures. Forms of 0D, 1D, 2D and 3DOM (zero/one/two-dimensional- and three-dimensional-ordered macroporous, respectively) are involved. Particularly, the several advantages of the 3DOM material make it an excellent candidate material for CO2 conversion. Hence, we explain its preparation method. Based on the discussion, new insights and prospects for designing high-efficient metallic oxide photocatalysts to reduce CO2 emissions are presented.
Collapse
Affiliation(s)
- Xuanzhen Li
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Jing Xiong
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
- Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing 102249, China
| | - Zhiling Tang
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Wenjie He
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Yingli Wang
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Xiong Wang
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Zhen Zhao
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
| | - Yuechang Wei
- State Key Laboratory of Heavy Oil Processing, College of Science, China University of Petroleum, Beijing 102249, China
- Key Laboratory of Optical Detection Technology for Oil and Gas, China University of Petroleum, Beijing 102249, China
- Correspondence:
| |
Collapse
|
15
|
Zhang S, Zhang L, Liu L, Chu X, Wang X, Song S, Zhang H. Boosting the catalytic performance of Pt/TiO2 catalysts in room-temperature formaldehyde elimination by incorporating CeO2 promoters. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|