1
|
Villacorta A, Cazorla-Ares C, Fuentes-Cebrian V, Valido IH, Vela L, Carrillo-Navarrete F, Morataya-Reyes M, Mejia-Carmona K, Pastor S, Velázquez A, Arribas Arranz J, Marcos R, López-Mesas M, Hernández A. Fluorescent labeling of micro/nanoplastics for biological applications with a focus on "true-to-life" tracking. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135134. [PMID: 38986413 DOI: 10.1016/j.jhazmat.2024.135134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/12/2024]
Abstract
The increased environmental presence of micro-/nanoplastics (MNPLs) and the potential health risks associated with their exposure classify them as environmental pollutants with special environmental and health concerns. Consequently, there is an urgent need to investigate the potential risks associated with secondary MNPLs. In this context, using "true-to-life" MNPLs, resulting from the laboratory degradation of plastic goods, may be a sound approach. These non-commercial secondary MNPLs must be labeled to track their presence/journeys inside cells or organisms. Because the cell internalization of MNPLs is commonly analyzed using fluorescence techniques, the use of fluorescent dyes may be a sound method to label them. Five different compounds comprising two chemical dyes (Nile Red and Rhodamine-B), one optical brightener (Opticol), and two industrial dyes (Amarillo Luminoso and iDye PolyPink) were tested to determine their potential for such applications. Using commercial standards of polystyrene nanoplastics (PSNPLs) with an average size of 170 nm, different characteristics of the selected dyes such as the absence of impact on cell viability, specificity for plastic staining, no leaching, and lack of interference with other fluorochromes were analyzed. Based on the overall data obtained in the wide battery of assays performed, iDye PolyPink exhibited the most advantages, with respect to the other compounds, and was selected to effectively label "true-to-life" MNPLs. These advantages were confirmed using a proposed protocol, and labeling titanium-doped PETNPLs (obtained from the degradation of milk PET plastic bottles), as an example of "true-to-life" secondary NPLs. These results confirmed the usefulness of iDye PolyPink for labeling MNPLs and detecting cell internalization.
Collapse
Affiliation(s)
- Aliro Villacorta
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Facultad de Recursos Naturales Renovables, Universidad Arturo Prat, Iquique, Chile
| | - Camila Cazorla-Ares
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Victor Fuentes-Cebrian
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Iris H Valido
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Lourdes Vela
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain; Faculty of Health Sciences Eugenio Espejo, Universidad UTE, Quito, Ecuador
| | - Fernando Carrillo-Navarrete
- Institut d'Investigació Tèxtil i Cooperació Industrial de Terrassa (INTEXTER) and Department of Chemical Engineering, Universitat Politècnica de Catalunya, Terrassa 08222, Barcelona, Spain
| | - Michelle Morataya-Reyes
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Karen Mejia-Carmona
- Institut Català de Nanociència i Nanotecnologia (ICN2-UAB-CSIC-BIST), Cerdanyola del Vallès, Spain
| | - Susana Pastor
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Antonia Velázquez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Jéssica Arribas Arranz
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain
| | - Montserrat López-Mesas
- GTS Research Group, Department of Chemistry, Faculty of Science, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain.
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Spain.
| |
Collapse
|
2
|
Park JS, Yoo JW, Lee YH, Park C, Lee YM. Size- and shape-dependent ingestion and acute toxicity of fragmented and spherical microplastics in the absence and presence of prey on two marine zooplankton. MARINE POLLUTION BULLETIN 2024; 206:116768. [PMID: 39067234 DOI: 10.1016/j.marpolbul.2024.116768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/18/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
As microplastics (MPs) are particulate pollutants, their size and shape, and the presence of prey in the media can affect their toxicity. However, the size- and shape-dependent toxicities of MPs and their prey-dependent ingestion patterns in marine zooplankton are not well understood. Thus, we investigated the ingestion and egestion patterns, and toxicity of different shapes and sizes of MPs on two marine zooplankton, Brachionus koreanus and Diaphanosoma celebensis, under different prey conditions. The ingestion assay showed that smaller MPs were ingested more frequently, regardless of their shape. However, fragmented MPs showed higher toxicity than spherical MPs of comparable size. Prey in the media reduced the uptake and toxicity of MPs in both species depending on the taxa's feeding strategy. Our findings demonstrate that the size and shape of MPs are important factors in determining toxicity and that the presence of prey should also be considered when assessing MP toxicity.
Collapse
Affiliation(s)
- Jong-Seok Park
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Je-Won Yoo
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Youn-Ha Lee
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Chaerin Park
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea
| | - Young-Mi Lee
- Department of Biotechnology, College of Convergence Engineering, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
3
|
He C, Yuan Y, Gong C, Wang X, Lyu G. Applications of Tissue Clearing in Central and Peripheral Nerves. Neuroscience 2024; 546:104-117. [PMID: 38570062 DOI: 10.1016/j.neuroscience.2024.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
The techniques of tissue clearing have been proposed and applied in anatomical and biomedical research since the 19th century. As we all know, the original study of the nervous system relied on serial ultrathin sections and stereoscopic techniques. The 3D visualization of the nervous system was established by software splicing and reconstruction. With the development of science and technology, microscope equipment had constantly been upgraded. Despite the great progress that has been made in this field, the workload is too complex, and it needs high technical requirements. Abundant mistakes due to manual sections were inescapable and structural integrity remained questionable. According to the classification of tissue transparency methods, we introduced the latest application of transparency methods in central and peripheral nerve research from optical imaging, molecular markers and data analysis. This review summarizes the application of transparent technology in neural pathways. We hope to provide some inspiration for the continuous optimization of tissue clearing methods.
Collapse
Affiliation(s)
- Cheng He
- Department of Anatomy, Medical School of Nantong University, Nantong, China
| | - Ye Yuan
- Department of Anatomy, Medical School of Nantong University, Nantong, China
| | - Chuanhui Gong
- Department of Anatomy, Medical School of Nantong University, Nantong, China
| | - Xueying Wang
- Medical School of Nantong University, Nantong, China
| | - Guangming Lyu
- Department of Anatomy, Medical School of Nantong University, Nantong, China; Department of Anatomy, Institute of Neurobiology, Jiangsu Key Laboratory of Neuroregeneration, Medical School of Nantong University, Nantong, China.
| |
Collapse
|
4
|
Li P, Liu J. Micro(nano)plastics in the Human Body: Sources, Occurrences, Fates, and Health Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38315819 DOI: 10.1021/acs.est.3c08902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The increasing global attention on micro(nano)plastics (MNPs) is a result of their ubiquity in the water, air, soil, and biosphere, exposing humans to MNPs on a daily basis and threatening human health. However, crucial data on MNPs in the human body, including the sources, occurrences, behaviors, and health risks, are limited, which greatly impedes any systematic assessment of their impact on the human body. To further understand the effects of MNPs on the human body, we must identify existing knowledge gaps that need to be immediately addressed and provide potential solutions to these issues. Herein, we examined the current literature on the sources, occurrences, and behaviors of MNPs in the human body as well as their potential health risks. Furthermore, we identified key knowledge gaps that must be resolved to comprehensively assess the effects of MNPs on human health. Additionally, we addressed that the complexity of MNPs and the lack of efficient analytical methods are the main barriers impeding current investigations on MNPs in the human body, necessitating the development of a standard and unified analytical method. Finally, we highlighted the need for interdisciplinary studies from environmental, biological, medical, chemical, computer, and material scientists to fill these knowledge gaps and drive further research. Considering the inevitability and daily occurrence of human exposure to MNPs, more studies are urgently required to enhance our understanding of their potential negative effects on human health.
Collapse
Affiliation(s)
- Penghui Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jingfu Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|