1
|
Fang B, Chen H, Zhao M, Qiao B, Zhou Y, Wang Y, Zhang Y, Gao M, Wang Y, Yao Y, Sun H. Biotic and abiotic transformations of aqueous film-forming foam (AFFF)-derived emerging polyfluoroalkyl substances in aerobic soil slurry. WATER RESEARCH 2025; 276:123284. [PMID: 39978122 DOI: 10.1016/j.watres.2025.123284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/23/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
The severe contamination of per- and polyfluoroalkyl substances (PFAS) in aqueous film-forming foam (AFFF)-affected soil and groundwater has raised global concerns. Although extensive studies on the transformation of electrochemical fluorination (ECF)-based PFAS in soil exist, limited research on AFFF-derived emerging fluorotelomer (FT) compounds has been conducted. Herein, a total of 38 PFAS were identified in a composite AFFF formulation through suspect and nontarget screening using high-resolution mass spectrometry (HRMS), and emerging 6:2 FT compounds were particularly prominent. Subsequently, the composite AFFF formulation was introduced to aerobic soil slurry to investigate the transformation behaviors of nine high-abundance polyfluoroalkyl substances. After a 150-day incubation, polyfluorinated sulfonamide betaine and quaternary ammonium compounds showed significant recalcitrance. The tertiary amine- and thioether-based PFAS underwent biotic and abiotic transformations, with half-lives ranging from 2 to 56 days and from 38 to 248 days, respectively. On the basis of the products identified using HRMS, the transformation pathways of FT- and ECF-based PFAS were proposed. Notably, the hydroxylation of tertiary amines and the oxidation of thioethers were two major abiotic reactions. Toxicity prediction revealed that certain transformation products exhibited higher toxicity toward aquatic organisms compared with the parent compounds. This study provides valuable insights into the stability and transformation of emerging PFAS in aerobic soil.
Collapse
Affiliation(s)
- Bo Fang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Maosen Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Biting Qiao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yue Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yulong Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yaozhi Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Meng Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Munoz G, Taxil-Paloc A, Desrosiers M, Vo Duy S, Liu M, Houde M, Liu J, Sauvé S. Zwitterionic, cationic, and anionic PFAS in freshwater sediments from AFFF-impacted and non-impacted sites of Eastern Canada. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136634. [PMID: 39637784 DOI: 10.1016/j.jhazmat.2024.136634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/31/2024] [Accepted: 11/21/2024] [Indexed: 12/07/2024]
Abstract
Zwitterionic, cationic, and anionic per- and polyfluoroalkyl substances (PFAS) were investigated in freshwater sediments of Canada, including sites impacted by aqueous film-forming foams (AFFFs). The first step of the project involved optimizing the extraction method with equilibrated sediment-water-AFFF samples. The analytical method had acceptable linearity, accuracy, and precision in the sediment matrix, and was further validated with NIST SRM 1936. In the second step of the project, the method was applied to determine over 70 target PFAS in field-collected sediments (n = 102). At federal contaminated sites of Ontario, Newfoundland, and Québec (ditches and creeks at international airports with fire training or fire equipment testing areas), summed PFAS averaged 30 ng/g (maximum of 160 ng/g) with molecular patterns dominated by perfluorooctane sulfonate (maximum PFOS: 84 ng/g). Based on maximum observed concentrations >10 ng/g, other key PFAS at these AFFF-impacted sites included negative ion mode perfluorohexane sulfonate, perfluorohexane sulfonamide, fluorotelomer sulfonates (6:2 FTS and 8:2 FTS) and 5:3 fluorotelomer acid, and positive ion mode N-dimethylammoniopropyl perfluorohexane sulfonamide and 5:1:2 fluorotelomer betaine. In contrast, environmental sediment samples collected at a larger spatial scale (province-wide survey) were characterized by low ΣPFAS (generally <1 ng/g), with PFOS/PFOA below chronic toxicity thresholds for aquatic life.
Collapse
Affiliation(s)
- Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; Centre d'expertise en analyse environnementale du Québec, ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs, Québec, QC G1P 3W8, Canada
| | - Alice Taxil-Paloc
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; Sciences Sorbonne Université, Paris 75005, France
| | - Mélanie Desrosiers
- Centre d'expertise en analyse environnementale du Québec, ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs, Québec, QC G1P 3W8, Canada
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; Centre d'expertise en analyse environnementale du Québec, ministère de l'Environnement, de la Lutte contre les changements climatiques, de la Faune et des Parcs, Québec, QC G1P 3W8, Canada
| | - Min Liu
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada; Department of Civil Engineering, McGill University, Montréal, QC H3A 0G4, Canada
| | - Magali Houde
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Montréal, QC H2Y 2E7, Canada
| | - Jinxia Liu
- Department of Civil Engineering, McGill University, Montréal, QC H3A 0G4, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montréal, QC H2V 0B3, Canada.
| |
Collapse
|
3
|
Lemay AC, Bourg IC. Interactions between Per- and Polyfluoroalkyl Substances (PFAS) at the Water-Air Interface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2201-2210. [PMID: 39836531 DOI: 10.1021/acs.est.4c08285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS)─so-called "forever chemicals"─contaminate the drinking water of about 100 million people in the U.S. alone and are inefficiently removed by standard treatment techniques. A key property of these compounds that underlies their fate and transport and the efficacy of several promising remediation approaches is that they accumulate at the water-air interface. This phenomenon remains incompletely understood, particularly under conditions relevant to natural and treatment systems where water-air interfaces often carry significant loads of other organic contaminants or natural organic matter. To understand the impact of organic loading on PFAS adsorption, we carried out molecular dynamics simulations of PFAS at varying interfacial densities. We find that adsorbed PFAS form strong mutual interactions (attraction between perfluoroalkyl chains and electrostatic interactions among charged head groups) that give rise to ordered interfacial coatings. These interactions often involve near-cancellation of hydrophobic attraction and Coulomb repulsion. Our findings explain an apparent paradox whereby PFAS adsorption isotherms often suggest minimal mutual interactions while simultaneously displaying a high sensitivity to the composition and density of interfacial coatings. Consideration of the compounds present with PFAS at the interface has the potential to allow for more accurate predictions of fate and transport and the design of more efficient remediation approaches.
Collapse
Affiliation(s)
- Amélie C Lemay
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Ian C Bourg
- Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey 08544, United States
- High Meadows Environmental Institute, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
4
|
Sun R, Bhat AP, Arnold WA, Xiao F. Investigation of Transformation Pathways of Polyfluoroalkyl Substances during Chlorine Disinfection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1756-1768. [PMID: 39792993 PMCID: PMC11781311 DOI: 10.1021/acs.est.4c05059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Recent regulations on perfluorinated compounds in drinking water underscore the need for a deeper understanding of the formation of perfluorinated compounds from polyfluoroalkyl substances during chlorine disinfection. Among the compounds investigated in this study, N-(3-(dimethylaminopropan-1-yl)perfluoro-1-hexanesulfonamide (N-AP-FHxSA) underwent rapid transformation during chlorination. Within an hour, it produced quantitative yields of various poly- and per-fluorinated products, including perfluorohexanoic acid (PFHxA). Sixteen reactions involving chlorine with N-AP-FHxSA and its quaternary ammonium analog were investigated; seven were confirmed, while the remainder were either disproved or found to be insignificant. The quaternary ammonium moiety did not determine a polyfluoroalkyl substance's reactivity toward chlorine. For example, while 6:2 fluorotelomer sulfonamide betaine transformed rapidly to PFHxA, other quaternary-ammonium-containing polyfluoroalkyl substances, such as 5:1:2 and 5:3 fluorotelomer betaines, showed significant resistance to chlorination. Further investigation identified potential sites for electrophilic attacks near the amine region by examining the highest occupied molecular orbitals of the polyfluoroalkyl substances. Visualization techniques helped pinpoint electron-deficient and electron-rich sites as potential targets for nucleophilic and electrophilic attacks, respectively. Increasing the solution pH from 6 to 10 did not diminish the apparent degradation of the studied polyfluoroalkyl substances, likely due to the greater reactivity of the deprotonated forms compared to the conjugate acids. Finally, we also examined the hydrolysis of polyfluoroalkyl substances at pH 6 to 11 in the absence of chlorine.
Collapse
Affiliation(s)
- Runze Sun
- Department
of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Akash P. Bhat
- Department
of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - William A. Arnold
- Department
of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Feng Xiao
- Department
of Civil and Environmental Engineering, University of Missouri, Columbia, Missouri 65211, United States
- Missouri
Water Center, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
5
|
Fang B, Chen H, Zhou Y, Qiao B, Baqar M, Wang Y, Yao Y, Sun H. Fluorotelomer betaines and sulfonic acid in aerobic wetland soil: Stability, biotransformation, and bacterial community response. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135261. [PMID: 39032178 DOI: 10.1016/j.jhazmat.2024.135261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/22/2024]
Abstract
The microbial degradation of 6:2 fluorotelomer sulfonic acid (6:2 FTSA), fluorotelomer sulfonamide alkylbetaine (6:2 FTAB), and fluorotelomer betaines (5:3 and 5:1:2 FTB) in aerobic wetland soil was investigated during a 100-day incubation. The half-lives of 6:2 FTSA in the treatments with diethylene glycol butyl ether as the sole carbon source (NA treatment) and with additional supplementation of sodium acetate (ED treatment) were determined to be 26.2 and 16.7 days, respectively. By day 100, ∼20 mol% of 6:2 FTAB was degraded in the NA and ED treatments. The potential transformation products of 6:2 FTSA and 6:2 FTAB were identified using liquid/gas chromatography-high resolution mass spectrometry, and their biotransformation pathways were proposed. In contrast, 5:3 and 5:1:2 FTB exhibited high persistence under two carbon source conditions. There was no intense alteration in the diversity of soil bacterial communities under the stress of fluorotelomer compounds at the level of ∼150 μg/L. The supplementation of sodium acetate led to an enrichment of bacterial species within the genera Hydrogenophaga (phylum Proteobacteria) and Rhodococcus (phylum Actinobacteria), promoting the biodegradation of 6:2 FTSA and 6:2 FTAB and the formation of transformation products. Species from the genus Rhodococcus were potentially crucial functional microorganisms involved in the degradation of 6:2 FTSA.
Collapse
Affiliation(s)
- Bo Fang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| | - Yue Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Biting Qiao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Mujtaba Baqar
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yu Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| |
Collapse
|
6
|
DeWitt JC, Glüge J, Cousins IT, Goldenman G, Herzke D, Lohmann R, Miller M, Ng CA, Patton S, Trier X, Vierke L, Wang Z, Adu-Kumi S, Balan S, Buser AM, Fletcher T, Haug LS, Heggelund A, Huang J, Kaserzon S, Leonel J, Sheriff I, Shi YL, Valsecchi S, Scheringer M. Zürich II Statement on Per- and Polyfluoroalkyl Substances (PFASs): Scientific and Regulatory Needs. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2024; 11:786-797. [PMID: 39156923 PMCID: PMC11325642 DOI: 10.1021/acs.estlett.4c00147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 08/20/2024]
Abstract
Per- and polyfluoroalkyl substances (PFASs) are a class of synthetic organic chemicals of global concern. A group of 36 scientists and regulators from 18 countries held a hybrid workshop in 2022 in Zürich, Switzerland. The workshop, a sequel to a previous Zürich workshop held in 2017, deliberated on progress in the last five years and discussed further needs for cooperative scientific research and regulatory action on PFASs. This review reflects discussion and insights gained during and after this workshop and summarizes key signs of progress in science and policy, ongoing critical issues to be addressed, and possible ways forward. Some key take home messages include: 1) understanding of human health effects continues to develop dramatically, 2) regulatory guidelines continue to drop, 3) better understanding of emissions and contamination levels is needed in more parts of the world, 4) analytical methods, while improving, still only cover around 50 PFASs, and 5) discussions of how to group PFASs for regulation (including subgroupings) have gathered momentum with several jurisdictions proposing restricting a large proportion of PFAS uses. It was concluded that more multi-group exchanges are needed in the future and that there should be a greater diversity of participants at future workshops.
Collapse
Affiliation(s)
- Jamie C. DeWitt
- Department
of Environmental and Molecular Toxicology, Oregon State University, Corvallis 97331, Oregon, United States
| | - Juliane Glüge
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich CH-8092, Switzerland
| | - Ian T. Cousins
- Department
of Environmental Science, Stockholm University, Stockholm SE-10691, Sweden
| | | | - Dorte Herzke
- NILU,
Tromsø 9296, Norway and Department of Food Safety, Norwegian
Institute of Public Health, Oslo 0213, Norway
| | - Rainer Lohmann
- Graduate
School of Oceanography, University of Rhode
Island, Narragansett 02882, Rhode Island, United States
| | - Mark Miller
- National
Institute of Environmental Health Sciences, U.S. Public Health Service, Research
Triangle Park 27709, North Carolina, United States
| | - Carla A. Ng
- Department
of Civil & Environmental Engineering and Environmental and Occupational
Health, University of Pittsburgh, Pittsburgh 15261, Pennsylvania, United States
| | - Sharyle Patton
- Health
and
Environment Program Commonweal, Bolinas 94924, California, United States
| | - Xenia Trier
- Department
of Plant and Environmental Sciences, Section for Environmental Chemistry
and Physics, University of Copenhagen, Copenhagen 1165, Denmark
| | - Lena Vierke
- German
Environment Agency (UBA), Dessau-Roßlau 06844, Germany
| | - Zhanyun Wang
- Empa-Swiss
Federal Laboratories for Materials Science and Technology, St. Gallen CH-9014, Switzerland
| | | | - Simona Balan
- California
Department of Toxic Substances Control, Safer Consumer Products Program, Berkeley 94710, California, United States
| | | | - Tony Fletcher
- Department
of Public Health, Environments & Society, London School of Hygiene & Tropical Medicine, London WC1H 9SH, U.K.
| | - Line Småstuen Haug
- Department
of Food Safety, Norwegian Institute of Public
Health, Oslo 0213, Norway
| | | | - Jun Huang
- School
of Environment, Tsinghua University, Beijing 100084, China
| | - Sarit Kaserzon
- Queensland
Alliance for Environmental Health Sciences, The University of Queensland, Queensland 4102, Australia
| | - Juliana Leonel
- Department
of Oceanography, Universidade Federal de
Santa Catarina, Florianopólis 40170110, Brazil
| | - Ishmail Sheriff
- School
of Civil Engineering, Universiti Sains Malaysia, Penang 14300, Malaysia
| | - Ya-Li Shi
- School
of Environment, Hangzhou Institute for Advanced Study, University
of Chinese Academy of Sciences, Hangzhou, CN, 310024 and State Key
Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, China
| | - Sara Valsecchi
- Water
Research Institute-National Research Council, Brugherio 20861, Italy
| | - Martin Scheringer
- Institute
of Biogeochemistry and Pollutant Dynamics, ETH Zürich, Zürich CH-8092, Switzerland
- RECETOX, Masaryk
University, Brno 62500, Czech Republic
| |
Collapse
|
7
|
Liu M, Glover CM, Munoz G, Duy SV, Sauvé S, Liu J. Hunting the missing fluorine in aqueous film-forming foams containing per- and polyfluoroalkyl substances. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:133006. [PMID: 37988941 DOI: 10.1016/j.jhazmat.2023.133006] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/16/2023] [Accepted: 11/12/2023] [Indexed: 11/23/2023]
Abstract
Since aqueous film-forming foams (AFFFs) are major sources of per- and polyfluoroalkyl substances (PFAS), understanding the quantity and type of PFAS present in AFFFs is crucial for assessing environmental risk and remediation. We characterized 25 foams from Canada and Europe, including two non-AFFFs and two fluorine-free AFFFs. We used liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) to identify novel PFAS, as well as total oxidizable precursor assays (TOP) and total organofluorine (TOF) measurements for comparison. LC-HRMS showed that the two non-AFFF foams and two PFAS-free AFFFs contained little or no PFAS, confirmed by TOF measurement using combustion ion chromatography (CIC). The PFAS-containing AFFFs, however, spanned a wide concentration range of TOF (2200-45,000 mg F/L) and contained 22 new classes of polyfluoroalkyl substances not previously reported. As a result of identifying new compounds, LC-HRMS was fully able to capture the oxidizable precursors determined by TOP assay in all tested fluorotelomer (FT) AFFFs, while unknown compounds still constituted a significant fraction (19-53 mol%) in most electrochemical fluorination (ECF) AFFFs. A fluorine mass balance was achieved by comparing the amounts of compounds identified by LC-HRMS with those detected by CIC, although LC-HRMS overestimated TOF with a recovery of 127 ± 36%.
Collapse
Affiliation(s)
- Min Liu
- Department of Civil Engineering, McGill University, Montreal, QC H3A 0C3, Canada
| | - Caitlin M Glover
- Department of Civil Engineering, McGill University, Montreal, QC H3A 0C3, Canada
| | - Gabriel Munoz
- Department of Chemistry, Université de Montréal, Montreal, QC H2V 0B3, Canada
| | - Sung Vo Duy
- Department of Chemistry, Université de Montréal, Montreal, QC H2V 0B3, Canada
| | - Sébastien Sauvé
- Department of Chemistry, Université de Montréal, Montreal, QC H2V 0B3, Canada
| | - Jinxia Liu
- Department of Civil Engineering, McGill University, Montreal, QC H3A 0C3, Canada.
| |
Collapse
|
8
|
Fang B, Zhang Y, Chen H, Qiao B, Yu H, Zhao M, Gao M, Li X, Yao Y, Zhu L, Sun H. Stability and Biotransformation of 6:2 Fluorotelomer Sulfonic Acid, Sulfonamide Amine Oxide, and Sulfonamide Alkylbetaine in Aerobic Sludge. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2446-2457. [PMID: 38178542 DOI: 10.1021/acs.est.3c05506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The 6:2 fluorotelomer sulfonamide (6:2 FTSAm)-based compounds signify a prominent group of per- and polyfluoroalkyl substances (PFAS) widely used in contemporary aqueous film-forming foam (AFFF) formulations. Despite their widespread presence, the biotransformation behavior of these compounds in wastewater treatment plants remains uncertain. This study investigated the biotransformation of 6:2 FTSAm-based amine oxide (6:2 FTNO), alkylbetaine (6:2 FTAB), and 6:2 fluorotelomer sulfonic acid (6:2 FTSA) in aerobic sludge over a 100-day incubation period. The biotransformation of 6:2 fluorotelomer sulfonamide alkylamine (6:2 FTAA), a primary intermediate product of 6:2 FTNO, was indirectly assessed. Their stability was ranked based on the estimated half-lives (t1/2): 6:2 FTAB (no obvious products were detected) ≫ 6:2 FTSA (t1/2 ≈28.8 days) > 6:2 FTAA (t1/2 ≈11.5 days) > 6:2 FTNO (t1/2 ≈1.2 days). Seven transformation products of 6:2 FTSA and 15 products of 6:2 FTNO were identified through nontarget and suspect screening using high-resolution mass spectrometry. The transformation pathways of 6:2 FTNO and 6:2 FTSA in aerobic sludge were proposed. Interestingly, 6:2 FTSAm was hardly hydrolyzed to 6:2 FTSA and further biotransformed to perfluoroalkyl carboxylic acids (PFCAs). Furthermore, the novel pathways for the generation of perfluoroheptanoic acid (PFHpA) from 6:2 FTSA were revealed.
Collapse
Affiliation(s)
- Bo Fang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yaozhi Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hao Chen
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Biting Qiao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Maosen Zhao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Meng Gao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xiaoxiao Li
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yiming Yao
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Lingyan Zhu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongwen Sun
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|