1
|
Zeng K, Liu L, Zheng N, Yu Y, Xu S, Yao H. Iron at the helm: Steering arsenic speciation through redox processes in soils. ENVIRONMENTAL RESEARCH 2025; 274:121327. [PMID: 40058542 DOI: 10.1016/j.envres.2025.121327] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/20/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
The toxicity and bioavailability of arsenic (As) in soils are largely determined by its speciation. Iron (Fe) is widely present in soils with a strong affinity for As, and therefore the environmental behaviors of As and Fe oxides (including oxides, hydrates and hydrated oxides) are closely correlated with each other. The redox fluctuations of Fe driven by changes in the environment can significantly affect As speciation and its fate in soils. The interaction between Fe and As has garnered widespread attention, and the adsorption mechanisms of As by Fe oxides have also been well-documented. However, there is still a lack of systematic understanding of how Fe redox dynamics affects As speciation depending on the soil environmental conditions. In this review, we summarize the mechanisms for As speciation transformation and redistribution, as well as the role of environmental factors in the main Fe redox processes in soils. These processes include the biotic Fe oxidation mediated by Fe-oxidizing bacteria, abiotic Fe oxidation by oxygen or manganese oxides, dissimilatory Fe reduction mediated by Fe-reducing bacteria, and Fe(II)-catalyzed transformation of Fe oxides. This review contributes to a deeper understanding of the environmental behaviors of Fe and As in soils, and provides theoretical guidance for the development of remediation strategies for As-contaminated soils.
Collapse
Affiliation(s)
- Keman Zeng
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Lihu Liu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Ningguo Zheng
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yongxiang Yu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Shengwen Xu
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Huaiying Yao
- Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| |
Collapse
|
2
|
Liu Q, Zhao L, Cao Y, Li D, Shi H, Wu Z, Li F, Wen D, Wang X. New concerns about arsenic contamination in agricultural fields: an in-depth understanding of the occurrence and regulatory strategies for rice straighthead disease. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 226:110014. [PMID: 40412228 DOI: 10.1016/j.plaphy.2025.110014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 05/03/2025] [Accepted: 05/10/2025] [Indexed: 05/27/2025]
Abstract
Rice, a pivotal staple crop globally, faces a significant threat from straighthead disease, a pervasive physiological disorder that can diminish or obliterate yields, thereby jeopardizing food security. Currently, it is established that dimethylarsinic acid (DMA), a form of organic arsenic (As) commonly found in paddy fields, is the causal agent inducing rice straighthead disease. However, a systematic understanding of the mechanisms underlying DMA absorption, transport, toxicity, and the induction of straighthead disease remains lacking, as do effective methods for disease prevention and control. This review introduces the incidence of straighthead disease caused by DMA and delves into the potential physiological mechanisms. It synthesizes the factors influencing the uptake of methylated As and their association with straighthead disease in rice. The efficient translocation of DMA from roots to shoots, coupled with its high oxidative toxicity, leads to the manifestation of straighthead disease. Hydrogen peroxide appears to serve as a critical signaling molecule under DMA stress, elevating cell wall pectin levels and inhibiting cell expansion, leading to deformed panicles in diseased rice. Agricultural strategies aimed at diminishing the accumulation of methylated As in rice, such as intermittent flooding, minimizing organic matter input, applying chemical amendments, selecting varieties with low DMA accumulation, and employing bioremediation techniques, could mitigate straighthead disease. This review aims to heighten awareness of methylated As toxicity and straighthead disease, providing a foundational reference to guide future efforts in disease management within rice cultivation.
Collapse
Affiliation(s)
- Qinghui Liu
- Institute of Quality Standard and Monitoring Technology for Agro-Products, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou, 510640, China; Laboratory of Quality & Safety Risk Assessment for Agro-Products (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China.
| | - Li Zhao
- China Water Resources Pearl River Planning Surveying & Designing Co., Ltd., Guangzhou, 510610, China.
| | - Yiran Cao
- Institute of Quality Standard and Monitoring Technology for Agro-Products, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou, 510640, China; Laboratory of Quality & Safety Risk Assessment for Agro-Products (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China.
| | - Dongqin Li
- Institute of Quality Standard and Monitoring Technology for Agro-Products, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou, 510640, China; Laboratory of Quality & Safety Risk Assessment for Agro-Products (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China.
| | - Hanzhi Shi
- Institute of Quality Standard and Monitoring Technology for Agro-Products, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou, 510640, China; Laboratory of Quality & Safety Risk Assessment for Agro-Products (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China.
| | - Zhichao Wu
- Institute of Quality Standard and Monitoring Technology for Agro-Products, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou, 510640, China; Laboratory of Quality & Safety Risk Assessment for Agro-Products (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China.
| | - Furong Li
- Institute of Quality Standard and Monitoring Technology for Agro-Products, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou, 510640, China; Laboratory of Quality & Safety Risk Assessment for Agro-Products (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China.
| | - Dian Wen
- Institute of Quality Standard and Monitoring Technology for Agro-Products, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou, 510640, China; Laboratory of Quality & Safety Risk Assessment for Agro-Products (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China.
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China; Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou, 510640, China; Laboratory of Quality & Safety Risk Assessment for Agro-Products (Guangzhou), Ministry of Agriculture and Rural Affairs, Guangzhou, 510640, China.
| |
Collapse
|
3
|
Hou Y, Jia R, Zhou L, Zhang L, Sun W, Li B, Zhu J. Integrated rice-fish farming dynamically altered the metal resistances and microbial-mediated iron, arsenic, and mercury biotransformation in paddy soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126107. [PMID: 40139294 DOI: 10.1016/j.envpol.2025.126107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Given the global concern over heavy metal contamination in agricultural soil, comprehensive and in-depth investigations into the microbial ecological impacts of different agricultural practices on soil heavy metals and their biotransformation processes are both urgent and necessary. We employed metagenomic sequencing to investigate the impacts of integrated rice-fish farming on metal concentrations, metal resistance genes (MRGs), and microbial-mediated Fe, As, and Hg biotransformation processes within rice field. Our findings revealed that integrated rice-fish farming significantly reduced both the diversity and total abundance of MRGs. It also reduced the soil Al, Cd, Cu, Fe, Hg, Ni, Se, V, and Zn levels, with a marked correlation observed between metal concentration and MRGs profiles. Furthermore, integrated rice-fish farming markedly altered the microbial-mediated biotransformation processes for Fe, As, and Hg. It notably upregulated the abundance of Fe biotransformation genes, particularly those involved in the Fe gene regulation, oxidation, reduction, and storage. Biotransformation genes responsible for the As (III) oxidation and As methylation also exhibited increased abundances, along with mercury methylation and demethylation genes. Through metagenome assembled genomes (MAGs), we identified the Mycobacterium aubagnese from paddy soil which contained As oxidation genes and other multiple MRGs, exhibiting strong As remediation potential. Our findings demonstrated the potential of integrated rice-fish farming to reduce soil metal concentrations and mitigate soil metal pollution.
Collapse
Affiliation(s)
- Yiran Hou
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Rui Jia
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Linjun Zhou
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Liqiang Zhang
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Wei Sun
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China
| | - Bing Li
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| | - Jian Zhu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, 214081, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, 214081, China
| |
Collapse
|
4
|
He L, Ren W, Cheng W, Chen J, Lai J, Wu Y, Wu Z, Bao D, Wei Y, Piao JG. Arsenene-Vanadene nanodots co-activate Apoptosis/Ferroptosis for enhanced chemo-immunotherapy. Acta Biomater 2025; 196:453-470. [PMID: 40032219 DOI: 10.1016/j.actbio.2025.02.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
Triple-Negative Breast Cancer (TNBC) represents a highly aggressive subtype of breast cancer with an unfavorable prognosis, characterized by minimal immune infiltration and pronounced immune suppression, resulting in a limited response to immunotherapy. In this study, a multifunctional Arsenene-Vanadene nanodot (AsV) drug delivery system is introduced, which responds to the tumor microenvironment by releasing arsenic and vanadium. Arsenic undergoes oxidation to generate highly toxic trivalent arsenic, which induces apoptosis in tumor cells while utilizing apoptotic cell debris to transiently activate the immune system. Additionally, arsenic binds to cysteine, indirectly facilitating ferroptosis. Concurrently, vanadium's redox cycling properties are harnessed to trigger a Fenton-like reaction, promoting lipid peroxidation. Furthermore, ferroptosis is enhanced through the depletion of glutathione and inactivation of glutathione peroxidase 4 (GPX4), leading to the release of damage-associated molecular patterns and thereby amplifying the anti-tumor immune response. This study represents the first instance of integrating arsenene's apoptosis-inducing properties with vanadium's ferroptosis-enhancing effects, providing a synergistic approach to improving the immunotherapeutic response and offering a potential strategy for enhancing TNBC prognosis. STATEMENT OF SIGNIFICANCE: Triple-negative breast cancer (TNBC) exhibits resistance to immunotherapy due to its highly immunosuppressive tumor microenvironment. In this study, tumour-responsive Arsenene-Vanadene nanodots (AsV) were developed to induce a synergistic effect by triggering apoptosis and ferroptosis through microenvironment-specific mechanisms. The arsenic component generates cytotoxic trivalent arsenic, promoting apoptosis while binding to cysteine, thereby reducing GSH synthesis. Simultaneously, vanadium initiates lipid peroxidation through Fenton-like reactions and disruption of the glutathione/GPX4 axis, further amplifying ferroptotic cell death. This dual-action system transforms tumor cell debris into immune-stimulating signals while circumventing conventional immunotherapy limitations. As the first strategy integrating arsenic-induced apoptosis with vanadium-enhanced ferroptosis, this approach provides a mechanistic framework to overcome TNBC immunosuppression through coordinated cell death pathways, demonstrating potential for precision nanomedicine applications.
Collapse
Affiliation(s)
- Li He
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - WeiYe Ren
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - WeiYi Cheng
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - JingQuan Chen
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China
| | - Jianjun Lai
- Department of Oncology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, PR China
| | - Yajun Wu
- Department of Oncology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, PR China
| | - Zhibing Wu
- Department of Oncology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, PR China; Department of Radiation Oncology, Affiliated Zhejiang Hospital, Zhejiang University School of Medicine, Hangzhou 310013, PR China.
| | - Dandan Bao
- Department of Dermatology & Cosmetology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310006, PR China.
| | - Yinghui Wei
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China; Jinhua Academy of Zhejiang Chinese Medical University.
| | - Ji-Gang Piao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, PR China.
| |
Collapse
|
5
|
Chen Y, Quan Y, Liu Y, Yuan M, Wang J, Chen C, Huang C, Fang X, Zhang J, Feng X, Tan W, Li J, Yin H. Effects of dimethylarsenate coprecipitation with ferrihydrite on Fe(II)-induced mineral transformation and the release of dimethylarsenate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 367:125593. [PMID: 39734042 DOI: 10.1016/j.envpol.2024.125593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/09/2024] [Accepted: 12/24/2024] [Indexed: 12/31/2024]
Abstract
Organoarsenicals are toxic pollutants of global concern, and their environmental geochemical behavior might be greatly controlled by iron (Fe) (hydr)oxides through coprecipitation, which is rarely investigated. Here, the effects of the incorporation of dimethylarsenate (DMAs(V)), a typical organoarsenical, into the ferrihydrite (Fh) structure on the mineral physicochemical properties and Fe(II)-induced phase transformation of DMAs(V)-Fh coprecipitates with As/Fe molar ratios up to 0.0876 ± 0.0036 under anoxic conditions and the accompanying DMAs(V) release were investigated. The presence of DMAs(V) during Fh formation gradually decreases the mineral crystallinity. With increasing DMAs(V) content, the specific surface areas of the coprecipitates are decreased owing to particle aggregation, while the micropore sizes are negligible changed. Fourier transformed infrared (FTIR) and As K-edge X-ray absorption near-edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopy show that, part of DMAs(V) binds to Fh surfaces in the coprecipitates by forming bidentate binuclear inner-sphere complexes through As-O-Fe bonds. During the reaction of the coprecipitate with 1 mM Fe(II) for 336 h, DMAs(V) inhibits the Fh transformation to goethite. No goethite forms at pH 4; at pH 7 low content of DMAs(V) hinders the further conversion of lepidocrocite to goethite, while high content of DMAs(V) completely inhibits goethite formation. DMAs(V) in the coprecipitate is continuously released into the solution, with the released proportion being generally increased with the increase of DMAs(V) content, pH and Fe(II) addition, probably owing to the desorption of weak inner- and outer-sphere DMAs(V) complexes bound on the Fh surfaces upon the Fh aging and transformation to lepidocrocite and goethite. These results provide deep insights into the fate and mobility of organoarsenical pollutants mediated by Fe (hydr)oxides in natural environments, and help design effective and ecofriendly remediation strategies for As polluted soils and sediments.
Collapse
Affiliation(s)
- Yi Chen
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Wuhan, 430070, China
| | - Yueyang Quan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Wuhan, 430070, China
| | - Yipu Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Wuhan, 430070, China
| | - Meng Yuan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Wuhan, 430070, China
| | - Jiaqi Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Wuhan, 430070, China
| | - Chuan Chen
- Jiangsu Key Laboratory for Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chuanqin Huang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Wuhan, 430070, China.
| | - Xiaoyu Fang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Wuhan, 430070, China
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100039, China
| | - Xionghan Feng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Wuhan, 430070, China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Wuhan, 430070, China
| | - Jiangshan Li
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Hui Yin
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China; Hubei Key Laboratory of Soil Environment and Pollution Remediation, College of Resources and Environment, Wuhan, 430070, China.
| |
Collapse
|
6
|
Zhang SY, Liu ZT, Zhao XD, Gao ZY, Jiang O, Li J, Li X, Kappler A, Xu J, Tang X. Lignin and Peptide Promote the Abundance and Activity of Arsenic Methylation Microbes in Paddy Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2541-2553. [PMID: 39885735 DOI: 10.1021/acs.est.4c10809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Rice physiological straighthead disease is induced by microbially mediated arsenic methylation and usually regionally distributed in paddy soils. However, the biogeochemical mechanism underlying the geographic distribution of microbial communities harboring methylating genes (arsM) remains unclear. Herein, we revealed significant (p = 0.001) differences in the arsM communities in different regions of Chinese paddy soils at the continental scale. Moreover, a positive correlation between the diversity of arsM communities and the chemodiversity of soil dissolved organic matter (DOM) was revealed. Among the different DOM components, lignin- and peptide-like DOM are the most important DOM components impacting the abundance and diversity of arsM communities. Metatranscriptomic analyses of 18 selected paddy soil samples revealed that the expression of the arsM gene increased with increasing soil lignin and peptide contents. Compared with the control, the addition of lignin and peptide significantly (p < 0.05) increased the methylated As concentration in the incubated paddy soils. Communities harboring arsM genes belonging to the phyla Chloroflexota, Verrucomicrobiota, Deltaproteobacteria, Thermodesulfobacteriota, and Ignavibacteriota mostly dominated in paddy soils with relatively high lignin and peptide contents. This study highlights the correlation between the diversity of DOM and arsM communities in paddy soils and provides mechanistic information for soil arsenic contamination control and sustainable rice production.
Collapse
Affiliation(s)
- Si-Yu Zhang
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zi-Teng Liu
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Xin-Di Zhao
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Zi-Yu Gao
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Ouyuan Jiang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jie Li
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoming Li
- Key Laboratory of Drinking Water Science and Technology, Research Centre for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Andreas Kappler
- Department of Geosciences, University of Tübingen, Tübingen 72076, Germany
| | - Jianming Xu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xianjin Tang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Zhang X, Zhang P, Wei X, Peng H, Hu L, Zhu X. Migration, transformation of arsenic, and pollution controlling strategies in paddy soil-rice system: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175500. [PMID: 39151637 DOI: 10.1016/j.scitotenv.2024.175500] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Arsenic pollution in paddy fields has become a public concern by seriously threatening rice growth, food security and human health. In this review, we delve into the biogeochemical behaviors of arsenic in paddy soil-rice system, systemically revealing the complexity of its migration and transformation processes, including the release of arsenic from soil to porewater, uptake and translocation of arsenic by rice plants, as well as transformation of arsenic species mediated by microorganism. Especially, microbial processes like reduction, oxidation and methylation of arsenic, and the coupling of arsenic with carbon, iron, sulfur, nitrogen cycling through microbes and related mechanisms were highlighted. Environmental factors like pH, redox potential, organic matter, minerals, nutrient elements, microorganisms and periphyton significantly influence these processes through different pathways, which are discussed in this review. Furthermore, the current progress in remediation strategies, including agricultural interventions, passivation, phytoremediation and microbial remediation is explored, and their potential and limitations are analyzed to address the gaps. This review offers comprehensive perspectives on the complicated behaviors of arsenic and influence factors in paddy soil-rice system, and provides a scientific basis for developing effective arsenic pollution control strategies.
Collapse
Affiliation(s)
- Xing Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an 710127, China.
| | - Panli Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Xin Wei
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an 710127, China
| | - Hanyong Peng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaoli Zhu
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Science, Northwest University, Xi'an 710127, China.
| |
Collapse
|
8
|
Li Z, Chen J, Xu L, Zhang P, Ni H, Zhao W, Fang Z, Liu H. Quinolone Antibiotics Inhibit the Rice Photosynthesis by Targeting Photosystem II Center Protein: Generational Differences and Mechanistic Insights. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11280-11291. [PMID: 38898567 DOI: 10.1021/acs.est.4c01866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Soil antibiotic pollution profoundly influences plant growth and photosynthetic performance, yet the main disturbed processes and the underlying mechanisms remain elusive. This study explored the photosynthetic toxicity of quinolone antibiotics across three generations on rice plants and clarified the mechanisms through experimental and computational studies. Marked variations across antibiotic generations were noted in their impact on rice photosynthesis with the level of inhibition intensifying from the second to the fourth generation. Omics analyses consistently targeted the light reaction phase of photosynthesis as the primary process impacted, emphasizing the particular vulnerability of photosystem II (PS II) to the antibiotic stress, as manifested by significant interruptions in the photon-mediated electron transport and O2 production. PS II center D2 protein (psbD) was identified as the primary target of the tested antibiotics, with the fourth-generation quinolones displaying the highest binding affinity to psbD. A predictive machine learning method was constructed to pinpoint antibiotic substructures that conferred enhanced affinity. As antibiotic generations evolve, the positive contribution of the carbonyl and carboxyl groups on the 4-quinolone core ring in the affinity interaction gradually intensified. This research illuminates the photosynthetic toxicities of antibiotics across generations, offering insights for the risk assessment of antibiotics and highlighting their potential threats to carbon fixation of agroecosystems.
Collapse
Affiliation(s)
- Zhiheng Li
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang Province 310018, China
| | - Jie Chen
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Linglin Xu
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang Province 310018, China
| | - Ping Zhang
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang Province 310018, China
| | - Haohua Ni
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang Province 310018, China
| | - Wenlu Zhao
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang Province 310018, China
| | - Zhiguo Fang
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang Province 310018, China
| | - Huijun Liu
- School of Environmental Science and Engineering, Key Laboratory of Solid Waste Treatment and Recycling of Zhejiang Province, Zhejiang Gongshang University, Hangzhou, Zhejiang Province 310018, China
| |
Collapse
|
9
|
Jiang Y, Chen X, Cao X, Wang C, Yue L, Li X, Wang Z. Mechanistic insight into the intensification of arsenic toxicity to rice (Oryza sativa L.) by nanoplastic: Phytohormone and glutathione metabolism modulation. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134086. [PMID: 38521034 DOI: 10.1016/j.jhazmat.2024.134086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
In this study, nanoplastic (NPs) at environmentally relevant concentration (0.001% w/w) had no effect on the growth of rice, while significantly elevated the phytotoxicity of As (III) by 9.4-22.8% based on the endpoints of biomass and photosynthesis. Mechanistically, NPs at 0.001% w/w enhanced As accumulation in the rice shoots and roots by 70.9% and 24.5%, respectively. Reasons of this finding can was that (1) the co-exposure with As and NPs significantly decreased abscisic acid content by 16.0% in rice, with subsequent increasing the expression of aquaporin related genes by 2.1- to 2.7-folds as compared with As alone treatment; (2) the presence of NPs significantly inhibited iron plaque formation on rice root surface by 22.5%. We firstly demonstrated that "Trojan horse effect" had no contribution to the enhancement of As accumulation by NPs exposure. Additionally, NPs disrupted the salicylic acid, jasmonic acid, and glutathione metabolism, which subsequently enhancing the oxidation (7.0%) and translocation (37.0%) of in planta As, and reducing arsenic detoxification pathways (e.g., antioxidative system (28.6-37.1%), As vacuolar sequestration (36.1%), and As efflux (18.7%)). Our findings reveal that the combined toxicity of NPs and traditional contaminations should be considered for realistic evaluations of NPs.
Collapse
Affiliation(s)
- Yi Jiang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaofei Chen
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
10
|
Majumdar A, Upadhyay MK, Giri B, Yadav P, Moulick D, Sarkar S, Thakur BK, Sahu K, Srivastava AK, Buck M, Tibbett M, Jaiswal MK, Roychowdhury T. Sustainable water management in rice cultivation reduces arsenic contamination, increases productivity, microbial molecular response, and profitability. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133610. [PMID: 38309156 DOI: 10.1016/j.jhazmat.2024.133610] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/18/2024] [Accepted: 01/21/2024] [Indexed: 02/05/2024]
Abstract
Arsenic (As) and silicon (Si) are two structurally competitive natural elements where Si minimises As accumulation in rice plants, and based on this two-year field trial, the study proposes adopting alternating wetting and drying (AWD) irrigation as a sustainable water management strategy allowing greater Si availability. This field-based project is the first report on AWD's impact on As-Si distribution in fluvio-alluvial soils of the entire Ganga valley (24 study sites, six divisions), seasonal variance (pre-monsoon and monsoon), rice plant anatomy and productivity, soil microbial diversity, microbial gene ontology profiling and associated metabolic pathways. Under AWD to flooded and pre-monsoon to monsoon cultivations, respectively, greater Si availability was achieved and As-bioavailability was reduced by 8.7 ± 0.01-9.2 ± 0.02% and 25.7 ± 0.09-26.1 ± 0.01%. In the pre-monsoon and monsoon seasons, the physiological betterment of rice plants led to the high rice grain yield under AWD improved by 8.4 ± 0.07% and 10.0 ± 0.07%, proving the economic profitability. Compared to waterlogging, AWD evidences as an optimal soil condition for supporting soil microbial communities in rice fields, allowing diverse metabolic activities, including As-resistance, and active expression of As-responsive genes and gene products. Greater expressions of gene ontological terms and complex biochemical networking related to As metabolism under AWD proved better cellular, genetic and environmental responsiveness in microbial communities. Finally, by implementing AWD, groundwater usage can be reduced, lowering the cost of pumping and field management and generating an economic profit for farmers. These combined assessments prove the acceptability of AWD for the establishment of multiple sustainable development goals (SDGs).
Collapse
Affiliation(s)
- Arnab Majumdar
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India; Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India.
| | - Munish Kumar Upadhyay
- Centre for Environmental Science & Engineering, Department of Civil Engineering, Indian Institute of Technology Kanpur, 208016, India
| | - Biswajit Giri
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Poonam Yadav
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal 741235, India
| | - Sukamal Sarkar
- School of Agriculture and Rural Development, Ramakrishna Mission Vivekananda Educational and Research Institute, Ramakrishna Mission Ashrama, Narendrapur, Kolkata 700103, India
| | - Barun Kumar Thakur
- Department of Economics, FLAME University, Pune, Maharashtra 412115, India
| | - Kashinath Sahu
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Ashish Kumar Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra 400085, India
| | - Martin Buck
- Department of Life Science, Faculty of Natural Sciences, Imperial College, London SW7 2AZ, UK
| | - Mark Tibbett
- Department of Sustainable Land Management and Soil Research Centre, School of Agriculture Policy and Development, University of Reading, Reading RG6 6AR, UK
| | - Manoj Kumar Jaiswal
- Department of Earth Sciences, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur, West Bengal 741246, India
| | - Tarit Roychowdhury
- School of Environmental Studies, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
11
|
Charagh S, Hui S, Wang J, Raza A, Zhou L, Xu B, Zhang Y, Sheng Z, Tang S, Hu S, Hu P. Unveiling Innovative Approaches to Mitigate Metals/Metalloids Toxicity for Sustainable Agriculture. PHYSIOLOGIA PLANTARUM 2024; 176:e14226. [PMID: 38410873 DOI: 10.1111/ppl.14226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/21/2024] [Accepted: 01/30/2024] [Indexed: 02/28/2024]
Abstract
Due to anthropogenic activities, environmental pollution of heavy metals/metalloids (HMs) has increased and received growing attention in recent decades. Plants growing in HM-contaminated soils have slower growth and development, resulting in lower agricultural yield. Exposure to HMs leads to the generation of free radicals (oxidative stress), which alters plant morpho-physiological and biochemical pathways at the cellular and tissue levels. Plants have evolved complex defense mechanisms to avoid or tolerate the toxic effects of HMs, including HMs absorption and accumulation in cell organelles, immobilization by forming complexes with organic chelates, extraction via numerous transporters, ion channels, signaling cascades, and transcription elements, among others. Nonetheless, these internal defensive mechanisms are insufficient to overcome HMs toxicity. Therefore, unveiling HMs adaptation and tolerance mechanisms is necessary for sustainable agriculture. Recent breakthroughs in cutting-edge approaches such as phytohormone and gasotransmitters application, nanotechnology, omics, and genetic engineering tools have identified molecular regulators linked to HMs tolerance, which may be applied to generate HMs-tolerant future plants. This review summarizes numerous systems that plants have adapted to resist HMs toxicity, such as physiological, biochemical, and molecular responses. Diverse adaptation strategies have also been comprehensively presented to advance plant resilience to HMs toxicity that could enable sustainable agricultural production.
Collapse
Affiliation(s)
- Sidra Charagh
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Suozhen Hui
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Jingxin Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Ali Raza
- Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Liang Zhou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Bo Xu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Yuanyuan Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Shikai Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Hangzhou, China
| |
Collapse
|
12
|
Wang YJ, Dong CY, Tang Z, Zhao FJ. Translocation, enzymatic reduction and toxicity of dimethylarsenate in rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108393. [PMID: 38290344 DOI: 10.1016/j.plaphy.2024.108393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/29/2023] [Accepted: 01/19/2024] [Indexed: 02/01/2024]
Abstract
Dimethylarsenate [DMAs(V)] can be produced by some soil microorganisms through methylation of inorganic arsenic (As), especially in anoxic paddy soils. DMAs(V) is more phytotoxic than inorganic As and can cause the physiological disorder straighthead disease in rice. Rice cultivars vary widely in the resistance to DMAs(V), but the mechanism remains elusive. Here, we investigated the differences in DMAs(V) uptake, translocation, and reduction to dimethylarsenite [DMAs(III)], as well as the effects on the metabolome, between two rice cultivars Mars and Zhe733. We found that Mars was 11-times more resistant to DMAs(V) than Zhe733. Mars accumulated more DMAs(V) in the roots, whereas Zhe733 translocated more DMAs(V) to the shoots and reduced more DMAs(V) to DMAs(III). DMAs(III) was more toxic than DMAs(V). Using heterologous expression and in vitro enzyme assays, we showed that the glutathione-S-transferases OsGSTU17 and OsGSTU50 were able to reduce DMAs(V) to DMAs(III). The expression levels of OsGSTU17 and OsGSTU50 were higher in the shoot of Zhe733 compared to Mars. Metabolomic analysis in rice shoots showed that glutathione (GSH) metabolism was perturbed by DMAs(V) toxicity in Zhe733. Application of exogenous GSH significantly alleviated the toxicity of DMAs(V) in Zhe733. Taken together, the results suggest that Mars is more resistant to DMAs(V) than Zhe733 because of a lower root-to-shoot translocation and a smaller capacity to reduce DMAs(V) to DMAs(III).
Collapse
Affiliation(s)
- Yi-Jie Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chun-Yan Dong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhong Tang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
13
|
Tang L, Xiong L, Zhang H, Joseph A, Wang Y, Li J, Yuan X, Rene ER, Zhu N. Reduced arsenic availability in paddy soil through Fe-organic ligand complexation mediated by bamboo biochar. CHEMOSPHERE 2024; 349:140790. [PMID: 38013023 DOI: 10.1016/j.chemosphere.2023.140790] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/22/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
The reuse of arsenic (As)-contaminated paddy fields is a global challenge because long-term flooding would result in As release due to the reductive dissolution of iron minerals. Biochar amendment is a common and effective remediation technique for As-contaminated paddy soil. However, the literature is still lacking in systematic research on the function of biochar in controlling the complexation of released dissolved organic matter (DOM) and iron oxides and its synergistic impact on the availability of As in flooded paddy soil. In the present study, bamboo biochar was prepared at different pyrolysis temperatures (300, 450 and 600 °C), as BB300, BB450 and BB600. Four paddy soil treatments including BB300, BB450, BB600 applications (1% ratio, m/m, respectively) and control (CK, no biochar application) were set and incubated for 60 d in flooding condition. The results showed that As availability represented by adsorbed As species (A-As) was mitigated by BB450 amendment compared with CK. The amendment of BB450 in paddy soil facilitated the complexation of HCl extractable Fe(III)/(II) and DOM and formation of amorphous iron oxides (e.g. complexed Fe species). Moreover, the abundance of Geobacteraceae and Xanthomonadaceae, as common electroactive bacteria, was promoted in the BB450 treated paddy soil in comparison to CK, which assisted to form amorphous iron oxides. The formed amorphous iron oxides then facilitated the formation of ternary complex (As-Fe-DOM) with highly stability, which could be considered as a mechanism for As immobilization after biochar was applied to the flooding paddy soil. Thus, the synergistic effect between amorphous iron oxides and electroactive stains could make main contribution to the passivation of released As in paddy soil under long-term flooding condition. This study provided a new insight for As immobilization via regulating iron-organic ligand complexation amendment with biochar in flooding paddy soil.
Collapse
Affiliation(s)
- Li Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Ling Xiong
- Collaborative Innovation Center for Modern Grain Circulation and Safety, College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, 210023, PR China
| | - Haiyan Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Akaninyene Joseph
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China; Department of Biosciences and Biotechnology, Faculty of Science, University of Medical Sciences, Ondo City, Nigeria
| | - Yimin Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Jizhou Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Xuyin Yuan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2611AX, Delft, the Netherlands
| | - Ningyuan Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China; Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, PR China.
| |
Collapse
|
14
|
Chen C, Li L, Wang Y, Dong X, Zhao FJ. Methylotrophic methanogens and bacteria synergistically demethylate dimethylarsenate in paddy soil and alleviate rice straighthead disease. THE ISME JOURNAL 2023; 17:1851-1861. [PMID: 37604918 PMCID: PMC10579292 DOI: 10.1038/s41396-023-01498-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/14/2023] [Accepted: 08/16/2023] [Indexed: 08/23/2023]
Abstract
Microorganisms play a key role in arsenic (As) biogeochemistry, transforming As species between inorganic and organic forms and different oxidation states. Microbial As methylation is enhanced in anoxic paddy soil, producing primarily dimethylarsenic (DMAs), which can cause rice straighthead disease and large yield losses. DMAs can also be demethylated in paddy soil, but the microorganisms driving this process remain unclear. In this study, we showed that the enrichment culture of methylotrophic methanogens from paddy soil demethylated pentavalent DMAs(V) efficiently. DMAs(V) was reduced to DMAs(III) before demethylation. 16S rRNA gene diversity and metagenomic analysis showed that Methanomassiliicoccus dominated in the enrichment culture, with Methanosarcina and Methanoculleus also being present. We isolated Methanomassiliicoccus luminyensis CZDD1 and Methanosarcina mazei CZ1 from the enrichment culture; the former could partially demethylate trivalent DMAs(III) but not DMAs(V) and the latter could demethylate neither. Addition of strain CZDD1 to the enrichment culture greatly accelerated DMAs(V) demethylation. Demethylation of DMAs(V) in the enrichment culture was suppressed by ampicillin, suggesting the involvement of bacteria. We isolated three anaerobic bacterial strains including Clostridium from the enrichment culture, which could produce hydrogen and reduce DMAs(V) to DMAs(III). Furthermore, augmentation of the Methanomassiliicoccus-Clostridium coculture to a paddy soil decreased DMAs accumulation by rice and alleviated straighthead disease. The results reveal a synergistic relationship whereby anaerobic bacteria reduce DMAs(V) to DMAs(III) for demethylation by Methanomassiliicoccus and also produce hydrogen to promote the growth of Methanomassiliicoccus; enhancing their populations in paddy soil can help alleviate rice straighthead disease.
Collapse
Affiliation(s)
- Chuan Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lingyan Li
- College of Life Sciences, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, 100049, Beijing, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yanfen Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, 100049, Beijing, China
| | - Xiuzhu Dong
- College of Life Sciences, University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, 100049, Beijing, China.
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Jiangsu Provincial Key Laboratory for Organic Solid Waste Utilization, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
15
|
Sun SK, Chen J, Zhao FJ. Regulatory mechanisms of sulfur metabolism affecting tolerance and accumulation of toxic trace metals and metalloids in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3286-3299. [PMID: 36861339 DOI: 10.1093/jxb/erad074] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/23/2023] [Indexed: 06/08/2023]
Abstract
Soil contamination with trace metals and metalloids can cause toxicity to plants and threaten food safety and human health. Plants have evolved sophisticated mechanisms to cope with excess trace metals and metalloids in soils, including chelation and vacuolar sequestration. Sulfur-containing compounds, such as glutathione and phytochelatins, play a crucial role in their detoxification, and sulfur uptake and assimilation are regulated in response to the stress of toxic trace metals and metalloids. This review focuses on the multi-level connections between sulfur homeostasis in plants and responses to such stresses, especially those imposed by arsenic and cadmium. We consider recent progress in understanding the regulation of biosynthesis of glutathione and phytochelatins and of the sensing mechanism of sulfur homeostasis for tolerance of trace metals and metalloids in plants. We also discuss the roles of glutathione and phytochelatins in controlling the accumulation and distribution of arsenic and cadmium in plants, and possible strategies for manipulating sulfur metabolism to limit their accumulation in food crops.
Collapse
Affiliation(s)
- Sheng-Kai Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
- Centre for Organismal Studies (COS), Heidelberg University, 69120 Heidelberg, Germany
| | - Jie Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|