1
|
Brean J, Rowell A, Beddows DC, Weinhold K, Mettke P, Merkel M, Tuch T, Rissanen M, Maso MD, Kumar A, Barua S, Iyer S, Karppinen A, Wiedensohler A, Shi Z, Harrison RM. Road Traffic Emissions Lead to Much Enhanced New Particle Formation through Increased Growth Rates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10664-10674. [PMID: 38850427 PMCID: PMC11191591 DOI: 10.1021/acs.est.3c10526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/23/2024] [Accepted: 05/24/2024] [Indexed: 06/10/2024]
Abstract
New particle formation (NPF) is a major source of atmospheric aerosol particles, including cloud condensation nuclei (CCN), by number globally. Previous research has highlighted that NPF is less frequent but more intense at roadsides compared to urban background. Here, we closely examine NPF at both background and roadside sites in urban Central Europe. We show that the concentration of oxygenated organic molecules (OOMs) is greater at the roadside, and the condensation of OOMs along with sulfuric acid onto new particles is sufficient to explain the growth at both sites. We identify a hitherto unreported traffic-related OOM source contributing 29% and 16% to total OOMs at the roadside and background, respectively. Critically, this hitherto undiscovered OOM source is an essential component of urban NPF. Without their contribution to growth rates and the subsequent enhancements to particle survival, the number of >50 nm particles produced by NPF would be reduced by a factor of 21 at the roadside site. Reductions to hydrocarbon emissions from road traffic may thereby reduce particle numbers and CCN counts.
Collapse
Affiliation(s)
- James Brean
- Division
of Environmental Health and Risk Management, School of Geography,
Earth and Environmental Sciences, University
of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Alex Rowell
- Division
of Environmental Health and Risk Management, School of Geography,
Earth and Environmental Sciences, University
of Birmingham, Birmingham B15 2TT, United Kingdom
| | - David C.S. Beddows
- Division
of Environmental Health and Risk Management, School of Geography,
Earth and Environmental Sciences, University
of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Kay Weinhold
- Leibniz
Institute for Tropospheric Research, Leipzig 04318, Germany
| | - Peter Mettke
- Leibniz
Institute for Tropospheric Research, Leipzig 04318, Germany
| | - Maik Merkel
- Leibniz
Institute for Tropospheric Research, Leipzig 04318, Germany
| | - Thomas Tuch
- Leibniz
Institute for Tropospheric Research, Leipzig 04318, Germany
| | - Matti Rissanen
- Aerosol
Physics laboratory, Tampere University, Tampere 33720, Finland
| | - Miikka Dal Maso
- Aerosol
Physics laboratory, Tampere University, Tampere 33720, Finland
| | - Avinash Kumar
- Aerosol
Physics laboratory, Tampere University, Tampere 33720, Finland
| | - Shawon Barua
- Aerosol
Physics laboratory, Tampere University, Tampere 33720, Finland
| | - Siddharth Iyer
- Aerosol
Physics laboratory, Tampere University, Tampere 33720, Finland
| | | | | | - Zongbo Shi
- Division
of Environmental Health and Risk Management, School of Geography,
Earth and Environmental Sciences, University
of Birmingham, Birmingham B15 2TT, United Kingdom
| | - Roy M. Harrison
- Division
of Environmental Health and Risk Management, School of Geography,
Earth and Environmental Sciences, University
of Birmingham, Birmingham B15 2TT, United Kingdom
- Department
of Environmental Sciences, Faculty of Meteorology, Environment and
Arid Land Agriculture, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
2
|
Chen TL, Hsiao TC, Chen AY, Chang KE, Lin TC, Griffith SM, Chou CCK. A traffic-induced shift of ultrafine particle sources under COVID-19 soft lockdown in a subtropical urban area. ENVIRONMENT INTERNATIONAL 2024; 187:108658. [PMID: 38640612 DOI: 10.1016/j.envint.2024.108658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024]
Abstract
During the unprecedented COVID-19 city lockdown, a unique opportunity arose to dissect the intricate dynamics of urban air quality, focusing on ultrafine particles (UFPs) and volatile organic compounds (VOCs). This study delves into the nuanced interplay between traffic patterns and UFP emissions in a subtropical urban setting during the spring-summer transition of 2021. Leveraging meticulous roadside measurements near a traffic nexus, our investigation unravels the intricate relationship between particle number size distribution (PNSD), VOCs mixing ratios, and detailed vehicle activity metrics. The soft lockdown era, marked by a 20-27% dip in overall traffic yet a surprising surge in early morning motorcycle activity, presented a natural experiment. We observed a consequential shift in the urban aerosol regime: the decrease in primary emissions from traffic substantially amplified the role of aged particles and secondary aerosols. This shift was particularly pronounced under stagnant atmospheric conditions, where reduced dilution exacerbated the influence of alternative emission sources, notably solvent evaporation, and was further accentuated with the resumption of normal traffic flows. A distinct seasonal trend emerged as warmer months approached, with aromatic VOCs such as toluene, ethylbenzene, and xylene not only increasing but also significantly contributing to more frequent particle growth events. These findings spotlight the criticality of targeted strategies at traffic hotspots, especially during periods susceptible to weak atmospheric dilution, to curb UFP and precursor emissions effectively. As we stand at the cusp of widespread vehicle electrification, this study underscores the imperative of a holistic approach to urban air quality management, embracing the complexities of primary emission reductions and the resultant shifts in atmospheric chemistry.
Collapse
Affiliation(s)
- Tse-Lun Chen
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan; Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan; Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan.
| | - Albert Y Chen
- Department of Civil Engineering, National Taiwan University, Taipei, Taiwan
| | - Kuo-En Chang
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Tzu-Chi Lin
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Stephen M Griffith
- Department of Atmospheric Sciences, National Taiwan University, Taipei, Taiwan
| | - Charles C-K Chou
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| |
Collapse
|