1
|
Zheng M, Lloyd J, Wardrop P, Duan H, Liu T, Ye L, Ni BJ. Path to zero emission of nitrous oxide in sewage treatment: is nitrification controllable or avoidable? Curr Opin Biotechnol 2025; 91:103230. [PMID: 39631213 DOI: 10.1016/j.copbio.2024.103230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
Amid growing concerns over climate change, the need to reduce nitrous oxide (N2O) emissions from sewage treatment is more urgent than ever. Sewage treatment plants are significant sources of N2O due to its production as an intermediate in nitrification and its release into the air during aeration. Effective management of the nitrification process is therefore vital for controlling or eliminating these emissions. Despite substantial efforts to quantify and understand N2O emissions from sewage treatment, success in reducing them has been limited. This review discusses and proposes promising solutions for reducing N2O emissions in sewage treatment, evaluates the potential of various strategies, and identifies ways to accelerate their development and implementation.
Collapse
Affiliation(s)
- Min Zheng
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney NSW 2052, Australia.
| | - James Lloyd
- Melbourne Water, 990 La Trobe St, Docklands VIC 3000, Australia
| | - Peter Wardrop
- Melbourne Water, 990 La Trobe St, Docklands VIC 3000, Australia
| | - Haoran Duan
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney NSW 2052, Australia
| | - Tao Liu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, PR China
| | - Liu Ye
- School of Chemical Engineering, The University of Queensland, St. Lucia QLD 4072, Australia
| | - Bing-Jie Ni
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney NSW 2052, Australia
| |
Collapse
|
2
|
Shaw DR, Terada A, Saikaly PE. Future directions in microbial nitrogen cycling in wastewater treatment. Curr Opin Biotechnol 2024; 88:103163. [PMID: 38897092 DOI: 10.1016/j.copbio.2024.103163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024]
Abstract
Discoveries in the past decade of novel reactions, processes, and micro-organisms have altered our understanding of microbial nitrogen cycling in wastewater treatment systems. These advancements pave the way for a transition toward more sustainable and energy-efficient wastewater treatment systems that also minimize greenhouse gas emissions. This review highlights these innovative directions in microbial nitrogen cycling within the context of wastewater treatment. Processes such as comammox, Feammox, electro-anammox, and nitrous oxide mitigation offer innovative approaches for sustainable, energy-efficient nitrogen removal. However, while these emerging processes show promise, advancing from laboratory research to practical applications, particularly in decentralized systems, remains a critical next step toward a sustainable and efficient wastewater management.
Collapse
Affiliation(s)
- Dario R Shaw
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Akihiko Terada
- Department of Applied Physics and Chemical Engineering, Department of Industrial Technology and Innovation, Tokyo University of Agriculture and Technology, 2-24-16 Building 4-320 Naka, Koganei, Tokyo 184-8588, Japan.
| | - Pascal E Saikaly
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Environmental Science & Engineering Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
3
|
González-Cortés JJ, Lamprea-Pineda PA, Ramírez M, Demeestere K, Van Langenhove H, Walgraeve C. Biofiltration of gaseous mixtures of dimethyl sulfide, dimethyl disulfide and dimethyl trisulfide: Effect of operational conditions and microbial analysis. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121320. [PMID: 38843750 DOI: 10.1016/j.jenvman.2024.121320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/15/2024] [Accepted: 05/30/2024] [Indexed: 06/13/2024]
Abstract
The efficient removal of volatile sulfur compounds (VSCs), such as dimethyl sulfide (DMS), dimethyl disulfide (DMDS) and dimethyl trisulfide (DMTS), is crucial due to their foul odor and corrosive potential in sewer systems. Biofilters (BFs) offer promise for VSCs removal, but face challenges related to pH control and changing conditions at full scale. Two BFs, operated under acidophilic conditions for 78 days, were evaluated for their performance at varying inlet concentrations and empty bed residence times (EBRTs). BF1, incorporating 4-6 mm marble limestone for pH control, outperformed BF2, which used NaHCO3 in the nutrient solution. BF1 displayed better resilience, maintained a stable pH of 4.6 ± 0.6, and achieved higher maximum elimination capacities (ECmax, 41 mg DMS m-3 h-1 (RE 38.3%), 146 mg DMDS m-3 h-1 (RE 83.1%), 47 mg DMTS m-3 h-1 (RE 93.1%)) at an EBRT of 56 s compared to BF2 (9 mg DMS m-3 h-1 (RE 7.1%), 9 mg DMDS m-3 h-1 (RE 4.8%) and 11 mg DMTS m-3 h-1 (RE 26.6%)). BF2 exhibited pH stratification and decreased performance after feeding interruptions. The biodegradability of VSCs followed the order DMTS > DMDS > DMS, and several microorganisms were identified contributing to VSCs degradation in BF1, including Bacillus (14%), Mycobacterium (11%), Acidiphilium (7%), and Acidobacterium (3%).
Collapse
Affiliation(s)
- J J González-Cortés
- Department of Chemical Engineering and Food Technologies, Wine and Agrifood Research Institute (IVAGRO), Faculty of Sciences, University of Cadiz, Cádiz, Spain; Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium.
| | - P A Lamprea-Pineda
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - M Ramírez
- Department of Chemical Engineering and Food Technologies, Wine and Agrifood Research Institute (IVAGRO), Faculty of Sciences, University of Cadiz, Cádiz, Spain
| | - K Demeestere
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - H Van Langenhove
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - C Walgraeve
- Research Group Environmental Organic Chemistry and Technology (EnVOC), Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
4
|
Oba K, Suenaga T, Yasuda S, Kuroiwa M, Hori T, Lackner S, Terada A. Quest for Nitrous Oxide-reducing Bacteria Present in an Anammox Biofilm Fed with Nitrous Oxide. Microbes Environ 2024; 39:ME23106. [PMID: 38538312 PMCID: PMC10982107 DOI: 10.1264/jsme2.me23106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 02/06/2024] [Indexed: 04/04/2024] Open
Abstract
N2O-reducing bacteria have been examined and harnessed to develop technologies that reduce the emission of N2O, a greenhouse gas produced by biological nitrogen removal. Recent investigations using omics and physiological activity approaches have revealed the ecophysiologies of these bacteria during nitrogen removal. Nevertheless, their involvement in anammox processes remain unclear. Therefore, the present study investigated the identity, genetic potential, and activity of N2O reducers in an anammox reactor. We hypothesized that N2O is limiting for N2O-reducing bacteria and an exogeneous N2O supply enriches as-yet-uncultured N2O-reducing bacteria. We conducted a 1200-day incubation of N2O-reducing bacteria in an anammox consortium using gas-permeable membrane biofilm reactors (MBfRs), which efficiently supply N2O in a bubbleless form directly to a biofilm grown on a gas-permeable membrane. A 15N tracer test indicated that the supply of N2O resulted in an enriched biomass with a higher N2O sink potential. Quantitative PCR and 16S rRNA amplicon sequencing revealed Clade II nosZ type-carrying N2O-reducing bacteria as protagonists of N2O sinks. Shotgun metagenomics showed the genetic potentials of the predominant Clade II nosZ-carrying bacteria, Anaerolineae and Ignavibacteria in MBfRs. Gemmatimonadota and non-anammox Planctomycetota increased their abundance in MBfRs despite their overall lower abundance. The implication of N2O as an inhibitory compound scavenging vitamin B12, which is essential for the synthesis of methionine, suggested its limited suppressive effect on the growth of B12-dependent bacteria, including N2O reducers. We identified Dehalococcoidia and Clostridia as predominant N2O sinks in an anammox consortium fed exogenous N2O because of the higher metabolic potential of vitamin B12-dependent biosynthesis.
Collapse
Affiliation(s)
- Kohei Oba
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2–24–16 Naka-cho, Koganei, Tokyo, 184–8588, Japan
| | - Toshikazu Suenaga
- Department of Chemical Engineering, Hiroshima University, 1–4–1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739–8527, Japan
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3–8–1 Harumi-cho, Fuchu, Tokyo, 185–8538, Japan
| | - Shohei Yasuda
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3–8–1 Harumi-cho, Fuchu, Tokyo, 185–8538, Japan
- Civil Engineering, School of Engineering, College of Science and Engineering, University of Galway, Galway H91 TK33, Ireland
| | - Megumi Kuroiwa
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2–24–16 Naka-cho, Koganei, Tokyo, 184–8588, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology, 16–1 Onogawa, Tsukuba, Ibaraki, 305–8569, Japan
| | - Susanne Lackner
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3–8–1 Harumi-cho, Fuchu, Tokyo, 185–8538, Japan
- Department of Civil and Environmental Engineering Science, Institute IWAR, Chair of Water and Environmental Biotechnology Technical University of Darmstadt, Franziska-Braun-Straße 7, 64287, Darmstadt, Germany
| | - Akihiko Terada
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2–24–16 Naka-cho, Koganei, Tokyo, 184–8588, Japan
- Global Innovation Research Institute, Tokyo University of Agriculture and Technology, 3–8–1 Harumi-cho, Fuchu, Tokyo, 185–8538, Japan
| |
Collapse
|