1
|
Kadam R, Kim M, Yang H, Jo S, Jun H, Park J. Magnetite addition reduces nitrite requirement for efficient anaerobic ammonium oxidation by facilitating mutualism of ANAMMOX and FEAMMOX bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174497. [PMID: 38969131 DOI: 10.1016/j.scitotenv.2024.174497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/16/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Partial nitrification (PN) is crucial for anaerobic ammonium oxidation (ANAMMOX), but faces challenges such as high energy demands and process control. Recent research has highlighted additives like magnetite as potential alternatives to conventional electron acceptors (O₂ and NO₂-) for enhancing ammonium (NH4+) oxidation with lower energy consumption. This study investigated the effect of adding 50 mg/L of magnetite to ANAMMOX reactors, resulting in improved nitrogen (N) removal efficiency. The magnetite-added ANAMMOX (M-ANA) reactor yielded N removal efficiencies of 71 %, 66 %, and 57 % for NH4+:NO2- molar ratios of 1:1.3, 1:0.8, and 1:0.5, respectively. The M-ANA reactor operated under a 0.5 mol lower NO2- concentration achieved similar performance to the control ANAMMOX (C-ANA) reactor operated with a theoretical amount of NO2-. Moreover, the M-ANA reactor showed the potential to remove NH4+ by 56 % without any NO2- supplementation. Metagenomic analysis showed that the addition of magnetite significantly improved the relative abundance of microorganisms involved in the FEAMMOX reaction, such as Fimbriimonas ginsengisoli and Pseudomonas stutzeri. It also facilitated positive mutualism between ANAMMOX and FEAMMOX reactions. In addition, M-ANA granules exhibited a dense and compact structure compared with C-ANA, and the presence of magnetite facilitated the formation of resilient granules. Notably, the useful protein (Heme C) concentration and specific microbial activity in the M-ANA reactor were 1.3 and 2.2 times higher than those in the C-ANA reactor. Overall, the results demonstrate that an appropriate amount of magnetite can enhance the N removal efficiency while reducing the energy input requirements and associated carbon emissions. These findings can guide the future development of carbon- and energy-neutral N removal processes.
Collapse
Affiliation(s)
- Rahul Kadam
- Department of Advanced Energy Engineering, Chosun University, Gwangju 61457, Republic of Korea
| | - Minji Kim
- Department of Environmental Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Hyeonmyeong Yang
- Department of Environmental Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Sangyeol Jo
- Department of Advanced Energy Engineering, Chosun University, Gwangju 61457, Republic of Korea
| | - Hangbae Jun
- Department of Environmental Engineering, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Jungyu Park
- Department of Advanced Energy Engineering, Chosun University, Gwangju 61457, Republic of Korea.
| |
Collapse
|
2
|
Poursat BAJ, Rempe F, Pereira J, Sutton NB, Ter Heijne A. Unravelling the mechanisms of organic micropollutant removal in bio-electrochemical systems: Insights into sorption, electrochemical degradation, and biodegradation processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:173932. [PMID: 38880133 DOI: 10.1016/j.scitotenv.2024.173932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/29/2024] [Accepted: 06/09/2024] [Indexed: 06/18/2024]
Abstract
Bio-electrochemical systems (BESs) have recently been proposed as an efficient treatment technology to remove organic micropollutants from water treatment plants. In this study, we aimed to differentiate between sorption, electrochemical transport/degradation, and biodegradation. Using electro-active microorganisms and electrodes, we investigated organic micropollutant removal at environmentally relevant concentrations, clarifying the roles of sorption and electrochemical and biological degradation. The role of anodic biofilms on the removal of 10 relevant organic micropollutants was studied by performing separate sorption experiments on carbon-based electrodes (graphite felt, graphite rod, graphite granules, and granular activated carbon) and electrochemical degradation experiments at two different electrode potentials (-0.3 and 0 V). Granular activated carbon showed the highest sorption of micropollutants; applying a potential to graphite felt electrodes increased organic micropollutant removal. Removal efficiencies >80 % were obtained for all micropollutants at high anode potentials (+0.955 V), indicating that the studied compounds were more susceptible to oxidation than to reduction. All organic micropollutants showed removal when under bio-electrochemical conditions, ranging from low (e.g. metformin, 9.3 %) to exceptionally high removal efficiencies (e.g. sulfamethoxazole, 99.5 %). The lower removal observed under bio-electrochemical conditions when compared to only electrochemical conditions indicated that sorption to the electrode is key to guarantee high electrochemical degradation. The detection of transformation products of chloridazon and metformin indicated that (bio)-electrochemical degradation occurred. This study confirms that BES can treat some organic micropollutants through several mechanisms, which merits further investigation.
Collapse
Affiliation(s)
- Baptiste A J Poursat
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
| | - Fleur Rempe
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - João Pereira
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands
| | - Nora B Sutton
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Annemiek Ter Heijne
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
3
|
Yan X, Liu D, de Smit SM, Komin V, Buisman CJN, Ter Heijne A. Oxygen-to-ammonium-nitrogen ratio as an indicator for oxygen supply management in microoxic bioanodic ammonium oxidation. WATER RESEARCH 2024; 261:121993. [PMID: 38968732 DOI: 10.1016/j.watres.2024.121993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/16/2024] [Accepted: 06/22/2024] [Indexed: 07/07/2024]
Abstract
Microbial electrolysis cells (MECs) have been proven effective for oxidizing ammonium (NH4+), where the anode acts as an electron acceptor, reducing the energy input by substituting oxygen (O2). However, O2 has been proved to be essential for achieving high removal rates MECs. Thus, precise control of oxygen supply is crucial for optimizing treatment performance and minimizing energy consumption. Unlike previous studies focusing on dissolved oxygen (DO) levels, this study introduces the O2/NH4+-N ratio as a novel control parameter for balancing oxidation rates and the selectivity of NH4+ oxidation towards dinitrogen gas (N2) under limited oxygen condition. Our results demonstrated that the O2/NH4+-N ratio is a more relevant oxygen supply indicator compared to DO level. Oxygen served as a more favorable electron acceptor than the electrode, increasing NH4+ oxidation rates but also resulting in more oxidized products such as nitrate (NO3-). Additionally, nitrous oxide (N2O) and N2 production were higher with the electrode as the electron acceptor compared to oxygen alone. An O2/NH4+-N ratio of 0.5 was found to be optimal, achieving a balance between product selectivity for N2 (51.4 % ± 4.5 %) and oxidation rates (344.6 ± 14.7 mg-N/L*d), with the columbic efficiency of 30.7 % ± 2.0 %. Microbial community analysis revealed that nitrifiers and denitrifiers were the primary bacteria involved, with oxygen promoting the growth of nitrite-oxidizing bacteria, thus facilitating complete NH4+ oxidation to NO3-. Our study provides new insights and guidelines on the appropriate oxygen dosage, offering strategies into optimizing operational conditions for NH4+ removal using MECs.
Collapse
Affiliation(s)
- Xiaofang Yan
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Dandan Liu
- Paqell B.V., Reactorweg 301, 3542 CE Utrecht, the Netherlands
| | - Sanne M de Smit
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Vera Komin
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - Cees J N Buisman
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands; Wetsus, European Centre of Excellence for Sustainable Water Technology, Oostergoweg 9, 8911 MA Leeuwarden, the Netherlands
| | - Annemiek Ter Heijne
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
| |
Collapse
|
4
|
Shaw DR, Tobon Gonzalez J, Bibiano Guadarrama C, Saikaly PE. Emerging biotechnological applications of anaerobic ammonium oxidation. Trends Biotechnol 2024; 42:1128-1143. [PMID: 38519307 DOI: 10.1016/j.tibtech.2024.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/24/2024]
Abstract
Anaerobic ammonium oxidation (anammox) is an energy-efficient method for nitrogen removal that opens the possibility for energy-neutral wastewater treatment. Research on anammox over the past decade has primarily focused on its implementation in domestic wastewater treatment. However, emerging studies are now expanding its use to novel biotechnological applications and wastewater treatment processes. This review highlights recent advances in the anammox field that aim to overcome conventional bottlenecks, and explores novel and niche-specific applications of the anammox process. Despite the promising results and potential of these advances, challenges persist for their real-world implementation. This underscores the need for a transition from laboratory achievements to practical, scalable solutions for wastewater treatment which mark the next crucial phase in the evolution of anammox research.
Collapse
Affiliation(s)
- Dario Rangel Shaw
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| | - Julian Tobon Gonzalez
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Carlos Bibiano Guadarrama
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Pascal E Saikaly
- Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; Environmental Science and Engineering Program, Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia.
| |
Collapse
|
5
|
Liu LY, Wang X, Dang CC, Zhao ZC, Xing DF, Liu BF, Ren NQ, Xie GJ. Anaerobic ammonium oxidation coupled with sulfate reduction links nitrogen with sulfur cycle. BIORESOURCE TECHNOLOGY 2024; 403:130903. [PMID: 38801958 DOI: 10.1016/j.biortech.2024.130903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Sulfate-dependent ammonium oxidation (Sulfammox) is a critical process linking nitrogen and sulfur cycles. However, the metabolic pathway of microbes driven Sulfammox is still in suspense. The study demonstrated that ammonium was not consumed with sulfate as the sole electron acceptor during long-term enrichment, probably due to inhibition from sulfide accumulation, while ammonium was removed at ∼ 10 mg N/L/d with sulfate and nitrate as electron acceptors. Ammonium and sulfate were converted into nitrogen gas, sulfide, and elemental sulfur. Sulfammox was mainly performed by Candidatus Brocadia sapporoensis and Candidatus Brocadia fulgida, both of which encoded ammonium oxidation pathway and dissimilatory sulfate reduction pathway. Not sulfide-driven autotrophic denitrifiers but Candidatus Kuenenia stuttgartiensis converted nitrate to nitrite with sulfide. The results of this study reveal the specialized metabolism of Sulfammox bacteria (Candidatus Brocadia sapporoensis and Candidatus Brocadia fulgida) and provide insight into microbial relationships during the nitrogen and sulfur cycles.
Collapse
Affiliation(s)
- Lu-Yao Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xuan Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Cheng-Cheng Dang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Zhi-Cheng Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|