1
|
Pang Q, Chen Z, Zhan J, Liu J, Liu J, Zhao W, Huang W, Dong L. Localized Hydrogel Microspheres for Osteoarthritis Treatment: Recruitment and Differentiation of Stem Cells. Adv Healthc Mater 2025; 14:e2403490. [PMID: 39610189 DOI: 10.1002/adhm.202403490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/10/2024] [Indexed: 11/30/2024]
Abstract
Osteoarthritis (OA) represents a common degenerative joint disorder marked by progressive cartilage degradation, necessitating innovative therapeutic approaches beyond symptom management. Here, this study introduces a novel strategy leveraging the regenerative capabilities of mesenchymal stem cells (MSCs) by utilizing a bioactive extracellular matrix (ECM) derived from IFN-γ-stimulated MSCs, encapsulated within aldehyde- and methacrylic anhydride-modified hyaluronic acid hydrogel microspheres (AH). This engineered scaffold effectively mimics the native cartilage microenvironment, promoting targeted adhesion and retention at damaged sites via spontaneous Schiff base reactions. Notably, the IFN-γ-ECM@AH microspheres facilitate the localized release of key chemokines, such as CXCL12, enhancing endogenous stem cell recruitment, and bioactive factors (e.g., TGF-βI and TGF-β3) to drive chondrogenic differentiation. Additionally, the scaffold possesses binding sites for cellular integrins, further augmenting the regenerative potential of stem cells. Collectively, the approach presents a dual-action mechanism that supports efficient cartilage repair and regeneration, positioning this engineered microenvironment as a promising therapeutic avenue for OA and potentially other degenerative conditions.
Collapse
Affiliation(s)
- Qiming Pang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing Medical University, Chongqing, 400042, China
| | - Zhuolin Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing Medical University, Chongqing, 400042, China
| | - Jingdi Zhan
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing Medical University, Chongqing, 400042, China
| | - Jiacheng Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing Medical University, Chongqing, 400042, China
| | - Junyan Liu
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing Medical University, Chongqing, 400042, China
| | - Weikang Zhao
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing Medical University, Chongqing, 400042, China
| | - Wei Huang
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing Medical University, Chongqing, 400042, China
| | - Lili Dong
- Department of Orthopaedic Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
- Chongqing Municipal Health Commission Key Laboratory of Musculoskeletal Regeneration and Translational Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400042, China
- Orthopaedic Research Laboratory of Chongqing Medical University, Chongqing Medical University, Chongqing, 400042, China
| |
Collapse
|
2
|
Li Z, Liu QS, Gao Y, Wang X, Sun Z, Zhou Q, Jiang G. Assessment of the disruption effects of tetrabromobisphenol A and its analogues on lipid metabolism using multiple in vitro models. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116577. [PMID: 38870736 DOI: 10.1016/j.ecoenv.2024.116577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/02/2024] [Accepted: 06/06/2024] [Indexed: 06/15/2024]
Abstract
Tetrabromobisphenol A (TBBPA), a widely-used brominated flame retardant, has been revealed to exert endocrine disrupting effects and induce adipogenesis. Given the high structural similarities of TBBPA analogues and their increasing exposure risks, their effects on lipid metabolism are necessary to be explored. Herein, 9 representative TBBPA analogues were screened for their interference on 3T3-L1 preadipocyte adipogenesis, differentiation of C3H10T1/2 mesenchymal stem cells (MSCs) to brown adipocytes, and lipid accumulation of HepG2 cells. TBBPA bis(2-hydroxyethyl ether) (TBBPA-BHEE), TBBPA mono(2-hydroxyethyl ether) (TBBPA-MHEE), TBBPA bis(glycidyl ether) (TBBPA-BGE), and TBBPA mono(glycidyl ether) (TBBPA-MGE) were found to induce adipogenesis in 3T3-L1 preadipocytes to different extends, as evidenced by the upregulated intracellular lipid generation and expressions of adipogenesis-related biomarkers. TBBPA-BHEE exhibited a stronger obesogenic effect than did TBBPA. In contrast, the test chemicals had a weak impact on the differentiation process of C3H10T1/2 MSCs to brown adipocytes. As for hepatic lipid formation test, only TBBPA mono(allyl ether) (TBBPA-MAE) was found to significantly promote triglyceride (TG) accumulation in HepG2 cells, and the effective exposure concentration of the chemical under oleic acid (OA) co-exposure was lower than that without OA co-exposure. Collectively, TBBPA analogues may perturb lipid metabolism in multiple tissues, which varies with the test tissues. The findings highlight the potential health risks of this kind of emerging chemicals in inducing obesity, non-alcoholic fatty liver disease (NAFLD) and other lipid metabolism disorders, especially under the conditions in conjunction with high-fat diets.
Collapse
Affiliation(s)
- Zhiwen Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Yurou Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xiaoyun Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Zhendong Sun
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, PR China
| |
Collapse
|
3
|
Wen Q, Xie X, Ren Q, Pan R, Du Y. BDE-99 stimulates generation of aberrant brown/beige adipocytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123761. [PMID: 38467365 DOI: 10.1016/j.envpol.2024.123761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/16/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Adipose tissue compromises one of the principal depots where brominated flame retardants (BFR) accumulate in vivo, yet whether BFR disturb thermogenic brown/beige adipocytes is still not referred to date. Herein, effects of BDE-99, a major congener of polybrominated diphenyl ethers (PBDEs) detected in humans, on brown/beige adipocytes were explored for the first time, aiming to provide new knowledge evaluating the obesogenic and metabolic disrupting effects of BFR. Our results firstly demonstrated that exposure to BDE-99 during the lineage commitment period significantly promoted C3H10T1/2 MSCs differentiating into brown/beige adipocytes, evidenced by the increase of brown/beige adipocyte marker UCP1, Cidea as well as mitochondrial membrane potential and basal respiration rate, which was similar to pharmacological PPARγ agonist rosiglitazone. Unexpectedly, the mitochondrial maximal respiration rate of BDE-99 stimulated brown/beige adipocytes was not synchronously enhanced and resulted in a significant reduction of mitochondrial spare respiration capacity (SRC) compared to control or rosiglitazone stimulated adipocytes, indicating a deficient energy-dissipating capacity of BDE-99 stimulated thermogenic adipocytes. Consistently with compromised mitochondrial SRC, lipidomic analysis further revealed that the lipids profile of mitochondria derived from BDE-99 stimulated brown/beige adipocytes were quite different from control or rosiglitazone stimulated cells. In detail, BDE-99 group contains more free fatty acid (FFA) and lyso-PE in mitochondria. In addition to energy metabolism, our results also demonstrated that BDE-99 stimulated brown/beige adipocytes were deficient in endocrine, which secreted more adverse adipokine named resistin, coinciding with comparable beneficial adipokine adiponectin compared with that of rosiglitazone. Taken together, our results showed for the first time that BDE-99 stimulated brown/beige adipocytes were aberrant in energy metabolism and endocrine, which strongly suggests that BDE-99 accumulated in human adipose tissue could interfere with brown/beige adipocytes to contribute to the occurrence of obesity and relevant metabolic disorders.
Collapse
Affiliation(s)
- Qing Wen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China; Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xinni Xie
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China.
| | - Qidong Ren
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Ruiying Pan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|