1
|
Liu X, Shu Y, Pan Y, Zeng G, Zhang M, Zhu C, Xu Y, Wan A, Wang M, Han Q, Liu B, Wang Z. Electrochemical destruction of PFAS at low oxidation potential enabled by CeO 2 electrodes utilizing adsorption and activation strategies. JOURNAL OF HAZARDOUS MATERIALS 2025; 486:137043. [PMID: 39754874 DOI: 10.1016/j.jhazmat.2024.137043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/22/2024] [Accepted: 12/29/2024] [Indexed: 01/06/2025]
Abstract
The persistence and ecological impact of per- and poly-fluoroalkyl substances (PFAS) in water sources necessitate effective and energy-efficient treatment solutions. This study introduces a novel approach using cerium dioxide (CeO2) electrodes enhanced with oxygen vacancy (Ov) to catalyze the defluorination of PFAS. By leveraging the unique affinity between cerium and fluorine-containing species, our approach enables adsorptive preconcentration and catalytic degradation at low oxidation potentials (1.37 V vs. SHE). Demonstrating high removal and defluorination efficiencies of perfluorooctanoic acid (PFOA) at 94.0 % and 73.0 %, respectively, our approach also proves effective in the environmental matrix. It minimizes the impacts of co-existing natural organic matter and chloride ions, crucial benefits of operating at lower oxidation potentials. The role of Ov in CeO2 is validated by both experimental results and density functional theory modeling, demonstrating that these sites can activate the C-F bond and substantially reduce the energy barriers for defluorination. Consequently, our CeO2-based method not only achieves defluorination efficiencies comparable to more energy-intensive techniques but does so while requiring less than 0.62 kWh/m3 per order. This positions our approach as a promising, cost-effective alternative for the remediation of PFAS-contaminated waters, emphasizing its relevance and effectiveness in environmental remediation scenarios.
Collapse
Affiliation(s)
- Xun Liu
- School of Environment, Harbin Institute of Technology, Harbin 150086, PR China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Yufei Shu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Yu Pan
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Guoshen Zeng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Meng Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Chaoqun Zhu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Youmei Xu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Aling Wan
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Mengxia Wang
- School of Environment, Harbin Institute of Technology, Harbin 150086, PR China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Qi Han
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Bei Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Zhongying Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, PR China.
| |
Collapse
|
2
|
Liu B, Pan Y, Han Z, Shu Y, Liu X, Zhang M, Wan A, Wang M, Tan Y, Wang Z. Interplay of Structural Properties and Redox Behavior in CeO 2 Nanoparticles: Impact on Reactivity and Bioavailability. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4641-4651. [PMID: 39912894 DOI: 10.1021/acs.est.4c10490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
The environmental redox transformation of CeO2 is crucial for evaluating its ecological risk and understanding the geochemical cycling of cerium (Ce). In this study, we examined the effects of crystallinity on CeO2 dissolution and monitored the structural evolution during redox transformations. The reductive dissolution and reoxidation behavior of CeO2 (100 mg/L) was examined in the presence of 200 μM citrate. Our findings indicate that ligand-induced dissolution is more pronounced in CeO2 with lower crystallinity under both dark and light conditions. This dependence is related to the intensive ligand complexation at oxygen vacancy sites, resulting in a higher complexation of Ce(III) and more efficient photoelectron generation for Ce(IV) reduction. During cyclic dissolution-reprecipitation, CeO2 notably transformed into an amorphous phase, progressively decreasing the crystallinity of the nanoparticles. Consequently, the dissolution fraction of well-crystallized CeO2 increased significantly from 1.2% in the first cycle to 11.4% in the third cycle, suggesting a transition to structures with higher interfacial reactivity. Similar transformation and dissolution behavior was observed in redox oscillations in a soil environment. Additionally, hydroponic exposure experiments with Arabidopsis thaliana, treated with 100 mg/L CeO2 for 7 days, demonstrated increased Ce uptake by roots post-transformation, with a higher proportion of CePO4 detected within the plants. This comprehensive study not only provides vital mechanistic insights into the transformation processes of CeO2 but also aids in assessing the ecological risks associated with engineered CeO2 nanomaterials.
Collapse
Affiliation(s)
- Bei Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yu Pan
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zixin Han
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yufei Shu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xun Liu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Meng Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Aling Wan
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mengxia Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yixin Tan
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhongying Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Dai M, Dong X, Yang Y, Wu Y, Chen L, Jiang C, Guo Z, Yang T. Mechanistic insight into the impact of interaction between goethite and humic acid on the photooxidation and photoreduction of bifenthrin. ENVIRONMENTAL RESEARCH 2024; 252:118779. [PMID: 38552825 DOI: 10.1016/j.envres.2024.118779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/03/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024]
Abstract
Numerous application of pyrethroid insecticides has led to their accumulation in the environment, threatening ecological environment and human health. Its fate in the presence of iron-bearing minerals and natural organic matter under light irradiation is still unknown. We found that goethite (Gt) and humic acid (HA) could improve the photodegradation of bifenthrin (BF) in proper concentration under light irradiation. The interaction between Gt and HA may further enhance BF degradation. On one hand, the adsorption of HA on Gt may decrease the photocatalytic activity of HA through decreasing HA content in solution and sequestering the functional groups related with the production of reactive species. On the other hand, HA could improve the photocatalytic activity of Gt through extending light absorption, lowing of bandgap energy, hindering the recombination of photo-generated charges, and promoting the oxidation and reduction reaction on Gt surface. The increased oxygen vacancies on Gt surface along with the reduction of trivalent iron and the nucleophilic attack of hole to surface hydroxyl group contributed to the increasing photocatalytic activity of Gt. Electron paramagnetic resonance and quenching studies demonstrated that both oxidation species, such as hydroxyl radical (•OH) and singlet oxygen (1O2), and reducing species, such as hydrogen atoms (H•) and superoxide anion radical (O2•-), contributed to BF degradation in UV-Gt-HA system. Mass spectrometry, ion chromatography, and toxicity assessment indicated that less toxic C23H22ClF3O3 (OH-BF), C9H10ClF3O (TFP), C14H14O2 (OH-MBP), C14H12O2 (MBP acid), C14H12O3 (OH-MBP acid), and chloride ions were the main degradation products. The production of OH-BF, MPB, and TFP acid through oxidation and the production of MPB and TFP via reduction were the two primary pathways of BF degradation.
Collapse
Affiliation(s)
- Miaomiao Dai
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Xiaona Dong
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China.
| | - Yongbo Yang
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Yuwei Wu
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Lulu Chen
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Canlan Jiang
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zechong Guo
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| | - Tongyi Yang
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212100, China
| |
Collapse
|