1
|
Wang J, Zhang C, Mou S, Li J, Chen R, Xiao L, Wu W, Dong F. Solar Ammonia Synthesis: Near-Complete Conversion of Intermediated Nitrogen Energy Carrier via the N 2-NO-NH 3 Route. ACS NANO 2025. [PMID: 40434800 DOI: 10.1021/acsnano.5c02657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2025]
Abstract
N2 fixation into NH3 under ambient conditions remains greatly challenging, where a relay scheme by plasma-enabled N2 oxidation (pN2OR) and the NO reduction reaction (NORR) can be a practical route. However, the efficient conversion of NO, as the intermediate nitrogen energy carrier, has not been accomplished due to the limited mass transfer of NO in the reaction solution. Here, a tandem pN2OR and photocatalytic NORR route (N2-NO-NH3) is developed to achieve sustainable NH3 synthesis with near-complete NO conversion. The highly concentrated NO (∼1%), produced via pN2OR, is introduced to an absorption-photocatalysis scheme, where the efficiencies for synchronous NO dissolution and photoreduction are significantly promoted. This system delivers a near 100% NO conversion ratio and superior NH3 selectivity (98.33% ± 0.75%) and stability (240 h) in a single-pass continuous flow. This research has successfully developed a highly profitable production route, yielding a substantial profit of $3000 per ton for NH4COOH as the final product.
Collapse
Affiliation(s)
- Jielin Wang
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chunling Zhang
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Shiyong Mou
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jieyuan Li
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ruimin Chen
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Lei Xiao
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Wei Wu
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fan Dong
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
2
|
Mallick A, Mayorga-Martinez CC, Pumera M. Low-dimensional materials for ammonia synthesis. Chem Soc Rev 2025; 54:5021-5080. [PMID: 40260534 DOI: 10.1039/d4cs00025k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Ammonia is an essential chemical due to its immense usage in agriculture, energy storage, and transportation. The synthesis of "green" ammonia via carbon-free routes and renewable energy sources is the need of the hour. In this context, photo- and/or electrocatalysis proves to be highly crucial. Low-dimensional materials (LDMs), owing to their unique properties, play a significant role in catalysis. This review presents a vast library of LDMs and broadly categorizes their catalytic performance according to their dimensionality, i.e., zero-, one-, and two-dimensional catalysts. The rational design of LDMs can significantly improve their catalytic performance, particularly in reducing small molecules like dinitrogen, nitrates, nitrites, and nitric oxides to synthesize ammonia via photo- and/or electrocatalysis. Additionally, converting nitrates and nitrites to ammonia can be beneficial in wastewater treatment and be coupled with CO2 co-reduction or oxidative reactions to produce urea and other valuable chemicals, which are also discussed in this review. This review collates the works published in recent years in this field and offers some fresh perspectives on ammonia synthesis. Through this review, we aim to provide a comprehensive insight into the catalytic properties of the LDMs, which are expected to enhance the efficiency of ammonia production and promote the synthesis of value-added products.
Collapse
Affiliation(s)
- Apabrita Mallick
- Advanced Nanorobots and Multiscale Robotics Lab, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava, Czech Republic.
| | - Carmen C Mayorga-Martinez
- School of Biomedical Engineering, Peruvian University of Applied Sciences (UPC), Prolongación Primavera 2390, 15023, Lima, Peru
| | - Martin Pumera
- Advanced Nanorobots and Multiscale Robotics Lab, Faculty of Electrical Engineering and Computer Science, VSB - Technical University of Ostrava, 17. listopadu 2172/15, 70800 Ostrava, Czech Republic.
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea
| |
Collapse
|
3
|
Chen R, Wang J, Zhang C, Sun Y, Li J, Dong F. Purification and Value-Added Conversion of NO x under Ambient Conditions with Photo-/Electrocatalysis Technology. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1013-1033. [PMID: 39760487 DOI: 10.1021/acs.est.4c08326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
As primary air pollutants from fossil fuel combustion, the excess emission of nitric oxides (NOx) results in a series of atmospheric environmental issues. Although the selective catalytic reduction technology has been confirmed to be effective for NOx removal, green purification and value-added conversion of NOx under ambient conditions are still facing great challenges, especially for nitrogen resource recovery. To address that, photo-/electrocatalysis technology offers sustainable routes for efficient NOx purification and upcycling under ambient temperature and pressure, which has received considerable attention from scientific communities. In this review, recent advances in photo-/electrocatalysis technology for the purification and value-added conversion of NOx are critically summarized. The target products and reaction mechanisms for NOx conversion systems, together with the responsible active sites, are discussed, respectively. Then, the realistic environmental practicability is proposed, including strict performance evaluation criteria and application in realistic conditions for NOx purification and upcycling by the application of photo-/electrocatalysis. Finally, the current challenges and future opportunities are proposed in terms of catalyst design, NOx conversion enhancement, reaction mechanism understanding, practical application conditions, and product separation techniques.
Collapse
Affiliation(s)
- Ruimin Chen
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jielin Wang
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chunling Zhang
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yanjuan Sun
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jieyuan Li
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fan Dong
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|
4
|
Wang D, Fan G, Luan D, Guo Y, Gu X, Lou XWD. Ru-Incorporation-Induced Phase Transition in Co Nanoparticles for Low-Concentration Nitric Oxide Electroreduction to Ammonia at Low Potential. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408580. [PMID: 39506426 DOI: 10.1002/adma.202408580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/27/2024] [Indexed: 11/08/2024]
Abstract
Electrocatalytic reduction of nitric oxide (NO) to ammonia (NH3) represents a potential solution for improving the disrupted nitrogen cycle balance. Unfortunately, designing efficient electrocatalysts for NO reduction reaction (NORR) remains a notable challenge, especially at low concentrations. Herein, a displacement-alloying strategy is reported to successfully induce the phase transition of Co nanoparticles supported on carbon nanosheets from face-centered cubic (fcc) to hexagonal close-packed (hcp) structure through Ru incorporation. The obtained RuCo alloy with hcp phase structure (hcp-RuCo) exhibits apparent NORR activity with a record-high Faraday efficiency of 99.2% and an NH3 yield of 77.76 µg h-1 mgcat -1 at -0.1 V versus reversible hydrogen electrode at a NO concentration of 1 vol %, surpassing Co nanoparticles with fcc phase structure and most reported catalysts. Density functional theory calculations reveal that the excellent NORR activity of hcp-RuCo can be attributed to the optimized electronic structure of Co site and lowered energy barrier of the potential rate-determining step through phase transition. Furthermore, the assembled Zn-NO battery using hcp-RuCo as the cathode achieves a power density of 2.33 mW cm-2 and an NH3 yield of 45.94 µg h-1 mgcat -1. This work provides a promising research perspective for low-concentration NO conversion.
Collapse
Affiliation(s)
- Dongdong Wang
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong, 999077, China
| | - Guilan Fan
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Deyan Luan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Yan Guo
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Xiaojun Gu
- School of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, 010021, China
| | - Xiong Wen David Lou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
5
|
Tang Y, Jiang Z, Yuan Y, Xu L, Jin C, Chen B, Lin Z, Zao J, Du J, Zhang X, Gao X, Liang Y. Selective electrosynthesis of hydroxylamine from aqueous nitrate/nitrite by suppressing further reduction. Nat Commun 2024; 15:9800. [PMID: 39532869 PMCID: PMC11557954 DOI: 10.1038/s41467-024-54204-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The electrocatalytic reduction of nitrogenous waste offers a sustainable approach to producing nitrogen-containing chemicals. The selective synthesis of high-value hydroxylamine (NH2OH) is challenging due to the instability of NH2OH as an intermediate. Here, we present a rational electrocatalyst design strategy for promoting NH2OH electrosynthesis by suppressing the competing pathways of further reduction. We screen zinc phthalocyanines (ZnPc) with a high energy barrier for NH2OH reduction by regulating their intrinsic activity. Additionally, we discover that carbon nanotube substrates exhibit significant NH3-producing activity, which can be effectively inhibited by the high coverage of ZnPc molecules. In-situ characterizations reveal that NH2OH and HNO are generated as intermediates in nitrate reduction to NH3, and NH2OH can be enriched in the ZnPc electrode. In the H-cell, the optimized ZnPc catalyst demonstrates a Faradaic efficiency (FE) of 53 ± 1.7% for NH2OH with a partial current density exceeding 270 mA cm-2 and a turnover frequency of 7.5 ± 0.2 s-1. It also enables the rapid electrosynthesis of cyclohexanone oxime from nitrite with a FE of 64 ± 1.0%.
Collapse
Affiliation(s)
- Yirong Tang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhan Jiang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China.
| | - Yubo Yuan
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Li Xu
- State Key Laboratory of Clean Energy Utilization, State Environmental Protection Center for Coal-Fired Air Pollution Control, Zhejiang University, Hangzhou, 310027, China
| | - Chuyao Jin
- State Key Laboratory of Clean Energy Utilization, State Environmental Protection Center for Coal-Fired Air Pollution Control, Zhejiang University, Hangzhou, 310027, China
| | - Bulin Chen
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhichao Lin
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jie Zao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jianwei Du
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Xiao Zhang
- State Key Laboratory of Clean Energy Utilization, State Environmental Protection Center for Coal-Fired Air Pollution Control, Zhejiang University, Hangzhou, 310027, China.
| | - Xiang Gao
- State Key Laboratory of Clean Energy Utilization, State Environmental Protection Center for Coal-Fired Air Pollution Control, Zhejiang University, Hangzhou, 310027, China.
| | - Yongye Liang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Xue T, Li J, Chen L, Li K, Hua Y, Yang Y, Dong F. Photocatalytic NO x removal and recovery: progress, challenges and future perspectives. Chem Sci 2024; 15:9026-9046. [PMID: 38903227 PMCID: PMC11186336 DOI: 10.1039/d4sc01891e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/18/2024] [Indexed: 06/22/2024] Open
Abstract
The excessive production of nitrogen oxides (NO x ) from energy production, agricultural activities, transportation, and other human activities remains a pressing issue in atmospheric environment management. NO x serves both as a significant pollutant and a potential feedstock for energy carriers. Photocatalytic technology for NO x removal and recovery has received widespread attention and has experienced rapid development in recent years owing to its environmental friendliness, mild reaction conditions, and high efficiency. This review systematically summarizes the recent advances in photocatalytic removal, encompassing NO x oxidation removal (including single and synergistic removal and NO3 - decomposition), NO x reduction to N2, and the emergent NO x upcycling into green ammonia. Special focus is given to the molecular understanding of the interfacial nitrogen-associated reaction mechanisms and their regulation pathways. Finally, the status and the challenges of photocatalytic NO x removal and recovery are critically discussed and future outlooks are proposed for their potential practical application.
Collapse
Affiliation(s)
- Ting Xue
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China Chengdu 611731 China
| | - Jing Li
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China Chengdu 611731 China
| | - Lvcun Chen
- School of Environmental Science and Engineering, Southwest Jiaotong University Chengdu 611756 China
| | - Kanglu Li
- School of Environmental Science and Engineering, Southwest Jiaotong University Chengdu 611756 China
| | - Ying Hua
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China Chengdu 611731 China
| | - Yan Yang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology Guangzhou 510006 China
- Synergy Innovation Institute of GDUT Shantou 515041 Guangdong China
| | - Fan Dong
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China Chengdu 611731 China
| |
Collapse
|
7
|
Wang D, Lu XF, Luan D, Lou XWD. Selective Electrocatalytic Conversion of Nitric Oxide to High Value-Added Chemicals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312645. [PMID: 38271637 DOI: 10.1002/adma.202312645] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/30/2023] [Indexed: 01/27/2024]
Abstract
The artificial disturbance in the nitrogen cycle has necessitated an urgent need for nitric oxide (NO) removal. Electrochemical technologies for NO conversion have gained increasing attention in recent years. This comprehensive review presents the recent advancements in selective electrocatalytic conversion of NO to high value-added chemicals, with specific emphasis on catalyst design, electrolyte composition, mass diffusion, and adsorption energies of key intermediate species. Furthermore, the review explores the synergistic electrochemical co-electrolysis of NO with specific carbon source molecules, enabling the synthesis of a range of valuable chemicals with C─N bonds. It also provides in-depth insights into the intricate reaction pathways and underlying mechanisms, offering valuable perspectives on the challenges and prospects of selective NO electrolysis. By advancing comprehension and fostering awareness of nitrogen cycle balance, this review contributes to the development of efficient and sustainable electrocatalytic systems for the selective synthesis of valuable chemicals from NO.
Collapse
Affiliation(s)
- Dongdong Wang
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center, City University of Hong Kong, Hong Kong, 999077, China
| | - Xue Feng Lu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Deyan Luan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Xiong Wen David Lou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
8
|
Lei B, Zhou G, Gong Z, Liu C, Zhou Y, Guro VP, Sun Y, Sheng J, Dong F. Dynamically Cyclic Fe 2+/Fe 3+ Active Sites as Electron and Proton-Feeding Centers Boosting CO 2 Photoreduction Powered by Benzyl Alcohol Oxidation. RESEARCH (WASHINGTON, D.C.) 2024; 8:0567. [PMID: 39801506 PMCID: PMC11717996 DOI: 10.34133/research.0567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/01/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025]
Abstract
Solar-driven CO2 photoreduction holds promise for sustainable fuel and chemical productions, but the complex proton-coupled multi-electron transfer processes and sluggish oxidation half-reaction kinetics substantially hinder its efficiency. Here, we devised a rational catalyst design to address these challenges by fabricating ferrocene carboxylic acid-functionalized Cs3Sb2Br9 nanocrystals (CSB-Fc NCs), which facilitate simultaneous benzyl alcohol oxidation and CO2 reduction reactions under visible-light irradiation. The synchronized proton-coupled electron transfer processes between the reduction and oxidation half-reactions on CSB-Fc NCs resulted in a 5-fold increase in the CO2 reduction rate (45.56 μmol g-1 h-1, 97.9% CO selectivity) and a 5.8-fold enhancement in benzyl alcohol conversion (97.7% selectivity for benzaldehyde) compared to the CSB. In situ Raman and ultraviolet-visible diffuse reflectance spectra revealed that the dynamic Fe2+/Fe3+ redox loop within the Fc unit serves as the actual active site, facilitating the activation of substrate molecules. More importantly, in situ attenuated total reflection Fourier transform infrared spectroscopy and gas chromatography-mass spectrometry spectroscopy, with isotope labeling of Deuteron-benzyl alcohol and 13CO2, confirmed that proton transfer from the hydroxyl group generates reactive protons at the Fe2+/Fe3+ site, enabling efficient CO2 photoreduction through subsequent protonation steps. This work offers a cost-effective and efficient approach for synergetic CO2 photoreduction driven by organic synthesis, advancing solar energy utilization.
Collapse
Affiliation(s)
- Ben Lei
- School of Resources and Environment, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
- Chengdu Zhihe Environmental Technology Co. Ltd., Chengdu 610207, China
- School of Material Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Gaofeng Zhou
- School of Resources and Environment, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Zhongyou Gong
- Chengdu Zhihe Environmental Technology Co. Ltd., Chengdu 610207, China
| | - Chao Liu
- Chengdu Zhihe Environmental Technology Co. Ltd., Chengdu 610207, China
| | - Ying Zhou
- School of New Energy and Materials,
Southwest Petroleum University, Chengdu 610500, China
| | - Vitaliy P. Guro
- Institute of General and Inorganic Chemistry,
Academy of Sciences of the Republic of Uzbekistan, Tashkent 100047, Uzbekistan
| | - Yanjuan Sun
- School of Resources and Environment, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Jianping Sheng
- School of Resources and Environment, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Fan Dong
- School of Resources and Environment, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| |
Collapse
|