1
|
Magosso N, Souza PV, Moreira MF, Rocha VA, Fioretto MN, Pinha VC, Maia GA, Maria VLRS, Barata LA, Frigoli GF, Fernandes GSA, Arena AC, Scarano WR. Maternal exposure to phthalates and nanoplastics, isolated or combined: Impacts on placental structure, development, and antioxidant defense as a trigger for maternal-fetal adversities. Reprod Toxicol 2025; 135:108930. [PMID: 40294660 DOI: 10.1016/j.reprotox.2025.108930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025]
Abstract
The placenta is an essential maternal-fetal organ for the healthy development of the fetus, linking maternal and fetal circulations. Endocrine disrupting chemicals (EDCs), such as phthalates derived from plastic residues, may impair offspring development and increase the risk of metabolic disorders. Plastics also degrade into microplastics (MPs) and nanoplastics (NPs), which can cross the placenta, carrying EDCs and impacting fetal development. The objective of this study was to investigate whether gestational exposure to a phthalate mixture (PM) and NPs interferes with the maternal-fetal interface, altering female reproductive efficiency and placental morphophysiology. Pregnant SD rats were divided into 6 groups: CTR(control; vehicle), T1(20 μg/kg/day-PM), T2(200 mg/kg/day-PM), T3(1 mg/kg/day NPs-100nm), T4(20 μg/kg/dayPM+1 mg/kg/day-NPs-100nm), and T5(200 mg/kg/day-PM+1 mg/kg/day-NPs-100 nm). Treatment was administered orally from gestational day 5 (GD5) to GD20. At GD20, 5-8 rats from each group were anesthetized and underwent laparotomy, and blood, ovaries, uterus, and placentas were analyzed. There was an increase in pre-implantation loss in T3, T4 and T5 groups, a reduction in placental weight, and an increase in placental efficiency in male offspring in T3 group. An increase in the number of fetuses small for gestational age was observed in T3 and T5 vs. C. Furthermore, the treatment caused an increase in the expression of targets related to trophoblast cell differentiation in T5, and growth factors related to angiogenesis in the placenta in T3 and T4 groups. There was a decrease in TBARS, SOD, and GSTpi levels in T2, while CAT increased in T3, suggesting that these pollutants modulate placental gene expression and energy metabolism.
Collapse
Affiliation(s)
- Natália Magosso
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Patrick Vieira Souza
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Mirella Franco Moreira
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Vanessa Aguiar Rocha
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Matheus Naia Fioretto
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Victória Cristina Pinha
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Gabriel Aquino Maia
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | | | - Luisa Annibal Barata
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Giovanna Fachetti Frigoli
- Department of General Biology, Biological Sciences Center, State University of Londrina, Londrina, PR, Brazil
| | | | - Arielle Cristina Arena
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil
| | - Wellerson Rodrigo Scarano
- Department of Structural and Functional Biology, Institute of Biosciences, Sao Paulo State University, Botucatu, SP, Brazil.
| |
Collapse
|
2
|
Zhao H, Jin L, Huang K, Zhong K, Zhou Y, Xu Y, Zhu Q, Zhou J, Tang J, Luo Q, Guo J, Zhang D, Chen G. Associations between metal/metalloid exposure during pregnancy and placental growth characteristics: Findings from the Hangzhou birth cohort study II. Int J Hyg Environ Health 2025; 263:114470. [PMID: 39342751 DOI: 10.1016/j.ijheh.2024.114470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Previous studies have suggested that metal/metalloid (hereafter referred to as metal) exposure may influence placental growth by affecting gene expression in the placenta. However, no epidemiological studies have been conducted to validate the relationships between metals exposure, placental gene expression, and placental growth at the population level. This study aims to investigate these relationships based on Hangzhou birth cohort study II (HBCS-II). Totally, 1025 participants were derived from HBCS-II. Thirteen metals levels in the placenta were measured using inductively coupled plasma mass spectrometry. Placental growth characteristics were assessed, including placental weight, chorionic disc area, placental eccentricity, and distance from cord insertion site to the nearest edge of placenta (DCIEP). The relationships between metals exposure and placental growth characteristics were examined using the elastic net model combined unpenalized linear regression model. Placental gene expression levels were analyzed through RNA sequencing and real-time polymerase chain reaction (RT-qPCR), and mediation analysis was conducted to investigate whether placental gene expression could mediate the relationship between metal exposure and placental growth. Notably, the results showed that a unite increase in Ln-transformed cadmium (Cd) levels was associated with a reduction of 16.4 g [95% confidence interval (CI): 31.2, -1.5] in placental weight, 13.9 cm2 (95%CI: 20.0, -7.8) in chorionic disc area, and 0.3 cm (95%CI: 0.55, -0.06) in DCIEP. Through RNA sequencing followed by validation, significant associations were observed between placental Cd level and increased expression of placental genes, including TNFAIP2, OLAH, FLT4, SH3PXD2A, LIMCH1, BCL6, SLCO2A1, and CPSF1. Additionally, increased placental TNFAIP2, OLAH, FLT4, SH3PXD2A and LIMCH1 expression was linked to reduced placental weight. Moreover, SH3PXD2A was associated with decreased chorionic disc area. Mediation analysis showed that placental Cd level was associated with a 12.0 g (95%CI: 23.8, -2.7) decrease in placental weight mediated through the upregulation of FTL4 gene expression. The study provides evidence of the association between placental Cd exposure and decreased placental weight, and the FLT4 gene may play a mediating role in this relationship. Future experiment studies should be performed to validate the results.
Collapse
Affiliation(s)
- Hao Zhao
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Social Medicine and Public Health, School of Basic Medicine, Jiujiang University, Jiujiang, China
| | - Lanfei Jin
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kegui Huang
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kunhong Zhong
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yexinyi Zhou
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yang Xu
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qinheng Zhu
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiena Zhou
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Tang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Qiong Luo
- Key Laboratory of Reproductive Genetics (Ministry of Education), and Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Guo
- Key Laboratory of Reproductive Genetics (Ministry of Education), and Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dan Zhang
- Key Laboratory of Reproductive Genetics (Ministry of Education), and Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guangdi Chen
- Department of Public Health, and Department of Reproductive Endocrinology of Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Reproductive Genetics (Ministry of Education), and Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China; Bioelectromagnetics Laboratory, Zhejiang University School of Public Health, Hangzhou, China; Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.
| |
Collapse
|
3
|
Chauhan R, Archibong AE, Ramesh A. Imprinting and Reproductive Health: A Toxicological Perspective. Int J Mol Sci 2023; 24:16559. [PMID: 38068882 PMCID: PMC10706004 DOI: 10.3390/ijms242316559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 12/18/2023] Open
Abstract
This overview discusses the role of imprinting in the development of an organism, and how exposure to environmental chemicals during fetal development leads to the physiological and biochemical changes that can have adverse lifelong effects on the health of the offspring. There has been a recent upsurge in the use of chemical products in everyday life. These chemicals include industrial byproducts, pesticides, dietary supplements, and pharmaceutical products. They mimic the natural estrogens and bind to estradiol receptors. Consequently, they reduce the number of receptors available for ligand binding. This leads to a faulty signaling in the neuroendocrine system during the critical developmental process of 'imprinting'. Imprinting causes structural and organizational differentiation in male and female reproductive organs, sexual behavior, bone mineral density, and the metabolism of exogenous and endogenous chemical substances. Several studies conducted on animal models and epidemiological studies provide profound evidence that altered imprinting causes various developmental and reproductive abnormalities and other diseases in humans. Altered metabolism can be measured by various endpoints such as the profile of cytochrome P-450 enzymes (CYP450's), xenobiotic metabolite levels, and DNA adducts. The importance of imprinting in the potentiation or attenuation of toxic chemicals is discussed.
Collapse
Affiliation(s)
- Ritu Chauhan
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA;
| | - Anthony E. Archibong
- Department of Microbiology, Immunology and Physiology, Meharry Medical College, Nashville, TN 37208, USA;
| | - Aramandla Ramesh
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, TN 37208, USA;
| |
Collapse
|