1
|
Abrishami S, Xiao H, Asadnia M, Low ZX, Razmjou A. Recent advances in the design principles of lithium selective membranes. WATER RESEARCH 2025; 283:123724. [PMID: 40373372 DOI: 10.1016/j.watres.2025.123724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/14/2025] [Accepted: 04/25/2025] [Indexed: 05/17/2025]
Abstract
The growing demand for lithium in energy storage applications has intensified the need for efficient lithium extraction technologies, with membrane processes emerging as a promising approach. Among various membrane technologies, nanostructured membranes with precisely engineered channels have shown exceptional potential for selective lithium extraction due to their ability to control ion transport at the molecular level. This review provides a comprehensive analysis of the fundamental design principles governing lithium-selective membranes, with a specific focus on nanochannel-based systems. We examine the critical parameters that influence lithium selectivity, including surface charge distribution, nanochannel dimensions, morphology, and wettability, while exploring how these factors interact with external driving forces to enable selective ion transport. This work extensively analyzes recent developments in nanochannel engineering and ion transport mechanisms, providing crucial insights into optimizing membrane selectivity and performance. By critically analyzing current challenges in scaling up these technologies and identifying promising research directions, this work provides a roadmap for developing next-generation lithium-selective membranes with enhanced efficiency and selectivity.
Collapse
Affiliation(s)
- Shayan Abrishami
- School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Huan Xiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing, China
| | - Mohsen Asadnia
- School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Ze-Xian Low
- State Key Laboratory of Materials-Oriented Chemical Engineering, National Engineering Research Center for Special Separation Membrane, Nanjing Tech University, Nanjing, China
| | - Amir Razmjou
- School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia; Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
2
|
Yang D, Yang Y, Wong T, Iguodala S, Wang A, Lovell L, Foglia F, Fouquet P, Breakwell C, Fan Z, Wang Y, Britton MM, Williams DR, Shah N, Xu T, McKeown NB, Titirici MM, Jelfs KE, Song Q. Solution-processable polymer membranes with hydrophilic subnanometre pores for sustainable lithium extraction. NATURE WATER 2025; 3:319-333. [PMID: 40144313 PMCID: PMC11932922 DOI: 10.1038/s44221-025-00398-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 01/30/2025] [Indexed: 03/28/2025]
Abstract
Membrane-based separation processes hold great promise for sustainable extraction of lithium from brines for the rapidly expanding electric vehicle industry and renewable energy storage. However, it remains challenging to develop high-selectivity membranes that can be upscaled for industrial processes. Here we report solution-processable polymer membranes with subnanometre pores with excellent ion separation selectivity in electrodialysis processes for lithium extraction. Polymers of intrinsic microporosity incorporated with hydrophilic functional groups enable fast transport of monovalent alkali cations (Li+, Na+ and K+) while rejecting relatively larger divalent ions such as Mg2+. The polymer of intrinsic microporosity membranes surpasses the performance of most existing membrane materials. Furthermore, the membranes were scaled up and integrated into an electrodialysis stack, demonstrating excellent selectivity in simulated salt-lake brines. This work will inspire the development of selective membranes for a wide range of sustainable separation processes critical for resource recovery and a global circular economy.
Collapse
Affiliation(s)
- Dingchang Yang
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Yijie Yang
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, London, UK
| | - Toby Wong
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Sunshine Iguodala
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Anqi Wang
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Louie Lovell
- School of Chemistry, University of Birmingham, Birmingham, UK
| | - Fabrizia Foglia
- Department of Chemistry, University College London, London, UK
| | | | - Charlotte Breakwell
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, London, UK
| | - Zhiyu Fan
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Yanlin Wang
- Department of Chemical Engineering, Imperial College London, London, UK
| | | | - Daryl R. Williams
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Nilay Shah
- Department of Chemical Engineering, Imperial College London, London, UK
| | - Tongwen Xu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, People’s Republic of China
| | - Neil B. McKeown
- EaStCHEM, School of Chemistry, University of Edinburgh, Edinburgh, UK
| | | | - Kim E. Jelfs
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, London, UK
| | - Qilei Song
- Department of Chemical Engineering, Imperial College London, London, UK
| |
Collapse
|
3
|
Yong M, Yang Y, Sun L, Tang M, Wang Z, Xing C, Hou J, Zheng M, Chui TFM, Li Z, Yang Z. Nanofiltration Membranes for Efficient Lithium Extraction from Salt-Lake Brine: A Critical Review. ACS ENVIRONMENTAL AU 2025; 5:12-34. [PMID: 39830721 PMCID: PMC11740921 DOI: 10.1021/acsenvironau.4c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/11/2024] [Accepted: 11/12/2024] [Indexed: 01/22/2025]
Abstract
The global transition to clean energy technologies has escalated the demand for lithium (Li), a critical component in rechargeable Li-ion batteries, highlighting the urgent need for efficient and sustainable Li+ extraction methods. Nanofiltration (NF)-based separations have emerged as a promising solution, offering selective separation capabilities that could advance resource extraction and recovery. However, an NF-based lithium extraction process differs significantly from conventional water treatment, necessitating a paradigm shift in membrane materials design, performance evaluation metrics, and process optimization. In this review, we first explore the state-of-the-art strategies for NF membrane modifications. Machine learning was employed to identify key parameters influencing Li+ extraction efficiency, enabling the rational design of high-performance membranes. We then delve into the evolution of performance evaluation metrics, transitioning from the traditional permeance-selectivity trade-off to a more relevant focus on Li+ purity and recovery balance. A system-scale analysis considering specific energy consumption, flux distribution uniformity, and system-scale Li+ recovery and purity is presented. The review also examines process integration and synergistic combinations of NF with emerging technologies, such as capacitive deionization. Techno-economic and lifecycle assessments are also discussed to provide insights into the economic viability and environmental sustainability of NF-based Li+ extraction. Finally, we highlight future research directions to bridge the gap between fundamental research and practical applications, aiming to accelerate the development of sustainable and cost-effective Li+ extraction methods.
Collapse
Affiliation(s)
- Ming Yong
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Yang Yang
- Department
of Civil Engineering, The University of
Hong Kong, Pokfulam, Hong Kong 999077, SAR China
| | - Liangliang Sun
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Meng Tang
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Zhuyuan Wang
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Chao Xing
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jingwei Hou
- School
of Chemical Engineering, The University
of Queensland, St Lucia, QLD 4072, Australia
| | - Min Zheng
- Water Research
Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Ting Fong May Chui
- Department
of Civil Engineering, The University of
Hong Kong, Pokfulam, Hong Kong 999077, SAR China
| | - Zhikao Li
- Department
of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
- Suzhou
Industrial Park Monash Research Institute of Science and Technology, Suzhou, 215000, Jiangsu Province, China
| | - Zhe Yang
- Dow
Centre for Sustainable Engineering Innovation, School of Chemical
Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
4
|
Luo G, Wu Y, Zeng X, Zhou W, Wang P, Zhang W. Lithium-Ion-Sieve-Embedded Hybrid Membranes for Anion-Exchange- and Cation-Concentration-Driven Li/Mg Separation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:66911-66920. [PMID: 38381533 DOI: 10.1021/acsami.3c19100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
There is an urgent need to develop efficient and environmentally friendly technologies for separating Li+ from brines containing abundant Mg2+ to meet the growing demand for lithium resources. In this work, we prepared hybrid membranes by integrating hydrogen manganese oxide (HMO), a lithium-ion sieve, as a filler into anion-exchange membranes (AEMs), the quaternary ammonium-functionalized poly(2,6-dimethyl-1,4-phenylene oxide) (QPPO) and poly(m-terphenyl piperidinium) (m-PTP). Cations are transported by electrostatic attraction originating from anions and the concentration difference across membranes. Because of the effects of electrostatic repulsion of the fixed cationic groups and steric resistance in AEMs, Li+ with less charge and smaller radius will preferentially pass through the membrane. In addition, the presence of HMO provides an additional fast transport channel for Li+, resulting in an enhanced Li+/Mg2+ separation performance. The results show that 20%HMO@m-PTP exhibits high Li+ flux (0.48 mol/m2·h) and Li+/Mg2+ selectivity (βLi+/Mg2+ = 14.1). Molecular dynamics simulations show that m-PTP has more free volume than QPPO, which is beneficial for rapid cation transport. Spectral analysis confirms the insertion and sieving of Li+ in HMO. This work illustrates the great potential of anion-exchange- and cation-concentration-driven hybrid membranes based on lithium-ion sieves for low-energy and efficient Li+ extraction processes.
Collapse
Affiliation(s)
- Guozhen Luo
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yixuan Wu
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xianjie Zeng
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Weishan Zhou
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Ping Wang
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Wen Zhang
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, and School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| |
Collapse
|
5
|
Han Y, Yang Y, Ma Y, Liang D, Wen L, Ma J, Wang W. Selective ion channel adsorbents facilitate efficient and low environmental impact extraction of liquid lithium resources. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136335. [PMID: 39522216 DOI: 10.1016/j.jhazmat.2024.136335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/11/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
As lithium is the cornerstone of green energy development, it is crucial to realize a low environmental impact and efficient lithium extraction process. Ion-sieve adsorption is the most widely used method to extract liquid lithium resources, but this method is only efficient under alkaline conditions for H+ and Mg2+ competing adsorption. Conventional methods are often accompanied by the consumption of quantities of alkali, the generation of solid waste, and the acidification of liquid lithium resources. To address these issues, a selective ion-channel adsorbent was constructed. The composition comprises an ion sieve adsorbent and an organic carrier with a zwitterionic quaternary ammonium base group. This group storages OH- in situ, hinders H+ diffusion, slows down Mg2+ diffusion, and accelerates Li+ diffusion by relying on the difference in binding energies, which reduces the competing adsorption and avoids acidification and solid waste generation. The saturated adsorption capacity (21.38 mg/g) and selectivity of the adsorbent are 4.7 and 24 times higher than that of conventional ion-sieve adsorbent under neutral conditions respectively. The dosage of alkali is 1/256 of the traditional method, the effluent remains neutral and no solid waste is generated. This study presents an environmental and effective adsorbent for lithium extraction.
Collapse
Affiliation(s)
- Yu Han
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yan Yang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Yuling Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Daxin Liang
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Liping Wen
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
6
|
Gan N, Lin Y, Wu B, Qiu Y, Sun H, Su J, Yu J, Lin Q, Matsuyama H. Supramolecular-coordinated nanofiltration membranes with quaternary-ammonium Cyclen for efficient lithium extraction from high magnesium/lithium ratio brine. WATER RESEARCH 2024; 268:122703. [PMID: 39492143 DOI: 10.1016/j.watres.2024.122703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024]
Abstract
Ion-selective membranes (ISM) with sub-nanosized pore channels hold significant potential for applications in saline wastewater treatment and resource recovery. Herein, novel synergistic ion channels featuring bi-periodic structures were constructed through the coordination of functional Cyclen (quaternary_1,4,7,10-tetraazacyclododecane, Q_Cyclen) and Cu2+-m-Phenylenediamine (Cu2+-MPD) to develop supramolecular membranes for lithium extraction. The exterior quaternary ammonium-rich sites exhibit a significant Donnan exclusion effect, resulting in tremendous mono/divalent (Li+/Mg2+) ion selectivity; while the interior regular-confined channels of Cyclen yield a fast vehicular pathway, facilitating water molecules and Li+ ion-selective transport. The optimized membrane exhibited an increased water permeance of 19.2 L·m-2·h-1·bar-1 and simultaneously promoted Li+/Mg2+ selectivity (achieving a selectivity of 18.5 under a Mg2+/Li+ mass ratio of 30), surpassing the trade-off limit of conventional nanofiltration membranes. Due to the acquired excellent Li+/Mg2+ selectivity, lithium extraction from simulated salt-lake brines was successfully achieved through a two-stage nanofiltration process, reducing the Mg2+/Li+ mass ratio from 40 to 1.1. This work validates the applicability of macrocyclic with intrinsic sub-nanosized channels and desired multifunctionality for developing high-performance ISM for efficient lithium separation and beyond.
Collapse
Affiliation(s)
- Ning Gan
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China; School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuqing Lin
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Baolong Wu
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yulong Qiu
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Haopan Sun
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jingwen Su
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jianguo Yu
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Lin
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, Guizhou, China.
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
7
|
Wang R, Lin S. Membrane Design Principles for Ion-Selective Electrodialysis: An Analysis for Li/Mg Separation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38324772 PMCID: PMC10882969 DOI: 10.1021/acs.est.3c08956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Selective electrodialysis (ED) is a promising membrane-based process to separate Li+ from Mg2+, which is the most critical step for Li extraction from brine lakes. This study theoretically compares the ED-based Li/Mg separation performance of different monovalent selective cation exchange membranes (CEMs) and nanofiltration (NF) membranes at the coupon scale using a unified mass transport model, i.e., a solution-friction model. We demonstrated that monovalent selective CEMs with a dense surface thin film like a polyamide film are more effective in enhancing the Li/Mg separation performance than those with a loose but highly charged thin film. Polyamide film-coated CEMs when used in ED have a performance similar to that of polyamide-based NF membranes when used in NF. NF membranes, when expected to replace monovalent selective CEMs in ED for Li/Mg separation, will require a thin support layer with low tortuosity and high porosity to reduce the internal concentration polarization. The coupon-scale performance analysis and comparison provide new insights into the design of composite membranes used for ED-based selective ion-ion separation.
Collapse
Affiliation(s)
- Ruoyu Wang
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1831, United States
| |
Collapse
|