1
|
Ma Y, Lai J, Lin B, Lin X, Lv J, Meng F, Han Z, Dong R, Jin R, Liu G, Takaoka M, Li X, Zheng M. Synergistic Enhancement of Hydrolysis-Oxidation Drives Efficient Catalytic Elimination of Chlorinated Aromatics over VO x/TiO 2 Catalysts at Low Temperature. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8834-8843. [PMID: 40257843 DOI: 10.1021/acs.est.4c13995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
The efficient catalytic elimination of toxic chlorinated aromatics (i.e., dioxins, chlorobenzenes, etc.) at low temperature is still a great challenge. Based on the VOx/TiO2 catalyst, a hydrolysis-oxidation strategy (CeOx and WOx doping) was built for desirable low-temperature catalytic activity, product selectivity, H2O tolerance, and chlorine desorption. The in situ and ex situ experimental characterizations and density functional theory calculations revealed that hydrolysis sites favored molecular adsorption, C-Cl cleavage, and HCl formation; meanwhile, oxidation sites enhanced the activation of reactive oxygen species and improved oxygen mobility and redox properties. The enhanced oxygen storage/release capacity (33-53 fold) and extended redox cycle (e.g., from V5+↔V4+ to V5+↔V4+↔V3+) favored the deep oxidation. The introduction of H2O triggered the hydrolysis-oxidation process that promoted the catalytic activity and chlorine desorption due to the elevated generation of ·O2- and higher-activity ·OH. Furthermore, the water resistance of the VOx/TiO2-based catalyst was enhanced after the application of the hydrolysis-oxidation strategy. The V-Ce-W/Ti catalyst exhibited remarkable removal efficiency of dioxins (96.7-98.2%), which was reduced from 0.34-0.48 ng I-TEQ Nm-3 to 0.006-0.016 ng I-TEQ Nm-3 during pilot tests at 160-180 °C, achieving ultralow emissions. This work provides practical guidance for industry development for efficiently eliminating chlorinated organics in flue gas.
Collapse
Affiliation(s)
- Yunfeng Ma
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Jianwen Lai
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bingcheng Lin
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Xiaoqing Lin
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiabao Lv
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fanxiang Meng
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhongkang Han
- School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Runtong Dong
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Rong Jin
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Guorui Liu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Masaki Takaoka
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto 6158540, Japan
| | - Xiaodong Li
- State Key Laboratory for Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Minghui Zheng
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
2
|
Zheng Y, Han R, Yang Z, Xu W, Liu Q. Engineering Subnanometric Electronic Interaction between Ru and Mn in Zeolite Boosts Catalytic Oxidation of Dichloromethane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2276-2284. [PMID: 39800981 DOI: 10.1021/acs.est.4c09264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Designing catalysts with both activity and stability remains a grand challenge for the removal of chlorinated volatile organic compounds (CVOCs) by catalytic oxidation. Herein, the Ru-Mn subnanometric species encapsulated in ZSM-5 zeolite (RuMn@Z) was synthesized. It shows that the 90% conversion of dichloromethane is as low as 320 °C, which is significantly lower than that of Ru@Z (350 °C) and the impregnation catalyst (RuMn/Z, 355 °C). Importantly, the RuMn@Z catalyst exhibits excellent high-temperature resistance (800 °C for 10 h), water resistance, long-term stability, and cyclic stability. Different from the RuMn/Z with nanoscale metal interaction, Ru and Mn species in RuMn@Z have strong electronic interaction on the subnanometric scale due to the confinement effect of zeolite. As the electronic structure regulator, the Mn species keeps the Ru species in an electron-deficient state through the Ru-O-Mn bonds, which effectively activates lattice oxygen species and molecular oxygen to participate in the reaction. Moreover, the confinement effect also makes the acid tightly coupled with the redox site, which promotes the rapid conversion of dechlorination products, formates, and other intermediate products. Therefore, this study provides valuable insights into the design of high-performance catalysts for CVOCs removal and other environmental fields.
Collapse
Affiliation(s)
- Yanfei Zheng
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, P. R. China
| | - Rui Han
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, P. R. China
| | - Zongxiang Yang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, P. R. China
| | - Weinuo Xu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, P. R. China
| | - Qingling Liu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, P. R. China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
3
|
Dai Q, Xu R, Xia H, Qiao B, Niu Q, Wang L, Wang A, Guo Y, Guo Y, Wang W, Zhan W. Catalytic Hydrolysis-Oxidation of Halogenated Methanes over Phase- and Defect-Engineered CePO 4: Halogenated Byproduct-Free and Stable Elimination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39037090 DOI: 10.1021/acs.est.4c04436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Catalytic elimination of halogenated volatile organic compound (HVOC) emissions was still a huge challenge through conventional catalytic combustion technology, such as the formation of halogenated byproducts and the destruction of the catalyst structure; hence, more efficient catalysts or a new route was eagerly desired. In this work, crystal phase- and defect-engineered CePO4 was rationally designed and presented abundant acid sites, moderate redox ability, and superior thermal/chemical stability; the halogenated byproduct-free and stable elimination of HVOCs was achieved especially in the presence of H2O. Hexagonal and defective CePO4 with more structural H2O and Brønsted/Lewis acid sites was more reactive and durable compared with monoclinic CePO4. Based on the phase and defect engineering of CePO4, in situ diffuse reflectance infrared Fourier transform spectra (DRIFTS), and kinetic isotope effect experiments, a hydrolysis-oxidation pathway characterized by the direct involvement of H2O was proposed. Initiatively, an external electric field (5 mA) significantly accelerated the elimination of HVOCs and even 90% conversion of dichloromethane could be obtained at 170 °C over hexagonal CePO4. The structure-performance-dependent relationships of the engineered CePO4 contributed to the rational design of efficient catalysts for HVOC elimination, and this pioneering work on external electric field-assisted catalytic hydrolysis-oxidation established an innovative HVOC elimination route.
Collapse
Affiliation(s)
- Qiguang Dai
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ronghua Xu
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Hangqi Xia
- Erdos Electric Power and Metallurgy Group Co. Ltd., Ordos 016064, Inner Mongolia, P. R. China
| | - Boyuan Qiao
- Erdos Electric Power and Metallurgy Group Co. Ltd., Ordos 016064, Inner Mongolia, P. R. China
| | - Qiang Niu
- Erdos Electric Power and Metallurgy Group Co. Ltd., Ordos 016064, Inner Mongolia, P. R. China
| | - Li Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Aiyong Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yun Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yanglong Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Wei Wang
- School of Environmental Science and Engineering, Changzhou University, Changzhou, Jiangsu 213164, P. R. China
| | - Wangcheng Zhan
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
4
|
Su Y, Han B, Meng Q, Luo X, Wu Z, Weng X. Unveiling the Function of Oxygen Vacancy on Facet-Dependent CeO 2 for the Catalytic Destruction of Monochloromethane: Guidance for Industrial Catalyst Design. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8086-8095. [PMID: 38666813 DOI: 10.1021/acs.est.4c00297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Secondary pollution remains a critical challenge for the catalytic destruction of chlorinated volatile organic compounds (CVOCs). By employing experimental studies and theoretical calculations, we provide valuable insights into the catalytic behaviors exhibited by ceria rods, cubes, and octahedra for monochloromethane (MCM) destruction, shedding light on the elementary reactions over facet-dependent CeO2. Our findings demonstrate that CeO2 nanorods with the (110) facet exhibit the best performance in MCM destruction, and the role of vacancies is mainly to form a longer distance (4.63 Å) of frustrated Lewis pairs (FLPs) compared to the stoichiometric surface, thereby enhancing the activation of MCM molecules. Subsequent molecular orbital analysis showed that the adsorption of MCM mainly transferred electrons from the 3σ and 4π* orbitals to the Ce 4f orbitals, and the activation was mainly caused by weakening of the 3σ bonding orbitals. Furthermore, isotopic experiments and theoretical calculations demonstrated that the hydrogen chloride generated is mainly derived from methyl in MCM rather than from water, and the primary function of water is to form excess saturated H on the surface, facilitating the desorption of generated hydrogen chloride.
Collapse
Affiliation(s)
- Yuetan Su
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Bowen Han
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Qingjie Meng
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, P. R. China
| | - Xueqing Luo
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, P. R. China
| | - Zhongbiao Wu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- Zhejiang Provincial Engineering Research Centre of Industrial Boiler & Furnace Flue Gas Pollution Control, 388 Yuhangtang Road, Hangzhou 310058, P. R. China
| | - Xiaole Weng
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou 311200, P. R. China
| |
Collapse
|
5
|
Lv X, Wu S, Shao S, Yan D, Xu W, Jia H, He H. Efficient Catalytic Elimination of Chlorobenzene Based on the Water Vapor-Promoting Effect within Mn-Based Catalysts: Activity Enhancement and Polychlorinated Byproduct Inhibition. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3985-3996. [PMID: 38357760 DOI: 10.1021/acs.est.3c09020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Achieving no or low polychlorinated byproduct selectivity is essential for the chlorinated volatile organic compounds (CVOCs) degradation, and the positive roles of water vapor may contribute to this goal. Herein, the oxidation behaviors of chlorobenzene over typical Mn-based catalysts (MnO2 and acid-modified MnO2) under dry and humid conditions were fully explored. The results showed that the presence of water vapor significantly facilitates the deep mineralization of chlorobenzene and restrains the formation of Cl2 and dichlorobenzene. This remarkable water vapor-promoting effect was conferred by the MnO2 substrate, which could suitably synergize with the postconstructed acidic sites, leading to good activity, stability, and desirable product distribution of acid-modified MnO2 catalysts under humid conditions. A series of experiments including isotope-traced (D2O and H218O) CB-TPO provided complete insights into the direct involvement of water molecules in chlorobenzene oxidation reaction and attributed the root cause of the water vapor-promoting effect to the proton-rich environment and highly reactive water-source oxygen species rather than to the commonly assumed cleaning effect or hydrogen proton transfer processes (generation of active OOH). This work demonstrates the application potential of Mn-based catalysts in CVOCs elimination under practical application conditions (containing water vapor) and provides the guidance for the development of superior industrial catalysts.
Collapse
Affiliation(s)
- Xuelong Lv
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuaining Wu
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Siting Shao
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongxu Yan
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjian Xu
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongpeng Jia
- Xiamen Key Laboratory of Materials for Gaseous Pollutant Control, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- CAS Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|