1
|
Niu X, Liu J, Chen S, Jiang B, Huang J. Molecular insights into dissolved organic matter post electrokinetic-persulfate treatment: Heteroatom induced resistance. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138374. [PMID: 40273858 DOI: 10.1016/j.jhazmat.2025.138374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 04/11/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
The application of electrokinetic-enhanced in situ chemical oxidation remediation of contaminated sediments has attracted increasing attention. However, the molecular changes in dissolved organic matter (DOM) during these remediation processes remain unexplored. To address the gap, we explored the molecular transformation of DOM subjected to electrokinetic (EK)-persulfate treatment. The findings revealed that DOM transitioned from a reduced to an oxidized state, marked by the removal of low O/C molecules and the formation of high O/C molecules. Heteroatom-containing molecules accumulated and constituted the dominant fraction among the resistant molecules post-treatment. N-containing and Cl-containing molecules displayed elevated N/C and Cl/C ratios during the treatment, decomposing into smaller and N-rich or Cl-rich molecules, while S-containing molecules exhibited a decrease in S/O ratios. Oxygen addition reaction and dealkyl group reaction were identified as the two most common transformation pathways, contributing to the increased oxidation and resistance of DOM molecules. This study deepens our understanding of DOM transformation using EK-persulfate treatment and aids in assessing the potential risks associated with resistant molecules in its practical application.
Collapse
Affiliation(s)
- Xinxu Niu
- State Key Laboratory for Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jian Liu
- State Key Laboratory for Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaohua Chen
- State Key Laboratory for Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Bin Jiang
- State Key Laboratory of Advanced Environmental Technology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Jianzhi Huang
- State Key Laboratory for Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
2
|
Cook EK, Olivares CI, Sun Y, Dixit F, Ocasio D, Yi S, Sedlak DL, Alvarez-Cohen L. Practical considerations for the optimization of in situ mineralization of perfluorocarboxylic acids and polyfluoroalkyl substances using persulfate oxidation. WATER RESEARCH 2025; 273:123015. [PMID: 39742631 DOI: 10.1016/j.watres.2024.123015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/21/2024] [Accepted: 12/18/2024] [Indexed: 01/03/2025]
Abstract
Military bases and airports are often contaminated by per- and polyfluoroalkyl substances (PFAS) due to the repeated use of aqueous film forming foams (AFFFs) from decades of training exercises, equipment testing, and extinguishing of fuel- and solvent-based fires. Pump-and-treat systems combined with sorption processes are common ex situ remediation strategies; however, they can be expensive and may require decades of operation, particularly at sites where long-term diffusion and desorption of contaminants are the primary release processes. Alternatively, in situ chemical oxidation is an effective remediation strategy in which oxidants (e.g., persulfate, hydrogen peroxide) are injected into an aquifer to react with contaminants on site, and is competitive with alternative remediation techniques, such as pump-and-treat and ex situ treatment options. Specifically, heat-activated persulfate oxidation (HAPO) creates highly reactive sulfate radicals that under sufficiently acid conditions can mineralize perfluoroalkyl carboxylic acids (PFCAs) and many of the polyfluoroalkyl substances in AFFF. Sulfate radicals, however, can be scavenged by solutes present in groundwater, reducing the efficiency of PFCA transformation. To assess the application of HAPO, we conducted experiments under conditions typical of source zones where remediation is likely to be employed. We found that repeated treatment of aquifer solids with modest amounts of persulfate (50-300 mM) at low temperature activation (40 °C) could reduce the concentrations of precursors and PFCAs with chain lengths greater than three carbons by over 95 %. Following treatment, addition of strong base (i.e., NaOH) was needed to neutralize acidity and convert dissolved metals back into less mobile forms.
Collapse
Affiliation(s)
- Emily K Cook
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720, United States
| | - Christopher I Olivares
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720, United States; Department of Civil and Environmental Engineering, University of California, Irvine, CA, 92697, United States
| | - Yilu Sun
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720, United States
| | - Fuhar Dixit
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720, United States
| | - Daniel Ocasio
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720, United States
| | - Shan Yi
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720, United States; Department of Chemical and Materials Engineering, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - David L Sedlak
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720, United States
| | - Lisa Alvarez-Cohen
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA, 94720, United States.
| |
Collapse
|
3
|
Yang P, Chu H, Liu J, Zhang T, Lu J. Nitrite leads to the formation of N-nitrosodimethylamine during sulfate radical oxidation of dimethylamine compounds. WATER RESEARCH 2025; 271:122879. [PMID: 39637693 DOI: 10.1016/j.watres.2024.122879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Sulfate radical (SO4•-) advanced oxidation processes (SR-AOPs) are efficient for degrading a broad spectrum of contaminants. This study demonstrates that the existence of environmentally relevant concentrations of nitrite (NO2-) can lead to the formation of N-nitrosodimethylamine (NDMA), a probable human carcinogen, when heat activated peroxydisulfate (heat/PDS) is applied to address contaminants with dimethylamine moieties, such as tetracyclines. NO2- effectively competes with tetracyclines for SO4•- at a high second-order reaction rate constant of 8.8 × 108 M-1s-1, thus suppressing the degradation. Simultaneously, SO4•- reacts with NO2- to form the nitrogen dioxide radical (NO2•) which rapidly dimerizes to a potent nitrosating agent named dinitrogen tetroxide (N2O4). N2O4, in turn, attacks the dimethylamine moiety in tetracyclines via nucleophilic substitution, contributing to the degradation of parent compounds and generating an active intermediate that quickly decomposes to NDMA, along with the release of R+ and NO3-. The released R+ can be further oxidized by SO4•- to form phenolic intermediates which combine with NO2• to generate nitrated products. When 5 μM oxytetracycline (OTC) was treated with 0.5 mM PDS in the presence of 20 μM NO2- at 60 °C, the highest formation of NDMA was 0.045 μM in 1 h. NDMA formation was also observed for other compounds with dimethylamine moieties, such as methylene blue, phenylurea herbicides, etc., with the molar yield ranging from 0.07 to 3.53 %, negatively related to the R-N bond dissociation energy of the precursors. These findings suggest that NDMA can be commonly generated when SO4•- is applied to the degradation of dimethylamine pollutants in wastewater treatment or groundwater remediation where NO2- ubiquitously exists, which may pose a serious threat to the aquatic environment.
Collapse
Affiliation(s)
- Peizeng Yang
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Hailing Chu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiating Liu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Teng Zhang
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China
| | - Junhe Lu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
4
|
Wang Y, Li L, Zhou P, Gan Y, Liu W, Wang Y, Deng Y, Li H, Xie M, Xu Y. Aeration-Free Photo-Fenton-Like Reaction Mediated by Heterojunction Photocatalyst toward Efficient Degradation of Organic Pollutants. Angew Chem Int Ed Engl 2025; 64:e202419680. [PMID: 39543982 DOI: 10.1002/anie.202419680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/17/2024]
Abstract
The regulation of peroxymonosulfate (PMS) activation by photo-assisted heterogeneous catalysis is under in-depth investigation with potential as a replaceable advanced oxidation process in water purification, yet it remains a significant challenge. Herein, we demonstrate a strategy to construct polyethylene glycol (PEG) well-coupled dual-defect VO-M-Co3O4@CNx S-scheme heterojunction to degrade organic pollutants without aeration, which dramatically provides abundant active sites, excellent photo-thermal property, and distinct charge transport pathway for PMS activation. The degradation rate of VO-M-Co3O4@CNx in anaerobic conditions shows a higher efficient rate (4.58 min-1 g-2) than in aerobic conditions (1.67 min-1 g-2). Experimental evidence reveals that VO-M-Co3O4@CNx promotes more rapid redox conversion of photoexcited electrons induced by defects with PMS under anaerobic conditions compared to aerobic conditions. Additionally, in situ experiments and DFT provide mechanistic insights into the regulation pathway of PMS activation via synergistic defect-induced electron, revealing the competitive effect between O2 and PMS over VO-M-Co3O4@CNx during the reaction process. The continuous flow reactor and flow cytometry results demonstrated that the VO-M-Co3O4@CNx/PMS/Vis system has remarkably enhanced stability and purification capability for removing organic pollutants. This work provides valuable insights into regulating the heterologous catalysis oxidation process without aeration through the photoexcitation synergistic PMS activation.
Collapse
Affiliation(s)
- Yan Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Lianxin Li
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Puyang Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Yu Gan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Weipeng Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Yiwen Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Yilin Deng
- Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Hongping Li
- Institute for Energy Research, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Meng Xie
- School of Pharmacy, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Yuanguo Xu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| |
Collapse
|
5
|
Těšínská P, Škarohlíd R, Kroužek J, McGachy L. Environmental fate of organic UV filters: Global occurrence, transformation, and mitigation via advanced oxidation processes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125134. [PMID: 39419468 DOI: 10.1016/j.envpol.2024.125134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/09/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
Organic UV filters are used in personal care products, plastics, paints, and textiles to protect against UV radiation. Despite regulatory limits, these compounds still enter the environment through direct wash-off during swimming, evaporation, leaching from products, and incomplete removal in wastewater treatment plants. They have been detected in various environmental matrices worldwide. Once in the environment, organic UV filters can undergo phototransformation and biotransformation, forming transformation products that, together with parent substances, pose health risks to humans and wildlife and harm marine ecosystems, especially coral reefs. The increasing concern over water scarcity and the environmental impact of pollutants underscores the importance of eliminating these contaminants from aquatic environments. This review primarily focuses on organic UV filters approved for use in sunscreens, many of which are also utilized in other materials, with a few exceptions including UV stabilizer UV-328. It includes an in-depth analysis of 155 peer-reviewed articles published from 2015 to 2024, assessing the concentrations of these filters in various environmental matrices, including water and solid matrices, air and biota. Moreover, this review explores the environmental transformation of these chemicals and assesses the effectiveness of advanced oxidation processes (AOPs) in removing these pollutants. The findings highlight the pervasive presence of organic UV filters in the environment and the promising potential of AOPs to mitigate the associated environmental challenges.
Collapse
Affiliation(s)
- Pavlína Těšínská
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic
| | - Radek Škarohlíd
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic
| | - Jiří Kroužek
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic
| | - Lenka McGachy
- Department of Environmental Chemistry, University of Chemistry and Technology Prague, Technická 5, 16628, Prague, Czech Republic.
| |
Collapse
|
6
|
Liu JY, Duan PJ, Li MX, Zhang ZQ, Bai CW, Chen XJ, Kong Y, Chen F. Direct Electron Transfer-Driven Nontoxic Oligomeric Deposition of Sulfonamide Antibiotics onto Carbon Materials for In Situ Water Remediation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:12155-12166. [PMID: 38934735 DOI: 10.1021/acs.est.4c05008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
The rising in situ chemical oxidation (ISCO) technologies based on polymerization reactions have advanced the removal of emerging contaminants in the aquatic environment. However, despite their promise, uncertainties persist regarding their effectiveness in eliminating structurally complex contaminants, such as sulfonamide antibiotics (SAs). This study elucidated that oligomerization, rather than mineralization, predominantly governs the removal of SAs in the carbon materials/periodate system. The amine groups in SAs played a crucial role in forming organic radicals and subsequent coupling reactions due to their high f- index and low bond orders. Moreover, the study highlighted the robust adhesion of oligomers to the catalyst surface, facilitated by enhanced van der Waals forces and hydrophobic interactions. Importantly, plant and animal toxicity assessments confirmed the nontoxic nature of oligomers deposited on the carbon material surface, affirming the efficacy of carbon material-based ISCO in treating contaminated surface water and groundwater. Additionally, a novel classification approach, Δlog k, was proposed to differentiate SAs based on their kinetic control steps, providing deeper insights into the quantitative structure-activity relationship (QSAR) and facilitating the selection of optimal descriptors during the oligomerization processes. Overall, these insights significantly enhance our understanding of SAs removal via oligomerization and demonstrate the superiority of C-ISCO based on polymerization in water decontamination.
Collapse
Affiliation(s)
- Jiu-Yun Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Pi-Jun Duan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Ming-Xue Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR 999077, China
| | - Zhi-Quan Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Chang-Wei Bai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Xin-Jia Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Yan Kong
- Key Laboratory of Yellow River Water Environment in Gansu Province, School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Fei Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| |
Collapse
|
7
|
Dong J, Yang P, Kong D, Song Y, Lu J. Formation of nitrated naphthalene in the sulfate radical oxidation process in the presence of nitrite. WATER RESEARCH 2024; 255:121546. [PMID: 38574612 DOI: 10.1016/j.watres.2024.121546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/05/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have become a global environmental concern due to their potential hazardous implication for human health. In this study, we found that sulfate radical (SO4•-) could effectively degrade naphthalene (NAP), a representative PAH in groundwaters, generating 1-naphthol. This intermediate underwent further degradation, yielding ring-opening products including phthalic acid and salicylic acid. However, the presence of nitrite (NO2-), a prevalent ion in subsurface environments, was observed to compete with NAP for SO4•-, thus slowing down the NAP degradation. The reaction between NO2- and SO4•- generated a nitrogen dioxide radical (NO2•). Concurrently, in-situ formed 1-naphthol underwent further oxidization to the 1-naphthoxyl radical by SO4•-. The coupling of 1-naphthoxyl radicals with NO2• gave rise to a series of nitrated NAP, namely 2-nitro-1-naphthol, 4-nitro-1-naphthol, and 2,4-dinitro-1-naphthol. In addition, the in-situ formed phthalic acid and salicylic acid also underwent nitration, generating nitrophenolic products, although this pathway appeared less prominent than the nitration of 1-naphthol. When 10 μΜ NAP was subjected to heat activated peroxydisulfate oxidation in the presence of 10 μΜ NO2-, the total yield of nitrated products reached 0.730 μΜ in 120 min. Overall, the presence of NO2- dramatically altered the behavior of NAP degradation by SO4•- oxidation and contributed to the formation of toxic nitrated products. These findings raise awareness of the potential environmental risks associated with the application of SO4•--based oxidation processes for the remediation of PAHs-polluted sites in presence of NO2-.
Collapse
Affiliation(s)
- Jiayue Dong
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peizeng Yang
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China
| | - Deyang Kong
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing, 210042, China
| | - Yiqiang Song
- Center for Soil Pollution Control of Shandong, Jinan, 250101, China
| | - Junhe Lu
- Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|