1
|
Li Z, Zhao H, Lv J, Azam S. Mechanistic insight into multiple effects of copper ion on the photoreactivity of dissolved organic matter. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137124. [PMID: 39813924 DOI: 10.1016/j.jhazmat.2025.137124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/22/2024] [Accepted: 01/02/2025] [Indexed: 01/18/2025]
Abstract
Sunlight irradiation of dissolved organic matter (DOM) in surface water results in the production of photochemically produced reactive intermediates (PPRIs). This process is inevitably influenced by co-existing metal ions in aquatic environments; However, the underlying mechanism remains unclear. In this study, the effect of co-existing copper ion (Cu2 +) on PPRIs produced by irradiation of DOM was systematically investigated, because Cu2+ is a typical redox transient cation and has strong affinity to DOM. The findings demonstrated that Cu2+, acting as cation bridge, caused DOM to aggregate, and had impacts on the optical properties and conformation of DOM. The electron shuttle and catalyst effect of Cu2+ could accelerate the charge transfer processes for the increasing of quantum yield and steady concentrations of hydroxyl radical (·OH) with the increase of concentrations of e-aq, O2.-, hydrogen peroxide (H2O2) and charge separated states of DOM (DOM·+ or DOM·-); On the other hand, Cu2+, as excited state quencher, decrease of apparent quantum yield of triplet state of DOM (3DOM*) and singlet oxygen (1O2) through static quenching of singlet excited of DOM (1DOM*) and dynamic quenching of 3DOM*, respectively. The results provide a deeper understanding of the effect mechanism of Cu2+ on the DOM photochemistry in real environment and will be useful for assessment the photodegradation of organic contaminants in the presence of both DOM and Cu2+.
Collapse
Affiliation(s)
- Zhansheng Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Jitao Lv
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shafiul Azam
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
2
|
Luo ZN, He H, Zhang TY, Wei XL, Dong ZY, Xu MY, Zhao HX, Zheng ZX, Pan RJ, Hu CY, Zeng C, El-Din MG, Xu B. Enhanced iodinated disinfection byproducts formation in iodide/iodate-containing water undergoing UV-chloramine sequential disinfection: Machine learning-aided identification of reaction mechanisms. WATER RESEARCH 2025; 272:122975. [PMID: 39708378 DOI: 10.1016/j.watres.2024.122975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/26/2024] [Accepted: 12/12/2024] [Indexed: 12/23/2024]
Abstract
Restricted to the complex nature of dissolved organic matter (DOM) in various aquatic environments, the mechanisms of enhanced iodinated disinfection byproducts (I-DBPs) formation in water containing both I- and IO3- (designated as I-/IO3- in this study) during the ultraviolet (UV)-chloramine sequential disinfection process remains unclear. In this study, four machine learning (ML) models were established to predict I-DBP formation by using DOM and disinfection features as input variables. Extreme gradient boosting (XGB) algorithm outperformed the others in model development using synthetic waters and in cross-dataset generalization of surface waters. Shapley additive explanation (SHAP) analysis, partial dependence plots (PDPs), and individual conditional expectation (ICE) analysis were then employed to explain the models' workings and feature interactions, aiding in identification and quantification of underlying mechanisms. A type of DOM component (namely DC_b) was found as the greatest contributor and identified as reduced quinones associated with broken-down lignin within higher plant-derived fulvic substance, serving as precursors and electron shuttles for I-DBP formation. Based on the interactional effects acquired from explanation results, the ejection of e-aq from excited DOM and pre-existing I- in the I-/IO3- system were identified responsible for the enhanced generation of I-DBPs compared to that in the I- or IO3- alone systems; extra DOM scavenged reactive iodine species (RIS), contributing to a limited enhancement. These findings and the methodology developed here together enhance our understanding of the mechanisms how DOM limitedly promotes I-DBP formation during UV-chloramine sequential disinfection of I-/IO3--containing water and facilitate effective online monitoring in the future.
Collapse
Affiliation(s)
- Zhen-Ning Luo
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Huan He
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Tian-Yang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Xiu-Li Wei
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Zheng-Yu Dong
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, PR China
| | - Meng-Yuan Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Heng-Xuan Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Zheng-Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Ren-Jie Pan
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Chen-Yan Hu
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai, 200090, PR China
| | - Chao Zeng
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Mohamed Gamal El-Din
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
| | - Bin Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
3
|
Pan Y, Garg S, Peng J, Yang X, Waite TD. Use of Copper in Evaluating the Role of Phenolic Moieties in the Photooxidation of Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:3067-3076. [PMID: 39927797 DOI: 10.1021/acs.est.4c13176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
In a recent study, copper was shown to act as a novel quencher for investigating the mechanism of the photooxidation and photobleaching of dissolved organic matter (DOM) by selectively quenching the one-electron oxidizing intermediates of DOM (DOMD•+). However, the capture of DOMD•+ by Cu is possibly partially due to strong competition from phenolic antioxidant moieties intrinsically present in DOM for DOMD•+ quenching. In this study, the extent of interaction between DOMD•+ and phenolic antioxidant moieties is quantified by measuring the inhibitory effect of Cu on DOM photooxidation and photobleaching under varying pH (5.2-10.0) conditions. The increase in pH facilitates formation of deprotonated phenolic moieties (pKa ∼ 9-10), increasing their quenching capacity of DOMD•+. Accordingly, our results indicate that the inhibitory effect of Cu on the DOM photobleaching and the loss of electron-donating moieties of DOM significantly decreased with an increase in pH, suggesting more pronounced competition for DOMD•+ from antioxidant phenolic moieties within DOM. Considering the precursors of DOMD•+ also originate from phenolic moieties of DOM, the findings of this study provide important insights into the long-distance charge transfer reactions occurring at different phenolic moiety sites during DOM photooxidation.
Collapse
Affiliation(s)
- Yanheng Pan
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Shikha Garg
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Jianglin Peng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - T David Waite
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
4
|
Wang W, Fang X, Fu QL, Huang C, Fang L, Zhang J, Feng X, Tan W, Liu F, Li J, Yin H. Iron(II/III) Alters the Relative Roles of the Microbial Byproduct and Humic Acid during Chromium(VI) Reduction and Fixation by Soil-Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2778-2790. [PMID: 39882719 DOI: 10.1021/acs.est.4c10552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Though reduction of hexavalent chromium (Cr(VI)) to Cr(III) by dissolved organic matter (DOM) is critical for the remediation of polluted soils, the effects of DOM chemodiversity and underlying mechanisms are not fully elucidated yet. Here, Cr(VI) reduction and immobilization mediated by microbial byproduct (MBP)- and humic acid (HA)-like components in (hot) water-soluble organic matter (WSOM), (H)WSOM, from four soil samples in tropical and subtropical regions of China were investigated. It demonstrates that Cr(VI) reduction capacity decreases in the order WSOM > HWSOM and MBP-enriched DOM > HA-enriched DOM due to the higher contents of low molecular weight saturated compounds and CHO molecules in the former. The presence of Fe(II/III) selectively coprecipitates with high molecular weight components (e.g., tannins, lignin, and CHON-rich compounds) to form ferrihydrite and greatly inhibits Cr(VI) transformation and fixation in MBP-enriched DOM but enhances that in HA-enriched DOM. This is probably owing to the combined effects of (1) the increase of DOM electron-donating capacity and Fe(II) generation during the reactions of HA with Fe(II) and Fe(III), respectively; (2) the enrichment of phenolic and carboxyl groups, aromatic compounds, and carbon defects on ferrihydrite surfaces; and (3) the acceleration of HA decomposition and MBP mineralization by hydroxyl radicals. These findings enhance our understanding of the chemodiversity of soil DOM, the complex interactions between Cr(VI), DOM, and Fe(II/III), and can help design remediation strategies for contaminated environments.
Collapse
Affiliation(s)
- Wentao Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Xiaoyu Fang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Qing-Long Fu
- School of Environmental Studies, China University of Geoscience, Wuhan 430074, China
| | - Chuanqin Huang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Linchuan Fang
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100039, China
| | - Xionghan Feng
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Fan Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| | - Jiangshan Li
- State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hui Yin
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Key Laboratory of Soil Environment and Pollution Remediation, Wuhan 430070, China
| |
Collapse
|
5
|
Xu Y, Zhang Y, Qiu L, Zhang M, Yang J, Ji R, Vione D, Chen Z, Gu C. Photochemical behavior of dissolved organic matter in environmental surface waters: A review. ECO-ENVIRONMENT & HEALTH 2024; 3:529-542. [PMID: 39605966 PMCID: PMC11599994 DOI: 10.1016/j.eehl.2024.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/23/2024] [Accepted: 06/11/2024] [Indexed: 11/29/2024]
Abstract
As an important group of widespread organic substances in aquatic ecosystems, dissolved organic matter (DOM) plays an essential role in carbon recycling and transformation processes. The photochemical behavior of DOM is one of the main ways it participates in these processes, and it attracts extensive attention. However, due to a variety of sources and water conditions, including both freshwater and seawater environments, the photochemical properties of DOM exhibit great differences. Nowadays, a large number of studies have focused on the generation process of reactive species (RS) from sunlit DOM, while little effort has been made so far to provide a comprehensive summary of the photochemical behavior of DOM, especially in fresh and saline aquatic ecosystems. In this review, we analyzed the research hotspot on DOM photochemistry over the last 30 years, summarizing the generation of photoreactive species in natural water environments containing DOM (both freshwater and seawater) and listing the main factors affecting the rate, yield, and species of RS photoproduction. Compared with freshwater, seawater has unique characteristics such as high pH value, high ionic strength, and halide ions, which affect the photogeneration of RS, the photoconversion process, as well as the reaction pathways of various environmental substances. In general, DOM-induced surface water photochemistry has important impacts on the environmental transformation and toxic effects of aquatic pollutants and can even contribute significantly to the Earth's carbon cycle, which would have potential implications for both human and ecological health.
Collapse
Affiliation(s)
- Yichen Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Yutong Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Longlong Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Ming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
- Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jiaojiao Yang
- Quanzhou Institute for Environmental Protection Industry, Nanjing University, Quanzhou 362000, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
- Quanzhou Institute for Environmental Protection Industry, Nanjing University, Quanzhou 362000, China
| | - Davide Vione
- Department of Chemistry, University of Turin, Via Pietro Giuria 5, 10125, Torino, Italy
| | - Zhanghao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
- Quanzhou Institute for Environmental Protection Industry, Nanjing University, Quanzhou 362000, China
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
- Quanzhou Institute for Environmental Protection Industry, Nanjing University, Quanzhou 362000, China
| |
Collapse
|
6
|
Wei X, Hayes DJ, Li D, Butman DE, Brewin RJW. Fates of Terrigenous Dissolved Organic Carbon in the Gulf of Maine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 38324705 DOI: 10.1021/acs.est.3c08218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
A significant amount of organic carbon is transported in dissolved form from soils to coastal oceans via inland water systems, bridging land and ocean carbon reservoirs. However, it has been discovered that the presence of terrigenous dissolved organic carbon (tDOC) in oceans is relatively limited. Therefore, understanding the fates of tDOC in coastal oceans is essential to account for carbon sequestration through land ecosystems and ensure accurate regional carbon budgeting. In this study, we developed a state-of-the-art modeling approach by coupling a land-to-ocean tDOC flux simulation model and a coastal tDOC tracking model to determine the potential fates of tDOC exported from three primary drainage basins in the Gulf of Maine (GoM). According to our findings, over half a year in the GoM, 56.4% of tDOC was mineralized. Biomineralization was responsible for 90% of that amount, with the remainder attributed to photomineralization. Additionally, 37% of the tDOC remained suspended in the GoM, and 6.6% was buried in the marine sediment.
Collapse
Affiliation(s)
- Xinyuan Wei
- Center for Research on Sustainable Forests, University of Maine, Orono, Maine 04469, United States
- School of Forest Resources, University of Maine, Orono, Maine 04469, United States
| | - Daniel J Hayes
- Center for Research on Sustainable Forests, University of Maine, Orono, Maine 04469, United States
- School of Forest Resources, University of Maine, Orono, Maine 04469, United States
| | - Denghui Li
- School of Marine Sciences, University of Maine, Orono, Maine 04469, United States
| | - David E Butman
- School of Environmental and Forest Sciences, University of Washington, Seattle, Washington 98195, United States
| | - Robert J W Brewin
- Department of Earth and Environmental Science, University of Exeter, Penryn Campus, Cornwall TR10 9FE, U.K
| |
Collapse
|