1
|
Ding N, Hou C, Li H, Chen H, Dahlen P, Johnson PC, Yao Y, Guo Y. Impact of drainage pipe vapor intrusion pathways on sub-slab depressurization system mitigation performance. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136277. [PMID: 39490171 DOI: 10.1016/j.jhazmat.2024.136277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/29/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
Sub-slab depressurization (SSD) systems are the most commonly employed technology for mitigating vapor intrusion (VI) impact to indoor air. However, as cases involving preferential VI pathways (e.g. sewers, land drains) are being reported, the efficacy of SSD systems to reduce VI impacts from such pathways is being questioned. In this study, field test and numerical modeling were performed to evaluate the effectiveness of an SSD system for the case of VI involving a drainage pipe preferential pathway. Field tests investigated the SSD performance at the study house under conditions with and without the impact of a drainage pipe pathway. A numerical model was developed to explore the influence of the preferential pathway on SSD mitigation under different scenarios. Both field and simulation results indicated that the sub-slab drainage system inhibits the performance of the SSD, consequently requiring a greater level of flow and depressurization for the system to protect the building. In addition, the SSD caused higher sub-slab vapor concentrations than under natural condition in both field testing and simulation results, which raised concerns for potential VI risk under standard SSD operation. Moreover, simulation results suggested the location of preferential pathways can affect the performance of an SSD system.
Collapse
Affiliation(s)
- Ning Ding
- School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Chenglin Hou
- Norendar International LTD, Shijiazhuang 050000, China
| | - Hongrui Li
- Norendar International LTD, Shijiazhuang 050000, China
| | - Haoming Chen
- School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Paul Dahlen
- School of Sustainable Engineering and the Built Environment, Ira A Fulton Schools of Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Paul C Johnson
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Yijun Yao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yuanming Guo
- School of Environment and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Norendar International LTD, Shijiazhuang 050000, China.
| |
Collapse
|
2
|
Verginelli I, Lahvis MA, Jourabchi P, DeVaull GE. Soil gas gradient method for estimating natural source zone depletion rates of LNAPL and specific chemicals of concern. WATER RESEARCH 2024; 267:122559. [PMID: 39368191 DOI: 10.1016/j.watres.2024.122559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
This paper presents a simplified approach for the soil gas gradient method for estimating natural source zone depletion (NSZD) rates of specific contaminants of concern (COCs) at sites contaminated by light non-aqueous phase liquids (LNAPL). Traditional approaches to quantify COC-specific NSZD rates often rely on numerical or analytical reaction-transport models that require detailed site-specific data. In contrast, the proposed method employs simple analytical solutions, making it more accessible to practitioners. Specifically, it requires only the maximum soil gas concentration, the effective diffusion coefficient, and the diffusive reaction length calculated from vertical soil gas concentration profiles. The simplified approach was validated against a reactive transport numerical model reported in the literature, showing consistent results within the same order of magnitude for BTEX NSZD rates at a gasoline spill site in South Carolina. Further validation using a larger dataset involved comparing NSZD rate estimates for benzene and total petroleum hydrocarbons (TPH) against those obtained using BioVapor, utilizing empirical soil gas data from the USEPA Petroleum Vapor Intrusion Database. Results demonstrated a strong correlation between NSZD rates and maximum soil gas concentrations, allowing the development of a rapid screening approach based only on the measured soil gas concentrations and literature values for diffusion coefficients and diffusive reaction lengths. This approach aligned well with previous modeling studies and was consistent with literature values for TPH NSZD rates. Overall, both the simplified and screening approaches offer practical, easy-to-use tools for evaluating temporal variability in natural attenuation rates, supporting baseline assessments and ongoing performance evaluations of remediation at LNAPL sites.
Collapse
Affiliation(s)
- Iason Verginelli
- Laboratory of Environmental Engineering, Department of Civil Engineering and Computer Science Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy.
| | - Matthew A Lahvis
- Equilon Enterprises LLC doing business as Shell Oil Products US, Houston, TX, USA
| | | | - George E DeVaull
- Equilon Enterprises LLC doing business as Shell Oil Products US, Houston, TX, USA
| |
Collapse
|
3
|
Guan J, Huang J, Sun Y, Li C, Wan Y, Wei G, Kang R, Pang H, Shi Q, McHugh T, Ma J. Understanding petroleum vapor fate and transport through high resolution analysis of two distinct vapor plumes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169464. [PMID: 38123082 DOI: 10.1016/j.scitotenv.2023.169464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/09/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023]
Abstract
No field study has provided a detailed characterization of the molecular composition and spatial distribution of a vadose zone plume of petroleum volatile organic compounds (VOCs), which is critical to improve the current understanding of petroleum VOC transport and fate. This is study reports a high-resolution analysis of two distinct vapor plumes emanating from two different light non-aqueous phase liquid (LNAPL) sources (an aliphatic-rich LNAPL for Zone #1vs an aromatic-rich LNAPL for Zone #2) at a large petrochemical site. Although deep soil vapor signatures were similar to the source zone LNAPL signatures, the composition of the shallow soil vapors reflected preferential attenuation of certain hydrocarbons over others during upward transport in the vadose zone. Between deeper and shallower soil gas samples, attenuation of aromatics was observed under all conditions, but important differences were observed in attenuation to aliphatic compound classes. Attenuation of all aliphatic compounds was observed under aerobic conditions but little attenuation of any aliphatics was observed under anoxic conditions without methane. In contrast, under methanogenic conditions, paraffins attenuated more than isoparaffins and naphthenes. These results suggest that isoparafins and naphthenes may present more of a vapor intrusion risk than benzene or other aromatic hydrocarbons commonly considered to be petroleum vapor intrusion risk drivers. While the overall vapor composition changed significantly within the vadose zone, diagnostic ratios of relatively recalcitrant alkylcyclopentanes were preserved in shallow soil vapor samples. These alkylcyclopentanes may be useful for distinguishing between petroleum vapor intrusion and other sources of petroleum VOCs detected in indoor air.
Collapse
Affiliation(s)
- Junjie Guan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China; College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Jierui Huang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China; College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yue Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China; College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Chong Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China; College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yuruo Wan
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China; College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Guo Wei
- Beijing Beitou Eco-environment Co., Ltd, Canal East St. 6th, Beijing 101117, China
| | - Rifeng Kang
- Beijing Beitou Eco-environment Co., Ltd, Canal East St. 6th, Beijing 101117, China
| | - Hongwei Pang
- Beijing Beitou Eco-environment Co., Ltd, Canal East St. 6th, Beijing 101117, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China; College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China
| | - Thomas McHugh
- GSI Environmental Inc., 2211 Norfolk Street, Suite 1000, Houston, TX 77098, USA
| | - Jie Ma
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing 102249, China; College of Chemical Engineering and Environment, China University of Petroleum-Beijing, Beijing 102249, China.
| |
Collapse
|
4
|
Cecconi A, Verginelli I, Barrio-Parra F, De Miguel E, Baciocchi R. Influence of advection on the soil gas radon deficit technique for the quantification of LNAPL. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162619. [PMID: 36878290 DOI: 10.1016/j.scitotenv.2023.162619] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
The Radon (Rn) deficit technique is a rapid, low-cost, and non-invasive method to identify and quantify light non-aqueous phase liquids (LNAPL) in the soil. LNAPL saturation is typically estimated from Rn deficit using Rn partition coefficients, assuming equilibrium conditions. This work examines the applicability of this method in the presence of local advective fluxes that can be generated by groundwater fluctuations or biodegradation processes in the source zone. To this end, a one-dimensional analytical model was developed to simulate the steady-state diffusive-advective transport of soil gas Rn in the presence of LNAPL. The analytical solution was first validated against an existing numerical model adapted to include advection. Then a series of simulations to study the effect of advection on Rn profiles were carried out. It was found that in high-permeability soils (such as sandy soils), advective phenomena can significantly affect Rn deficit curves in the subsurface compared with those expected, assuming either equilibrium conditions or a diffusion-dominated transport. Namely, in the presence of pressure gradients generated by groundwater fluctuations, applying the traditional Rn deficit technique (assuming equilibrium conditions) can lead to an underestimation of LNAPL saturation. Furthermore, in the presence of methanogenesis processes (e.g., in the case of a fresh LNAPL of petroleum hydrocarbons), local advective fluxes can be expected above the source zone. In such cases, Rn concentrations above the source zone can be higher than those above background areas without advective phenomena, resulting in Rn deficits higher than 1 (i.e., Rn excess), and thus leading to a wrong interpretation regarding the presence of LNAPL in the subsurface if advection is not considered. Overall, the results obtained suggest that advection should be considered in the presence of pressure gradients in the subsurface to ensure an effective application of the soil gas Rn-deficit technique for quantitative estimation of LNAPL saturation.
Collapse
Affiliation(s)
- Alessandra Cecconi
- Laboratory of Environmental Engineering, Department of Civil Engineering and Computer Science Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| | - Iason Verginelli
- Laboratory of Environmental Engineering, Department of Civil Engineering and Computer Science Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy.
| | - Fernando Barrio-Parra
- Prospecting & Environment Laboratory (PROMEDIAM), ETS de Ingenieros de Minas y Energía, Universidad Politécnica de Madrid, Alenza 4, 28003 Madrid, Spain
| | - Eduardo De Miguel
- Prospecting & Environment Laboratory (PROMEDIAM), ETS de Ingenieros de Minas y Energía, Universidad Politécnica de Madrid, Alenza 4, 28003 Madrid, Spain
| | - Renato Baciocchi
- Laboratory of Environmental Engineering, Department of Civil Engineering and Computer Science Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| |
Collapse
|
5
|
Unnithan A, Bekele DN, Chadalavada S, Naidu R. Two-dimensional chlorinated vapour intrusion model involving advective transport of vapours with a highly permeable granular layer in the vadose zone serving as the preferential pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161743. [PMID: 36690102 DOI: 10.1016/j.scitotenv.2023.161743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 12/24/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Vapour intrusion (VI) is the process through which volatile organic compounds migrate from the subsurface source to the soil predominantly by diffusion, entering the overlying buildings through joints, cracks or other openings. This activity poses potentially serious health hazards for the occupants. Because of these health risks, recommendations for site closure are often made by quantifying the VI risks using mathematical models known as 'vapour intrusion models' (VIM). Most of these VIMs seem to overlook the role of preferred pathways like utility lines, high conductivity zones of soil or rocks, etc., which act as the path of least resistance for vapour transport thereby increasing vapour intrusion risks. This study presents a two-dimensional (2-D) chlorinated vapour intrusion (CVI) model which seeks to estimate the source-to-indoor air concentration attenuation. It takes into account the effects of a highly permeable utility line embedment as a preferential pathway. The transport of 2-D soil gas is described using the finite difference method where advection serves as the dominant transport mechanism in the preferential pathway layer, while diffusion applies to the rest of the vadose zone. The model returned results comparable with other models for the same input parameters, and was found to closely replicate the results of 3-D models. The simulations indicate that the presence of highly permeable utility line embedment and backfill layers do trigger a higher indoor air concentration compared to a no preferential pathway scenario.
Collapse
Affiliation(s)
- Aravind Unnithan
- Global Centre for Environmental Remediation, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Dawit Nega Bekele
- Global Centre for Environmental Remediation, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; Douglas Partners Pty Ltd., 439 Montague Road, West End, QLD 4101, Australia
| | - Sreenivasulu Chadalavada
- School of Engineering, The University of Southern Queensland, 37 Sinnathamby Boulevard, University Drive, Springfield Lakes, QLD 4300, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia; crcCARE, ATC Building, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.
| |
Collapse
|
6
|
Zhu ZW, Feng SJ, Chen HX, Chen ZL, Ding XH, Peng CH. Approximate analytical model for transient transport and oxygen-limited biodegradation of vapor-phase petroleum hydrocarbon compound in soil. CHEMOSPHERE 2022; 300:134522. [PMID: 35395265 DOI: 10.1016/j.chemosphere.2022.134522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/12/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Volatile organic compounds (VOCs) contamination may occur in subsurface soil due to various reasons and pose great threat to people. Petroleum hydrocarbon compound (PHC) is a typical kind of VOC, which can readily biodegrade in an aerobic environment. The biodegradation of vapor-phase PHC in the vadose zone consumes oxygen in the soil, which leads to the change in aerobic and anaerobic zones but has not been studied by the existing analytical models. In this study, a one-dimensional analytical model is developed to simulate the transient diffusion and oxygen-limited biodegradation of PHC vapor in homogeneous soil. Laplace transformation and Laplace inversion of the Talbot method are adopted to derive the solution. At any given time, the thickness of aerobic zone is determined by the dichotomy method. The analytical model is verified against numerical simulation and experimental results first and parametric study is then conducted. The transient migration of PHC vapor can be divided into three stages including the pure aerobic zone stage (Stage I), aerobic-anaerobic zones co-existence stage (Stage II), and steady-state stage (Stage III). The proposed analytical model should be adopted to accommodate scenarios where the transient effect is significant (Stage II), including high source concentration, deep contaminant source, high biodegradation capacity, and high water saturation. The applicability of this model to determine the breakthrough time for better vapor intrusion assessment is also evaluated. Lower first-order biodegradation rate, higher source concentration, and shallower source depth all lead to smaller breakthrough time.
Collapse
Affiliation(s)
- Zhang-Wen Zhu
- Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, Tongji University, Shanghai, 200092, China.
| | - Shi-Jin Feng
- Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, Tongji University, Shanghai, 200092, China.
| | - Hong-Xin Chen
- Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, Tongji University, Shanghai, 200092, China.
| | - Zhang-Long Chen
- Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, Tongji University, Shanghai, 200092, China.
| | - Xiang-Hong Ding
- Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, Tongji University, Shanghai, 200092, China.
| | - Chun-Hui Peng
- Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, Tongji University, Shanghai, 200092, China; School of Architecture and Civil Engineering, Jinggangshan University, Ji'an, Jiangxi, 343009, China.
| |
Collapse
|
7
|
Feng SJ, Zhu ZW, Chen HX, Chen ZL, Ding XH. Two-dimensional analytical solution for subsurface volatile organic compounds vapor diffusion from a point source in layered unsaturated zone. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 243:103916. [PMID: 34768157 DOI: 10.1016/j.jconhyd.2021.103916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 10/21/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Although migration of subsurface volatile organic compounds (VOCs) from contaminant sources in unsaturated soil widely exists, the related analytical models are quite limited. A two-dimensional analytical solution is hence developed to simulate vapor diffusion from the subsurface contaminant source in the layered unsaturated zone. The contaminant source is simplified as a point source leaking at a constant rate. The influences of several important factors, including thickness of stagnant air layer, depth of groundwater table, source characteristics and soil layering characteristics, on vapor migration in subsurface soil are comprehensively investigated by the present model. Soil type does not affect the normalized vapor concentration profile for homogeneous soil, which is not valid for layered soil. The width and effective diffusivity of the upward diffusion pathway and downward diffusion pathway are favorable indexes to evaluate the intensity of subsurface vapor horizontal diffusion. The single-layer capillary fringe assumption overestimates the vapor plume, the assumption can give acceptable result for coarse soil while it is recommended to divide the soil into several layers based on the water-filled porosity profile for fine soil.
Collapse
Affiliation(s)
- Shi-Jin Feng
- Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China.
| | - Zhang-Wen Zhu
- Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China.
| | - Hong-Xin Chen
- Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China.
| | - Zhang-Long Chen
- Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China.
| | - Xiang-Hong Ding
- Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
8
|
Unnithan A, Bekele DN, Chadalavada S, Naidu R. Insights into vapour intrusion phenomena: Current outlook and preferential pathway scenario. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148885. [PMID: 34265614 DOI: 10.1016/j.scitotenv.2021.148885] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/14/2021] [Accepted: 07/03/2021] [Indexed: 06/13/2023]
Abstract
Vapour intrusion (VI) is the phenomenon by which volatile organic compounds (VOCs) migrate from the subsurface source through the soil and enter into the overlying buildings, affecting the indoor air quality and ultimately causing health hazards to the occupants. Health risk assessments associated with hydrocarbon contaminated sites and recommendations of site closure are often made by quantifying the VI risks using mathematical models known as 'vapour intrusion models' (VIM). In order to predict the health risk, various factors such as the lithological and geochemical conditions of the subsurface, environmental conditions, building operational conditions etc. are commonly evaluated using VIMs. Use of these models can overlook the role of preferential pathways like highly permeable subsurface layers and utility lines which act as the path of least resistance for vapour transport, which can increase the VI risks. The extensive networks of utility lines and sanitary sewer systems in urban areas can significantly exacerbate the uncertainty of VI investigations. The backfill materials like sand and gravel surrounding the utility lines can allow the vapours to easily pass through due to their high porosity as compared to natural formations. Hence, failure to understand the role of preferential pathways on the fate and transport of VOC in the vadose zone can result in more conservative predictions of indoor air vapour concentrations and wrong clean up approaches. This comprehensive review outlines the vapour transport mechanisms, factors influencing VI, VIMs and the role of preferential pathways in predicting indoor air vapour concentrations.
Collapse
Affiliation(s)
- Aravind Unnithan
- Global Centre for Environmental Remediation, The University of Newcastle, University Dr, Callaghan, NSW 2308, Australia
| | - Dawit Nega Bekele
- Global Centre for Environmental Remediation, The University of Newcastle, University Dr, Callaghan, NSW 2308, Australia; CRC CARE, ATC Building, The University of Newcastle, University Dr, Callaghan, NSW 2308, Australia
| | - Sreenivasulu Chadalavada
- Global Centre for Environmental Remediation, The University of Newcastle, University Dr, Callaghan, NSW 2308, Australia; CRC CARE, ATC Building, The University of Newcastle, University Dr, Callaghan, NSW 2308, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, The University of Newcastle, University Dr, Callaghan, NSW 2308, Australia; CRC CARE, ATC Building, The University of Newcastle, University Dr, Callaghan, NSW 2308, Australia.
| |
Collapse
|
9
|
Verginelli I, Baciocchi R. Refinement of the gradient method for the estimation of natural source zone depletion at petroleum contaminated sites. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 241:103807. [PMID: 33838564 DOI: 10.1016/j.jconhyd.2021.103807] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
Rates of natural source zone depletion (NSZD) are increasingly being used to aid remedial decision making and light non-aqueous phase liquid (LNAPL) longevity estimates at petroleum release sites. Current NSZD estimate methods, based on analyses of carbon dioxide (CO2) and oxygen (O2) soil-gas concentration gradients ("gradient method") assume linear concentration profiles with depth. This assumption can underestimate the concentration gradients especially above LNAPL sources that are typically characterized by curvilinear or semi-curvilinear O2 and CO2 concentration profiles. In this work, we proposed a new method that relies on calculating the O2 and CO2 concentration gradient using a first-order reaction model. The method requires an estimate of the diffusive reaction length that can be easily derived from soil-gas concentration data. A simple step-by-step guide for applying the new method is provided. Nomographs were also developed to facilitate method application. Application of the nomographs using field data from published literature showed that NSZD rates could be underestimated by nearly an order of magnitude if reactivity in the vadose zone is not accounted for. The new method helps refine NSZD rates estimation and improve risk-based decision making at certain petroleum contaminated sites.
Collapse
Affiliation(s)
- Iason Verginelli
- Laboratory of Environmental Engineering, Department of Civil Engineering and Computer Science Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy.
| | - Renato Baciocchi
- Laboratory of Environmental Engineering, Department of Civil Engineering and Computer Science Engineering, University of Rome Tor Vergata, Via del Politecnico 1, 00133 Rome, Italy
| |
Collapse
|
10
|
Feng SJ, Zhu ZW, Chen HX, Chen ZL. Two-dimensional analytical solution for VOC vapor migration through layered soil laterally away from the edge of contaminant source. JOURNAL OF CONTAMINANT HYDROLOGY 2020; 233:103664. [PMID: 32569922 DOI: 10.1016/j.jconhyd.2020.103664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 05/25/2020] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
A two-dimensional analytical solution is developed to simulate vapor migration in layered soil laterally away from the edge of contaminant source and has advantages in considering the vapor concentration profile in a functional form near the source edge. The analytical solution is validated against existing analytical solution, numerical model and experimental results. It has also proved to be an alternative screening tool to evaluate the vapor intrusion (VI) risk by compared with existing VI assessment tools. The influence of the characteristics of contaminant source and soil layer on the VI risk are investigated. The existence of capillary fringe effectively reduces VI risk. Among all the single-layer-soil cases, the lateral inclusion zone for sand is the widest due to the thinnest capillary fringe and the lowest effective diffusivity ratio between soil and capillary fringe. For layered soil, the lower effective diffusivity layer overlying the higher one enhances the horizontal diffusion and extends the lateral inclusion zone. The width of lateral inclusion zone increases logarithmically with increasing source concentration while it increases linearly with increasing source depth. Based on the calculation results, a simplified formula is proposed to preliminarily estimate the width of lateral inclusion zone for the typical single-layer-soil cases considering the capillary fringe.
Collapse
Affiliation(s)
- Shi-Jin Feng
- Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China.
| | - Zhang-Wen Zhu
- Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China.
| | - Hong-Xin Chen
- Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China.
| | - Zhang-Long Chen
- Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education, Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
11
|
Ma J, McHugh T, Beckley L, Lahvis M, DeVaull G, Jiang L. Vapor Intrusion Investigations and Decision-Making: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7050-7069. [PMID: 32384239 DOI: 10.1021/acs.est.0c00225] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
At sites impacted by volatile organic compounds (VOCs), vapor intrusion (VI) is the pathway with the greatest potential to result in actual human exposure. Since sites with VI were first widely publicized in late 1990s, the scientific understanding of VI has evolved considerably. The VI conceptual model has been extended beyond relatively simple scenarios to include nuances, such as biological and hydrogeological factors that may limit the potential for VI and alternative pathways, such as preferential pathways and direct building contact/infiltration that may enhance VI in some cases. Regulatory guidance documents typically recommend initial concentration- or distance-based screening to evaluate whether VI may be a concern, followed by a multiple-lines-of-evidence (MLE) investigation approach for sites that do not screen out. These recommendations for detailed evaluation of VI currently focus on monitoring of VOC concentrations in groundwater, soil gas, and indoor air and can be supplemented by other lines of evidence. In this Critical Review, we summarize key elements important to VI site characterization, provide the status and current understanding, and highlight data interpretation challenges, as well as innovative tools developed to help overcome the challenges. Although there have been significant advances in the understanding of VI in the past 20 years, limitations and knowledge gaps in screening, investigation methods, and modeling approaches still exist. Potential areas for further research include improved initial screening methods that account for the site-specific role of barriers, improved understanding of preferential pathways, and systematic study of buildings and infrastructure other than single-family residences.
Collapse
Affiliation(s)
- Jie Ma
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Thomas McHugh
- GSI Environmental, Houston, Texas 77098, United States
| | - Lila Beckley
- GSI Environmental, Houston, Texas 77098, United States
| | - Matthew Lahvis
- Shell Global Solutions (US), Inc., Shell Technology Center, Houston, Texas 77082, United States
| | - George DeVaull
- Shell Global Solutions (US), Inc., Shell Technology Center, Houston, Texas 77082, United States
| | - Lin Jiang
- National Engineering Research Centre of Urban Environmental Pollution Control, Beijing Municipal Research Institute of Environmental Protection, Beijing 100037, China
| |
Collapse
|
12
|
Bekele DN, Naidu R, Chadalavada S. Development of a modular vapor intrusion model with variably saturated and non-isothermal vadose zone. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:887-902. [PMID: 29022193 DOI: 10.1007/s10653-017-0032-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 09/30/2017] [Indexed: 06/07/2023]
Abstract
Human health risk assessment at hydrocarbon-contaminated sites requires a critical evaluation of the exposure pathways of volatile organic compounds including assessments of vapor exposure in indoor air. Although there are a number of vapor intrusion models (VIM) currently available, they rarely reproduce actual properties of soils in the vadose zone. At best, users of such models assume averaged parameters for the vadose zone based on information generated elsewhere. The objective of this study was to develop a one-dimensional steady-state VIM, indoorCARE™ model, that considers vertical spatial variations of the degree of saturation (or effective air-filled porosity) and temperature of the vadose zone. The indoorCARE™ model was developed using a quasi-analytical equation that (1) solves the coupled equations governing soil-water movement driven by pressure head and a soil heat transport module describing conduction of heat and (2) provides a VIM that accommodates various types of conceptual site model (CSM) scenarios. The indoorCARE™ model is applicable to both chlorinated hydrocarbon and petroleum hydrocarbon (PHC) contaminated sites. The model incorporates biodegradations of PHCs at a range of CSM scenarios. The results demonstrate that predictions of indoor vapor concentrations made with the indoorCARE™ model are close to those of the J&E and BioVapor models under homogeneous vadose zone conditions. The newly developed model under heterogeneous vadose zone conditions demonstrated improved predictions of indoor vapor concentrations. The research study presented a more accurate and more realistic way to evaluate potential human health risks associated with the soil-vapor-to-indoor-air pathways.
Collapse
Affiliation(s)
- Dawit N Bekele
- Global Centre for Environmental Remediation, ATC Building, University of Newcastle, University Dr, Callaghan, NSW, 2308, Australia.
- CRC for Contamination Assessment and Remediation of the Environment, ATC Building, University of Newcastle, University Dr, Callaghan, NSW, 2308, Australia.
| | - Ravi Naidu
- Global Centre for Environmental Remediation, ATC Building, University of Newcastle, University Dr, Callaghan, NSW, 2308, Australia
- CRC for Contamination Assessment and Remediation of the Environment, ATC Building, University of Newcastle, University Dr, Callaghan, NSW, 2308, Australia
| | - Sreenivasulu Chadalavada
- CRC for Contamination Assessment and Remediation of the Environment, ATC Building, University of Newcastle, University Dr, Callaghan, NSW, 2308, Australia
| |
Collapse
|
13
|
Verginelli I, Pecoraro R, Baciocchi R. Using dynamic flux chambers to estimate the natural attenuation rates in the subsurface at petroleum contaminated sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:470-479. [PMID: 29156267 DOI: 10.1016/j.scitotenv.2017.11.100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/08/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
In this work, we introduce a screening method for the evaluation of the natural attenuation rates in the subsurface at sites contaminated by petroleum hydrocarbons. The method is based on the combination of the data obtained from standard source characterization with dynamic flux chambers measurements. The natural attenuation rates are calculated as difference between the flux of contaminants estimated with a non-reactive diffusive model starting from the concentrations of the contaminants detected in the source (soil and/or groundwater) and the effective emission rate of the contaminants measured using dynamic flux chambers installed at ground level. The reliability of this approach was tested in a contaminated site characterized by the presence of BTEX in soil and groundwater. Namely, the BTEX emission rates from the subsurface were measured in 4 seasonal campaigns using dynamic flux chambers installed in 14 sampling points. The comparison of measured fluxes with those predicted using a non-reactive diffusive model, starting from the source concentrations, showed that, in line with other recent studies, the modelling approach can overestimate the expected outdoor concentration of petroleum hydrocarbons even up to 4 orders of magnitude. On the other hand, by coupling the measured data with the fluxes estimated with the diffusive non-reactive model, it was possible to perform a mass balance to evaluate the natural attenuation loss rates of petroleum hydrocarbons during the migration from the source to ground level. Based on this comparison, the estimated BTEX loss rates in the test site were up to almost 0.5kg/year/m2. These rates are in line with the values reported in the recent literature for natural source zone depletion. In short, the method presented in this work can represent an easy-to-use and cost-effective option that can provide a further line of evidence of natural attenuation rates expected at contaminated sites.
Collapse
Affiliation(s)
- Iason Verginelli
- Laboratory of Environmental Engineering, Department of Civil Engineering and Computer Science Engineering, University of Rome "Tor Vergata", Via del Politecnico 1, 00133 Rome, Italy
| | - Roberto Pecoraro
- Versalis, Eni, QHSE, Piazza Boldrini 1, 20097 San Donato Milanese, Italy
| | - Renato Baciocchi
- Laboratory of Environmental Engineering, Department of Civil Engineering and Computer Science Engineering, University of Rome "Tor Vergata", Via del Politecnico 1, 00133 Rome, Italy.
| |
Collapse
|
14
|
Ma J, Xiong D, Li H, Ding Y, Xia X, Yang Y. Vapor intrusion risk of fuel ether oxygenates methyl tert-butyl ether (MTBE), tert-amyl methyl ether (TAME) and ethyl tert-butyl ether (ETBE): A modeling study. JOURNAL OF HAZARDOUS MATERIALS 2017; 332:10-18. [PMID: 28279869 DOI: 10.1016/j.jhazmat.2017.02.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 02/13/2017] [Accepted: 02/26/2017] [Indexed: 06/06/2023]
Abstract
Vapor intrusion of synthetic fuel additives represents a critical yet still neglected problem at sites contaminated by petroleum fuel releases. This study used an advanced numerical model to investigate the vapor intrusion potential of fuel ether oxygenates methyl tert-butyl ether (MTBE), tert-amyl methyl ether (TAME), and ethyl tert-butyl ether (ETBE). Simulated indoor air concentration of these compounds can exceed USEPA indoor air screening level for MTBE (110μg/m3). Our results also reveal that MTBE has much higher chance to cause vapor intrusion problems than TAME and ETBE. This study supports the statements made by USEPA in the Petroleum Vapor Intrusion (PVI) Guidance that the vertical screening criteria for petroleum hydrocarbons may not provide sufficient protectiveness for fuel additives, and ether oxygenates in particular. In addition to adverse impacts on human health, ether oxygenate vapor intrusion may also cause aesthetic problems (i.e., odour and flavour). Overall, this study points out that ether oxygenates can cause vapor intrusion problems. We recommend that USEPA consider including the field measurement data of synthetic fuel additives in the existing PVI database and possibly revising the PVI Guidance as necessary.
Collapse
Affiliation(s)
- Jie Ma
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China; State Key Laboratory of Petroleum Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China.
| | - Desen Xiong
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Haiyan Li
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yi Ding
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Xiangcheng Xia
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Yongqi Yang
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| |
Collapse
|
15
|
Verginelli I, Capobianco O, Hartog N, Baciocchi R. Analytical model for the design of in situ horizontal permeable reactive barriers (HPRBs) for the mitigation of chlorinated solvent vapors in the unsaturated zone. JOURNAL OF CONTAMINANT HYDROLOGY 2017; 197:50-61. [PMID: 28109630 DOI: 10.1016/j.jconhyd.2016.12.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 11/02/2016] [Accepted: 12/25/2016] [Indexed: 06/06/2023]
Abstract
In this work we introduce a 1-D analytical solution that can be used for the design of horizontal permeable reactive barriers (HPRBs) as a vapor mitigation system at sites contaminated by chlorinated solvents. The developed model incorporates a transient diffusion-dominated transport with a second-order reaction rate constant. Furthermore, the model accounts for the HPRB lifetime as a function of the oxidant consumption by reaction with upward vapors and its progressive dissolution and leaching by infiltrating water. Simulation results by this new model closely replicate previous lab-scale tests carried out on trichloroethylene (TCE) using a HPRB containing a mixture of potassium permanganate, water and sand. In view of field applications, design criteria, in terms of the minimum HPRB thickness required to attenuate vapors at acceptable risk-based levels and the expected HPRB lifetime, are determined from site-specific conditions such as vapor source concentration, water infiltration rate and HPRB mixture. The results clearly show the field-scale feasibility of this alternative vapor mitigation system for the treatment of chlorinated solvents. Depending on the oxidation kinetic of the target contaminant, a 1m thick HPRB can ensure an attenuation of vapor concentrations of orders of magnitude up to 20years, even for vapor source concentrations up to 10g/m3. A demonstrative application for representative contaminated site conditions also shows the feasibility of this mitigation system from an economical point of view with capital costs potentially somewhat lower than those of other remediation options, such as soil vapor extraction systems. Overall, based on the experimental and theoretical evaluation thus far, field-scale tests are warranted to verify the potential and cost-effectiveness of HPRBs for vapor mitigation control under various conditions of application.
Collapse
Affiliation(s)
- Iason Verginelli
- Laboratory of Environmental Engineering, Department of Civil Engineering and Computer Science Engineering, University of Rome "Tor Vergata", Rome, Italy.
| | - Oriana Capobianco
- Laboratory of Environmental Engineering, Department of Civil Engineering and Computer Science Engineering, University of Rome "Tor Vergata", Rome, Italy
| | - Niels Hartog
- KWR Watercycle Research Institute, Nieuwegein, The Netherlands; Utrecht University, Department of Earth Sciences, The Netherlands
| | - Renato Baciocchi
- Laboratory of Environmental Engineering, Department of Civil Engineering and Computer Science Engineering, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
16
|
Yao Y, Wang Y, Verginelli I, Suuberg EM, Ye J. Comparison between PVI2D and Abreu-Johnson's Model for Petroleum Vapor Intrusion Assessment. VADOSE ZONE JOURNAL : VZJ 2016; 15:10.2136/vzj2016.07.0063. [PMID: 29398981 PMCID: PMC5792088 DOI: 10.2136/vzj2016.07.0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 09/19/2016] [Indexed: 06/07/2023]
Abstract
Recently, we have developed a two-dimensional analytical petroleum vapor intrusion model, PVI2D (petroleum vapor intrusion, two-dimensional), which can help users to easily visualize soil gas concentration profiles and indoor concentrations as a function of site-specific conditions such as source strength and depth, reaction rate constant, soil characteristics, and building features. In this study, we made a full comparison of the results returned by PVI2D and those obtained using Abreu and Johnson's three-dimensional numerical model (AJM). These comparisons, examined as a function of the source strength, source depth, and reaction rate constant, show that PVI2D can provide similar soil gas concentration profiles and source-to-indoor air attenuation factors (within one order of magnitude difference) as those by the AJM. The differences between the two models can be ascribed to some simplifying assumptions used in PVI2D and to some numerical limitations of the AJM in simulating strictly piecewise aerobic biodegradation and no-flux boundary conditions. Overall, the obtained results show that for cases involving homogenous source and soil, PVI2D can represent a valid alternative to more rigorous three-dimensional numerical models.
Collapse
Affiliation(s)
- Yijun Yao
- Key Lab. of Environmental Remediation and Ecosystem Health (Ministry of Education), College of Environmental and Resource Sciences, and Research Center for Air Pollution and Health, and Institute of Environmental Science, Zhejiang Univ., Hangzhou 310058, China
| | - Yue Wang
- Key Lab. of Environmental Remediation and Ecosystem Health (Ministry of Education), College of Environmental and Resource Sciences, and Research Center for Air Pollution and Health, and Institute of Environmental Science, Zhejiang Univ., Hangzhou 310058, China
| | - Iason Verginelli
- Lab. of Environmental Engineering, Dep. of Civil Engineering and Computer Science Engineering, Univ. of Rome “Tor Vergata,” Via del Politecnico, 1 00133 Rome, Italy
| | | | - Jianfeng Ye
- Shanghai Academy of Environmental Sciences, Shanghai 200023, China
| |
Collapse
|
17
|
Shen C, Ma J, Liu W, Wen Y, Rashid S. Selective conversion of organic pollutant p-chlorophenol to formic acid using zeolite Fenton catalyst. CHEMOSPHERE 2016; 161:446-453. [PMID: 27459155 DOI: 10.1016/j.chemosphere.2016.07.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 07/07/2016] [Accepted: 07/12/2016] [Indexed: 06/06/2023]
Abstract
Effective remediation technologies which can converse the harmful organic pollutants to high-value chemicals are crucial both for wastewater treatment and energy regeneration. This study provides an evidence that extracting useful chemicals from wastewater is feasible through selective conversion of p-chlorophenol to high value formic acid as an example. The reported system works with a readily available Fe-containing ZSM-5 catalyst, water as the solvent and hydrogen peroxide as the oxidant. The yield of formic acid reached up to 50.7% when the Si/Al ratio of ZSM-5 was 80 and the Fe-content was 1.4%. By X-ray adsorption fine structure (XAFS), NH3 temperature-programmed desorption (NH3-TPD) technique, the pyridine adsorption Fourier-transition infrared (Py-IR) spectroscopy and adsorption measurements, it was concluded that the controllable degradation of p-CP could be approached through selective adsorption, the moderate Brønsted acid sites for H2O2 activation and the properly selective conversion control due to extra-framework coordination unsaturated sites (CUS) of Fe. This approach might provide a new avenue for the field of organic pollutant remediation.
Collapse
Affiliation(s)
- Chensi Shen
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China; Institute of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Jianqing Ma
- Institute of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Wanpeng Liu
- Institute of Environmental Science, Zhejiang University, Hangzhou, 310058, China
| | - Yuezhong Wen
- Institute of Environmental Science, Zhejiang University, Hangzhou, 310058, China.
| | - Sadia Rashid
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
18
|
Verginelli I, Yao Y, Wang Y, Ma J, Suuberg EM. Estimating the oxygenated zone beneath building foundations for petroleum vapor intrusion assessment. JOURNAL OF HAZARDOUS MATERIALS 2016; 312:84-96. [PMID: 27016669 PMCID: PMC5283078 DOI: 10.1016/j.jhazmat.2016.03.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 02/23/2016] [Accepted: 03/14/2016] [Indexed: 05/16/2023]
Abstract
Previous studies show that aerobic biodegradation can effectively reduce hydrocarbon soil gas concentrations by orders of magnitude. Increasingly, oxygen limited biodegradation is being included in petroleum vapor intrusion (PVI) guidance for risk assessment at leaking underground storage tank sites. The application of PVI risk screening tools is aided by the knowledge of subslab oxygen conditions, which, however, are not commonly measured during site investigations. Here we introduce an algebraically explicit analytical method that can estimate oxygen conditions beneath the building slab, for PVI scenarios with impervious or pervious building foundations. Simulation results by this new model are then used to illustrate the role of site-specific conditions in determining the oxygen replenishment below the building for both scenarios. Furthermore, critical slab-width-to-source-depth ratios and critical source depths for the establishment of a subslab "oxygen shadow" (i.e. anoxic zone below the building) are provided as a function of key parameters such as vapor source concentration, effective diffusion coefficients of concrete and building depth. For impervious slab scenarios the obtained results are shown in good agreement with findings by previous studies and further support the recommendation by U.S. EPA about the inapplicability of vertical exclusion distances for scenarios involving large buildings and high source concentrations. For pervious slabs, results by this new model indicate that even relatively low effective diffusion coefficients of concrete can facilitate the oxygen transport into the subsurface below the building and create oxygenated conditions below the whole slab foundation favorable for petroleum vapor biodegradation.
Collapse
Affiliation(s)
- Iason Verginelli
- Laboratory of Environmental Engineering, Department of Civil Engineering and Computer Science Engineering, University of Rome "Tor Vergata", Via del Politecnico, 1, 00133 Rome, Italy
| | - Yijun Yao
- Key Laboratory of Environment Remediation and Ecological Health(Ministry of Education), College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Research Center for Air Pollution and Health, Zhejiang University, Hangzhou 310058, China; Institute of Environmental Science, Zhejiang University, Hangzhou 310058, China.
| | - Yue Wang
- Key Laboratory of Environment Remediation and Ecological Health(Ministry of Education), College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Research Center for Air Pollution and Health, Zhejiang University, Hangzhou 310058, China; Institute of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jie Ma
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing 102249, China
| | - Eric M Suuberg
- School of Engineering, Brown University, Providence, RI 02912, USA
| |
Collapse
|
19
|
Verginelli I, Yao Y, Suuberg EM. An Excel ®-based visualization tool of 2-D soil gas concentration profiles in petroleum vapor intrusion. GROUND WATER MONITORING & REMEDIATION 2016; 36:94-100. [PMID: 28163564 PMCID: PMC5287490 DOI: 10.1111/gwmr.12162] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this study we present a petroleum vapor intrusion tool implemented in Microsoft® Excel® using Visual Basic for Applications (VBA) and integrated within a graphical interface. The latter helps users easily visualize two-dimensional soil gas concentration profiles and indoor concentrations as a function of site-specific conditions such as source strength and depth, biodegradation reaction rate constant, soil characteristics and building features. This tool is based on a two-dimensional explicit analytical model that combines steady-state diffusion-dominated vapor transport in a homogeneous soil with a piecewise first-order aerobic biodegradation model, in which rate is limited by oxygen availability. As recommended in the recently released United States Environmental Protection Agency's final Petroleum Vapor Intrusion guidance, a sensitivity analysis and a simplified Monte Carlo uncertainty analysis are also included in the spreadsheet.
Collapse
Affiliation(s)
- Iason Verginelli
- Laboratory of Environmental Engineering, Department of Civil Engineering and Computer Science Engineering, University of Rome “Tor Vergata”, Via del Politecnico, 100133 Rome, Italy
| | - Yijun Yao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Research Center for Air Pollution and Health, Zhejiang University, Hangzhou 310058, China
- Institute of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Eric M. Suuberg
- School of Engineering, Brown University, Providence, RI 02912, USA
| |
Collapse
|
20
|
Ma J, Li H, Spiese R, Wilson J, Yan G, Guo S. Vapor intrusion risk of lead scavengers 1,2-dibromoethane (EDB) and 1,2-dichloroethane (DCA). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 213:825-832. [PMID: 27038569 DOI: 10.1016/j.envpol.2016.03.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2016] [Revised: 03/12/2016] [Accepted: 03/13/2016] [Indexed: 06/05/2023]
Abstract
Vapor intrusion of synthetic fuel additives represented a critical yet still neglected problem at sites impacted by petroleum fuel releases. This study used an advanced numerical model to simulate the vapor intrusion risk of lead scavengers 1,2-dibromoethane (ethylene dibromide, EDB) and 1,2-dichloroethane (DCA) under different site conditions. We found that simulated EDB and DCA indoor air concentrations can exceed USEPA screening level (4.7 × 10(-3) μg/m(3) for EDB and 1.1 × 10(-1) μg/m(3) for DCA) if the source concentration is high enough (is still within the concentration range found at leaking UST site). To evaluate the chance that vapor intrusion of EDB might exceed the USEPA screening levels for indoor air, the simulation results were compared to the distribution of EDB at leaking UST sites in the US. If there is no degradation of EDB or only abiotic degradation of EDB, from 15% to 37% of leaking UST sites might exceed the USEPA screening level. This study supports the statements made by USEPA in the Petroleum Vapor Intrusion (PVI) Guidance that the screening criteria for petroleum hydrocarbon may not provide sufficient protectiveness for fuel releases containing EDB and DCA. Based on a thorough literature review, we also compiled previous published data on the EDB and DCA groundwater source concentrations and their degradation rates. These data are valuable in evaluating EDB and DCA vapor intrusion risk. In addition, a set of refined attenuation factors based on site-specific information (e.g., soil types, source depths, and degradation rates) were provided for establishing site-specific screening criteria for EDB and DCA. Overall, this study points out that lead scavengers EDB and DCA may cause vapor intrusion problems. As more field data of EDB and DCA become available, we recommend that USEPA consider including these data in the existing PVI database and possibly revising the PVI Guidance as necessary.
Collapse
Affiliation(s)
- Jie Ma
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China.
| | - Haiyan Li
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Richard Spiese
- Vermont Department of Environmental Conservation, Waste Management & Prevention Division, Montpelier, VT, 05620, USA
| | - John Wilson
- Scissortail Environmental Solutions, LLC., Ada, OK, 74820, USA
| | - Guangxu Yan
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Shaohui Guo
- State Key Laboratory of Heavy Oil Processing, Beijing Key Lab of Oil & Gas Pollution Control, China University of Petroleum-Beijing, Beijing, 102249, China
| |
Collapse
|
21
|
Yao Y, Verginelli I, Suuberg EM. A two-dimensional analytical model of petroleum vapor intrusion. WATER RESOURCES RESEARCH 2016; 52:1528-1539. [PMID: 28255184 PMCID: PMC5330280 DOI: 10.1002/2015wr018320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In this study we present an analytical solution of a two-dimensional petroleum vapor intrusion model, which incorporates a steady-state diffusion-dominated vapor transport in a homogeneous soil and piecewise first-order aerobic biodegradation limited by oxygen availability. This new model can help practitioners to easily generate two-dimensional soil gas concentration profiles for both hydrocarbons and oxygen and estimate hydrocarbon indoor air concentrations as a function of site-specific conditions such as source strength and depth, reaction rate constant, soil characteristics and building features. The soil gas concentration profiles generated by this new model are shown in good agreement with three-dimensional numerical simulations and two-dimensional measured soil gas data from a field study. This implies that for cases involving diffusion dominated soil gas transport, steady state conditions and homogenous source and soil, this analytical model can be used as a fast and easy-to-use risk screening tool by replicating the results of 3-D numerical simulations but with much less computational effort.
Collapse
Affiliation(s)
- Yijun Yao
- Key Lab of Environmental Remediation and Ecosystem Health (Ministry of Education), College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China; Research Center for Air Pollution and Health, Zhejiang University, Hangzhou, China; Institute of Environmental Science, Zhejiang University, Hangzhou, China
| | - Iason Verginelli
- Laboratory of Environmental Engineering, Department of Civil Engineering and Computer Science Engineering, University of Rome "Tor Vergata,", Rome, Italy
| | - Eric M Suuberg
- School of Engineering, Brown University, Providence, Rhode Island, USA
| |
Collapse
|