1
|
Salubi EA, Gizaw Z, Schuster-Wallace CJ, Pietroniro A. Climate change and waterborne diseases in temperate regions: a systematic review. JOURNAL OF WATER AND HEALTH 2025; 23:58-78. [PMID: 39882854 DOI: 10.2166/wh.2024.314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/29/2024] [Indexed: 01/31/2025]
Abstract
Risk of waterborne diseases (WBDs) persists in temperate regions. The extent of influence of climate-related factors on the risk of specific WBDs in a changing climate and the projections of future climate scenarios on WBDs in temperate regions are unclear. A systematic review was conducted to identify specific waterborne pathogens and diseases prevalent in temperate region literature and transmission cycle associations with a changing climate. Projections of WBD risk based on future climate scenarios and models used to assess future disease risk were identified. Seventy-five peer-reviewed full-text articles for temperate regions published in the English language were included in this review after a search of Scopus and Web of Science databases from 2010 to 2023. Using thematic analysis, climate-related drivers impacting WBD risk were identified. Risk of WBDs was influenced mostly by weather (rainfall: 22% and heavy rainfall: 19%) across the majority of temperate regions and hydrological (streamflow: 50%) factors in Europe. Future climate scenarios suggest that WBD risk is likely to increase in temperate regions. Given the need to understand changes and potential feedback across fate, transport and exposure pathways, more studies should combine data-driven and process-based models to better assess future risks using model simulations.
Collapse
Affiliation(s)
- Eunice A Salubi
- Department of Geography and Planning, University of Saskatchewan, 117 Science Place, Saskatoon, Saskatchewan S7N 5C8, Canada; Global Institute for Water Security, University of Saskatchewan, 11 Innovation Boulevard, Saskatoon, Saskatchewan S7N 3H5, Canada E-mail:
| | - Zemichael Gizaw
- Department of Geography and Planning, University of Saskatchewan, 117 Science Place, Saskatoon, Saskatchewan S7N 5C8, Canada; Global Institute for Water Security, University of Saskatchewan, 11 Innovation Boulevard, Saskatoon, Saskatchewan S7N 3H5, Canada; Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Corinne J Schuster-Wallace
- Department of Geography and Planning, University of Saskatchewan, 117 Science Place, Saskatoon, Saskatchewan S7N 5C8, Canada; Global Institute for Water Security, University of Saskatchewan, 11 Innovation Boulevard, Saskatoon, Saskatchewan S7N 3H5, Canada
| | - Alain Pietroniro
- Global Institute for Water Security, University of Saskatchewan, 11 Innovation Boulevard, Saskatoon, Saskatchewan S7N 3H5, Canada; Schulich School of Engineering, University of Calgary, 622 Collegiate Pl NW, Calgary, Alberta T2N 4V8, Canada
| |
Collapse
|
2
|
Ngo H, Parmley EJ, Ricker N, Winder C, Murphy HM. Quantitative microbial risk assessment of acute gastrointestinal illness attributable to freshwater recreation in Ontario. CANADIAN JOURNAL OF PUBLIC HEALTH = REVUE CANADIENNE DE SANTE PUBLIQUE 2024:10.17269/s41997-024-00969-4. [PMID: 39658778 DOI: 10.17269/s41997-024-00969-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/05/2024] [Indexed: 12/12/2024]
Abstract
OBJECTIVES The burden of disease associated with acute gastrointestinal illness (AGI) in Canada is estimated to be ~ 20 million cases/year. One known risk factor for developing AGI is recreation in freshwater bodies such as lakes. The proportion of cases attributable to freshwater recreation in Canada, however, is currently unknown. The study objective was to estimate the risk of developing AGI from exposure to Giardia, Cryptosporidium, Campylobacter, Escherichia coli O157:H7, norovirus, and Salmonella during freshwater recreation in Ontario, Canada. METHODS A quantitative microbial risk assessment (QMRA) was conducted to estimate the number of AGI cases per 1000 recreational events associated with freshwater recreation. QMRA utilizes four steps: hazard identification, exposure assessment, dose-response modelling, and risk characterization. A probabilistic model was developed using the following inputs accounting for uncertainty and variability: published data on pathogen prevalence and concentration in freshwaters in Ontario (hazard identification), recreator water ingestion volumes (exposure), pathogen-specific dose-response models, and ratios between numbers of infections and symptomatic disease cases to estimate illness risks (risk characterization). RESULTS The mean estimated AGI risk associated with recreation ranged from 0.8 to 36.7 cases per 1000 swimmers (5th-95th probability interval: 0-226.3 cases/1000) which is in line with previous studies conducted in Lake Ontario, as well as prior QMRAs of freshwater recreation. Upper range predicted values exceeded the Health Canada guideline of less than 20 cases per 1000 recreators. CONCLUSION This study shows that QMRA can be used to estimate disease risk in the absence of large-scale epidemiological studies. The results demonstrate a range of risk that is in line with exposure to pristine (low risk estimates) and more contaminated waters (high risk estimates) and capture the potential risk to vulnerable populations.
Collapse
Affiliation(s)
- Henry Ngo
- Water, Health, and Applied Microbiology Lab (WHAM Lab), Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - E Jane Parmley
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Nicole Ricker
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Charlotte Winder
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Heather M Murphy
- Water, Health, and Applied Microbiology Lab (WHAM Lab), Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
3
|
Denpetkul T, Pumkaew M, Sittipunsakda O, Srathongneam T, Mongkolsuk S, Sirikanchana K. Risk-based critical concentrations of enteric pathogens for recreational water criteria and recommended minimum sample volumes for routine water monitoring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175234. [PMID: 39102962 DOI: 10.1016/j.scitotenv.2024.175234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/07/2024]
Abstract
Concerns are rising about the contamination of recreational waters from human and animal waste, along with associated risks to public health. However, existing guidelines for managing pathogens in these environments have not yet fully integrated risk-based pathogen-specific criteria, which, along with recent advancements in indicators and markers, are essential to improve the protection of public health. This study aimed to establish risk-based critical concentration benchmarks for significant enteric pathogens, i.e., norovirus, rotavirus, adenovirus, Cryptosporidium spp., Giardia lamblia, Campylobacter jejuni, Salmonella spp., and Escherichia coli O157:H7. Applying a 0.036 risk benchmark to both marine and freshwater environments, the study identified the lowest critical concentrations for children, who are the most susceptible group. Norovirus, C. jejuni, and Cryptosporidium presented lowest median critical concentrations for virus, bacteria, and protozoa, respectively: 0.74 GC, 1.73 CFU, and 0.39 viable oocysts per 100 mL in freshwater for children. These values were then used to determine minimum sample volumes corresponding to different recovery rates for culture method, digital polymerase chain reaction and quantitative PCR methods. The results indicate that for children, norovirus required the largest sample volumes of freshwater and marine water (52.08 to 178.57 L, based on the 5th percentile with a 10 % recovery rate), reflecting its low critical concentration and high potential for causing illness. In contrast, adenovirus and rotavirus required significantly smaller volumes (approximately 0.24 to 1.33 L). C. jejuni and Cryptosporidium, which required the highest sampling volumes for bacteria and protozoa, needed 1.72 to 11.09 L and 4.17 to 25.51 L, respectively. Additionally, the presented risk-based framework could provide a model for establishing pathogen thresholds, potentially guiding the creation of extensive risk-based criteria for various pathogens in recreational waters, thus aiding public health authorities in decision-making, strengthening pathogen monitoring, and improving water quality testing accuracy for enhanced health protection.
Collapse
Affiliation(s)
- Thammanitchpol Denpetkul
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Monchai Pumkaew
- Environmental Engineering and Disaster Management Program, School of Multidisciplinary, Mahidol University, Kanchanaburi Campus, Kanchanaburi 71150, Thailand
| | - Oranoot Sittipunsakda
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Thitima Srathongneam
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok 10210, Thailand; Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI, Bangkok 10400, Thailand.
| |
Collapse
|
4
|
Walsh JF, Hunt RJ, Anderson AC, Owens DW, Rice N. Temporally dense monitoring of pathogen occurrence at four drinking-water well sites - Insights and Implications. WATER RESEARCH 2024; 259:121809. [PMID: 38815338 DOI: 10.1016/j.watres.2024.121809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 05/16/2024] [Accepted: 05/19/2024] [Indexed: 06/01/2024]
Abstract
Yearlong, event based, microbiological and chemical sampling was conducted at four public water supply well sites spanning a range of geologic settings and well depths to look for correlation between precipitation events and microbial occurrence. Near-continuous monitoring using autosamplers occurred just before, during, and after 5-7 sampling events triggered by rainfall and/or snowmelt. Microbial genetic material was noted at all four locations during all but one sampling event, but was exceedingly variable in time, where one sample would have no detections and the next sample could be a relatively high concentration. The highest microbial sums (microbial concentrations summed over an event) were observed during months in which precipitation exceeded historical averages. Extended wet conditions through the spring thaw resulted in the highest percentage of microbial positive samples, though at relatively low concentrations. Sampling events that followed drier than normal periods showed longer lag times between the onset of precipitation and microbial occurrence, as well as lower microbial detection rates. Although a general lag time pattern was observed at each site, the largest offset in time was observed at the site with the greatest depth to water. The study's temporally dense representation of drinking water pathogen characterization suggests that single event or infrequent periodic sampling of a drinking water supply cannot provide a representative characterization of the probability that pathogens are present, which likely has ramifications for calculating health risk assessments.
Collapse
Affiliation(s)
- James F Walsh
- Minnesota Department of Health, 625 Robert St. N, St. Paul, MN 55164, United States.
| | - Randall J Hunt
- USGS Upper Midwest Water Science Center, 1 Gifford Pinchot Drive, Madison, WI 53726, United States
| | - Anita C Anderson
- Minnesota Department of Health, 625 Robert St. N, St. Paul, MN 55164, United States
| | - David W Owens
- USGS Upper Midwest Water Science Center, 1 Gifford Pinchot Drive, Madison, WI 53726, United States
| | - Nancy Rice
- Minnesota Department of Health, 625 Robert St. N, St. Paul, MN 55164, United States
| |
Collapse
|
5
|
Skiendzielewski K, Burch T, Stokdyk J, McGinnis S, McLoughlin S, Firnstahl A, Spencer S, Borchardt M, Murphy HM. Two risk assessments: Evaluating the use of indicator HF183 Bacteroides versus pathogen measurements for modelling recreational illness risks in an urban watershed. WATER RESEARCH 2024; 259:121852. [PMID: 38889662 DOI: 10.1016/j.watres.2024.121852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024]
Abstract
The purpose of this study was to evaluate the performance of HF183 Bacteroides for estimating pathogen exposures during recreational water activities. We compared the use of Bacteroides-based exposure assessment to exposure assessment that relied on pathogen measurements. We considered two types of recreational water sites: those impacted by combined sewer overflows (CSOs) and those not impacted by CSOs. Samples from CSO-impacted and non-CSO-impacted urban creeks were analysed by quantitative polymerase chain reaction (qPCR) for HF183 Bacteroides and eight human gastrointestinal pathogens. Exposure assessment was conducted two ways for each type of site (CSO-impacted vs. non-CSO impacted): 1) by estimating pathogen concentrations from HF183 Bacteroides concentrations using published ratios of HF183 to pathogens in sewage and 2) by estimating pathogen concentrations from qPCR measurements. QMRA (quantitative microbial risk assessment) was then conducted for swimming, wading, and fishing exposures. Overall, mean risk estimates varied from 0.27 to 53 illnesses per 1,000 recreators depending on exposure assessment, site, activity, and norovirus dose-response model. HF183-based exposure assessment identified CSO-impacted sites as higher risk, and the recommended HF183 risk-based threshold of 525 genomic copies per 100 mL was generally protective of public health at the CSO-impacted sites but was not as protective at the non-CSO-impacted sites. In the context of our urban watershed, HF183-based exposure assessment over- and under-estimated risk relative to exposure assessment based on pathogen measurements, and the etiology of predicted pathogen-specific illnesses differed significantly. Across all sites, the HF183 model overestimated risk for norovirus, adenovirus, and Campylobacter jejuni, and it underestimated risk for E. coli and Cryptosporidium. To our knowledge, this study is the first to directly compare health risk estimates using HF183 and empirical pathogen measurements from the same waterways. Our work highlights the importance of site-specific hazard identification and exposure assessment to decide whether HF183 is applicable for monitoring risk.
Collapse
Affiliation(s)
- K Skiendzielewski
- Water, Health and Applied Microbiology Lab (WHAM Lab), Department of Epidemiology and Biostatistics, Temple University College of Public Health, Philadelphia, PA, United States.
| | - T Burch
- US Department of Agriculture-Agricultural Research Service, Environmentally Integrated Dairy Management Research Unit, Marshfield, WI, United States
| | - J Stokdyk
- US Geological Survey Upper Midwest Water Science Center, Marshfield, WI, United States
| | - S McGinnis
- Water, Health and Applied Microbiology Lab (WHAM Lab), Department of Epidemiology and Biostatistics, Temple University College of Public Health, Philadelphia, PA, United States
| | - S McLoughlin
- Water, Health and Applied Microbiology Lab (WHAM Lab), Department of Epidemiology and Biostatistics, Temple University College of Public Health, Philadelphia, PA, United States
| | - A Firnstahl
- US Geological Survey Upper Midwest Water Science Center, Marshfield, WI, United States
| | - S Spencer
- US Department of Agriculture-Agricultural Research Service, Environmentally Integrated Dairy Management Research Unit, Marshfield, WI, United States
| | - M Borchardt
- US Department of Agriculture-Agricultural Research Service, Environmentally Integrated Dairy Management Research Unit, Marshfield, WI, United States
| | - H M Murphy
- Water, Health and Applied Microbiology Lab (WHAM Lab), Department of Epidemiology and Biostatistics, Temple University College of Public Health, Philadelphia, PA, United States; Water, Health and Applied Microbiology Lab (WHAM Lab), Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
6
|
Lenaker PL, Pronschinske MA, Corsi SR, Stokdyk JP, Olds HT, Dila DK, McLellan SL. A multi-marker assessment of sewage contamination in streams using human-associated indicator bacteria, human-specific viruses, and pharmaceuticals. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172505. [PMID: 38636851 DOI: 10.1016/j.scitotenv.2024.172505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
Human sewage contaminates waterways, delivering excess nutrients, pathogens, chemicals, and other toxic contaminants. Contaminants and various sewage indicators are measured to monitor and assess water quality, but these analytes vary in their representation of sewage contamination and the inferences about water quality they support. We measured the occurrence and concentration of multiple microbiological (n = 21) and chemical (n = 106) markers at two urban stream locations in Milwaukee, Wisconsin, USA over two years. Five-day composite water samples (n = 98) were collected biweekly, and sewage influent samples (n = 25) were collected monthly at a Milwaukee, WI water reclamation facility. We found the vast majority of markers were not sensitive enough to detect sewage contamination. To compare analytes for monitoring applications, five consistently detected human sewage indicators were used to evaluate temporal patterns of sewage contamination, including microbiological (pepper mild mottle virus, human Bacteroides, human Lachnospiraceae) and chemical (acetaminophen, metformin) markers. The proportion of human sewage in each stream was estimated using the mean influent concentration from the water reclamation facility and the mean concentration of all stream samples for each sewage indicator marker. Estimates of instream sewage pollution varied by marker, differing by up to two orders of magnitude, but four of the five sewage markers characterized Underwood Creek (mean proportions of human sewage ranged 0.0025 % - 0.075 %) as less polluted than Menomonee River (proportions ranged 0.013 % - 0.14 %) by an order of magnitude more. Chemical markers correlated with each other and yielded higher estimates of sewage pollution than microbial markers, which exhibited greater temporal variability. Transport, attenuation, and degradation processes can influence chemical and microbial markers differently and cause variation in human sewage estimates. Given the range of potential human and ecological health effects of human sewage contamination, robust characterization of sewage contamination that uses multiple lines of evidence supports monitoring and research applications.
Collapse
Affiliation(s)
- Peter L Lenaker
- U.S. Geological Survey, Upper Midwest Water Science Center, 1 Gifford Pinchot Drive, Madison, WI 53726, USA.
| | - Matthew A Pronschinske
- U.S. Geological Survey, Upper Midwest Water Science Center, 1 Gifford Pinchot Drive, Madison, WI 53726, USA
| | - Steven R Corsi
- U.S. Geological Survey, Upper Midwest Water Science Center, 1 Gifford Pinchot Drive, Madison, WI 53726, USA
| | - Joel P Stokdyk
- U.S. Geological Survey, Laboratory for Infectious Disease and the Environment, 2615 Yellowstone Dr., Marshfield, WI 54449, USA
| | - Hayley T Olds
- U.S. Geological Survey, Upper Midwest Water Science Center, 1 Gifford Pinchot Drive, Madison, WI 53726, USA
| | - Deborah K Dila
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, USA
| | - Sandra L McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave, Milwaukee, WI 53204, USA
| |
Collapse
|
7
|
Lenaker PL, Corsi SR, De Cicco LA, Olds HT, Dila DK, Danz ME, McLellan SL, Rutter TD. Modeled predictions of human-associated and fecal-indicator bacteria concentrations and loadings in the Menomonee River, Wisconsin using in-situ optical sensors. PLoS One 2023; 18:e0286851. [PMID: 37289789 PMCID: PMC10249839 DOI: 10.1371/journal.pone.0286851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 05/24/2023] [Indexed: 06/10/2023] Open
Abstract
Human sewage contamination of waterways is a major issue in the United States and throughout the world. Models were developed for estimation of two human-associated fecal-indicator and three general fecal-indicator bacteria (HIB and FIB) using in situ optical field-sensor data for estimating concentrations and loads of HIB and FIB and the extent of sewage contamination in the Menomonee River in Milwaukee, Wisconsin. Three commercially available optical sensor platforms were installed into an unfiltered custom-designed flow-through system along with a refrigerated automatic sampler at the Menomonee River sampling location. Ten-minute optical sensor measurements were made from November 2017 to December 2018 along with the collection of 153 flow-weighted discrete water samples (samples) for HIB, FIB, dissolved organic carbon (DOC), and optical properties of water. Of those 153 samples, 119 samples were from event-runoff periods, and 34 were collected during low-flow periods. Of the 119 event-runoff samples, 43 samples were from event-runoff combined sewer overflow (CSO) influenced periods (event-CSO periods). Models included optical sensor measurements as explanatory variables with a seasonal variable as an interaction term. In some cases, separate models for event-CSO periods and non CSO-periods generally improved model performance, as compared to using all the data combined for estimates of FIB and HIB. Therefore, the CSO and non-CSO models were used in final estimations for CSO and non-CSO time periods, respectively. Estimated continuous concentrations for all bacteria markers varied over six orders of magnitude during the study period. The greatest concentrations, loads, and proportion of sewage contamination occurred during event-runoff and event-CSO periods. Comparison to water quality standards and microbial risk assessment benchmarks indicated that estimated bacteria levels exceeded recreational water quality criteria between 34 and 96% of the entire monitoring period, highlighting the benefits of high-frequency monitoring compared to traditional grab sample collection. The application of optical sensors for estimation of HIB and FIB markers provided a thorough assessment of bacterial presence and human health risk in the Menomonee River.
Collapse
Affiliation(s)
- Peter L. Lenaker
- U.S. Geological Survey, Upper Midwest Water Science Center, Madison, Wisconsin, United States of America
| | - Steven R. Corsi
- U.S. Geological Survey, Upper Midwest Water Science Center, Madison, Wisconsin, United States of America
| | - Laura A. De Cicco
- U.S. Geological Survey, Upper Midwest Water Science Center, Madison, Wisconsin, United States of America
| | - Hayley T. Olds
- U.S. Geological Survey, Upper Midwest Water Science Center, Madison, Wisconsin, United States of America
| | - Debra K. Dila
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Mari E. Danz
- U.S. Geological Survey, Upper Midwest Water Science Center, Madison, Wisconsin, United States of America
| | - Sandra L. McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Troy D. Rutter
- U.S. Geological Survey, Upper Midwest Water Science Center, Madison, Wisconsin, United States of America
| |
Collapse
|
8
|
Li C, Sylvestre É, Fernandez-Cassi X, Julian TR, Kohn T. Waterborne virus transport and the associated risks in a large lake. WATER RESEARCH 2023; 229:119437. [PMID: 36476383 DOI: 10.1016/j.watres.2022.119437] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/04/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Waterborne enteric viruses in lakes, especially at recreational water sites, may have a negative impact on human health. However, their fate and transport in lakes are poorly understood. In this study, we propose a coupled water quality and quantitative microbial risk assessment (QMRA) model to study the transport, fate and infection risk of four common waterborne viruses (adenovirus, enterovirus, norovirus and rotavirus), using Lake Geneva as a study site. The measured virus load in raw sewage entering the lake was used as the source term in the water quality simulations for a hypothetical scenario of discharging raw wastewater at the lake surface. After discharge into the lake, virus inactivation was modeled as a function of water temperature and solar irradiance that varied both spatially and temporally during transport throughout the lake. Finally, the probability of infection, while swimming at a popular beach, was quantified and compared among the four viruses. Norovirus was found to be the most abundant virus that causes an infection probability that is at least 10 times greater than the other viruses studied. Furthermore, environmental inactivation was found to be an essential determinant in the infection risks posed by viruses to recreational water users. We determined that infection risks by enterovirus and rotavirus could be up to 1000 times lower when virus inactivation by environmental stressors was accounted for compared with the scenarios considering hydrodynamic transport only. Finally, the model highlighted the role of the wind field in conveying the contamination plume and hence in determining infection probability. Our simulations revealed that for beaches located west of the sewage discharge, the infection probability under eastward wind was 43% lower than that under westward wind conditions. This study highlights the potential of combining water quality simulation and virus-specific risk assessment for a safe water resources usage and management.
Collapse
Affiliation(s)
- Chaojie Li
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering, (ENAC), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Émile Sylvestre
- Department Environmental Microbiology, Eawag-Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - Xavier Fernandez-Cassi
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering, (ENAC), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Timothy R Julian
- Department Environmental Microbiology, Eawag-Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland; Swiss Tropical and Public Health Institute, Basel, Switzerland; University of Basel, Basel, Switzerland
| | - Tamar Kohn
- Laboratory of Environmental Chemistry, School of Architecture, Civil and Environmental Engineering, (ENAC), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
9
|
Burch TR, Stokdyk JP, Rice N, Anderson AC, Walsh JF, Spencer SK, Firnstahl AD, Borchardt MA. Statewide Quantitative Microbial Risk Assessment for Waterborne Viruses, Bacteria, and Protozoa in Public Water Supply Wells in Minnesota. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6315-6324. [PMID: 35507527 PMCID: PMC9118547 DOI: 10.1021/acs.est.1c06472] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 05/22/2023]
Abstract
Infection risk from waterborne pathogens can be estimated via quantitative microbial risk assessment (QMRA) and forms an important consideration in the management of public groundwater systems. However, few groundwater QMRAs use site-specific hazard identification and exposure assessment, so prevailing risks in these systems remain poorly defined. We estimated the infection risk for 9 waterborne pathogens based on a 2-year pathogen occurrence study in which 964 water samples were collected from 145 public wells throughout Minnesota, USA. Annual risk across all nine pathogens combined was 3.3 × 10-1 (95% CI: 2.3 × 10-1 to 4.2 × 10-1), 3.9 × 10-2 (2.3 × 10-2 to 5.4 × 10-2), and 1.2 × 10-1 (2.6 × 10-2 to 2.7 × 10-1) infections person-1 year-1 for noncommunity, nondisinfecting community, and disinfecting community wells, respectively. Risk estimates exceeded the U.S. benchmark of 10-4 infections person-1 year-1 in 59% of well-years, indicating that the risk was widespread. While the annual risk for all pathogens combined was relatively high, the average daily doses for individual pathogens were low, indicating that significant risk results from sporadic pathogen exposure. Cryptosporidium dominated annual risk, so improved identification of wells susceptible to Cryptosporidium contamination may be important for risk mitigation.
Collapse
Affiliation(s)
- Tucker R. Burch
- U.S.
Department of Agriculture−Agricultural Research Service (USDA−ARS),
Environmentally Integrated Dairy Management Research Unit, 2615 Yellowstone Drive, Marshfield, Wisconsin 54449, United States
- Laboratory
for Infectious Disease and the Environment (An Interagency Laboratory Supported By USDA-ARS and the U.S. Geological
Survey), 2615 Yellowstone Drive, Marshfield, Wisconsin 54449, United States
- . Phone: 715-207-9244
| | - Joel P. Stokdyk
- Laboratory
for Infectious Disease and the Environment (An Interagency Laboratory Supported By USDA-ARS and the U.S. Geological
Survey), 2615 Yellowstone Drive, Marshfield, Wisconsin 54449, United States
- U.S.
Geological Survey, Upper Midwest Water Science Center, 2615 Yellowstone Drive, Marshfield, Wisconsin 54449, United States
| | - Nancy Rice
- Minnesota
Department of Health, P.O. Box 64975, St. Paul, Minnesota 55164, United States
| | - Anita C. Anderson
- Minnesota
Department of Health, P.O. Box 64975, St. Paul, Minnesota 55164, United States
| | - James F. Walsh
- Minnesota
Department of Health, P.O. Box 64975, St. Paul, Minnesota 55164, United States
| | - Susan K. Spencer
- U.S.
Department of Agriculture−Agricultural Research Service (USDA−ARS),
Environmentally Integrated Dairy Management Research Unit, 2615 Yellowstone Drive, Marshfield, Wisconsin 54449, United States
- Laboratory
for Infectious Disease and the Environment (An Interagency Laboratory Supported By USDA-ARS and the U.S. Geological
Survey), 2615 Yellowstone Drive, Marshfield, Wisconsin 54449, United States
| | - Aaron D. Firnstahl
- Laboratory
for Infectious Disease and the Environment (An Interagency Laboratory Supported By USDA-ARS and the U.S. Geological
Survey), 2615 Yellowstone Drive, Marshfield, Wisconsin 54449, United States
- U.S.
Geological Survey, Upper Midwest Water Science Center, 2615 Yellowstone Drive, Marshfield, Wisconsin 54449, United States
| | - Mark A. Borchardt
- U.S.
Department of Agriculture−Agricultural Research Service (USDA−ARS),
Environmentally Integrated Dairy Management Research Unit, 2615 Yellowstone Drive, Marshfield, Wisconsin 54449, United States
- Laboratory
for Infectious Disease and the Environment (An Interagency Laboratory Supported By USDA-ARS and the U.S. Geological
Survey), 2615 Yellowstone Drive, Marshfield, Wisconsin 54449, United States
| |
Collapse
|
10
|
Corsi SR, De Cicco LA, Hansen AM, Lenaker PL, Bergamaschi BA, Pellerin BA, Dila DK, Bootsma MJ, Spencer SK, Borchardt MA, McLellan SL. Optical Properties of Water for Prediction of Wastewater Contamination, Human-Associated Bacteria, and Fecal Indicator Bacteria in Surface Water at Three Watershed Scales. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13770-13782. [PMID: 34591452 DOI: 10.1021/acs.est.1c02644] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Relations between spectral absorbance and fluorescence properties of water and human-associated and fecal indicator bacteria were developed for facilitating field sensor applications to estimate wastewater contamination in waterways. Leaking wastewater conveyance infrastructure commonly contaminates receiving waters. Methods to quantify such contamination can be time consuming, expensive, and often nonspecific. Human-associated bacteria are wastewater specific but require discrete sampling and laboratory analyses, introducing latency. Human sewage has fluorescence and absorbance properties different than those of natural waters. To assist real-time field sensor development, this study investigated optical properties for use as surrogates for human-associated bacteria to estimate wastewater prevalence in environmental waters. Three spatial scales were studied: Eight watershed-scale sites, five subwatershed-scale sites, and 213 storm sewers and open channels within three small watersheds (small-scale sites) were sampled (996 total samples) for optical properties, human-associated bacteria, fecal indicator bacteria, and, for selected samples, human viruses. Regression analysis indicated that bacteria concentrations could be estimated by optical properties used in existing field sensors for watershed and subwatershed scales. Human virus occurrence increased with modeled human-associated bacteria concentration, providing confidence in these regressions as surrogates for wastewater contamination. Adequate regressions were not found for small-scale sites to reliably estimate bacteria concentrations likely due to inconsistent local sanitary sewer inputs.
Collapse
Affiliation(s)
- Steven R Corsi
- U.S. Geological Survey, 8505 Research Way, Middleton, Wisconsin 53562, United States
| | - Laura A De Cicco
- U.S. Geological Survey, 8505 Research Way, Middleton, Wisconsin 53562, United States
| | - Angela M Hansen
- United States Geological Survey, 6000 J Street, Placer Hall, Sacramento, California 95819, United States
| | - Peter L Lenaker
- U.S. Geological Survey, 8505 Research Way, Middleton, Wisconsin 53562, United States
| | - Brian A Bergamaschi
- United States Geological Survey, 6000 J Street, Placer Hall, Sacramento, California 95819, United States
| | - Brian A Pellerin
- United States Geological Survey, 12201 Sunrise Valley Dr., Reston, Virginia 20192, United States
| | - Debra K Dila
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Avenue, Milwaukee, Wisconsin 53204, United States
| | - Melinda J Bootsma
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Avenue, Milwaukee, Wisconsin 53204, United States
| | - Susan K Spencer
- U.S. Department of Agriculture, Agricultural Research Service, 2615 Yellowstone Dr., Marshfield, Wisconsin 54449, United States
| | - Mark A Borchardt
- U.S. Department of Agriculture, Agricultural Research Service, 2615 Yellowstone Dr., Marshfield, Wisconsin 54449, United States
| | - Sandra L McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Avenue, Milwaukee, Wisconsin 53204, United States
| |
Collapse
|
11
|
Heasley C, Sanchez JJ, Tustin J, Young I. Systematic review of predictive models of microbial water quality at freshwater recreational beaches. PLoS One 2021; 16:e0256785. [PMID: 34437625 PMCID: PMC8389397 DOI: 10.1371/journal.pone.0256785] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/14/2021] [Indexed: 11/19/2022] Open
Abstract
Monitoring of fecal indicator bacteria at recreational waters is an important public health measure to minimize water-borne disease, however traditional culture methods for quantifying bacteria can take 18-24 hours to obtain a result. To support real-time notifications of water quality, models using environmental variables have been created to predict indicator bacteria levels on the day of sampling. We conducted a systematic review of predictive models of fecal indicator bacteria at freshwater recreational sites in temperate climates to identify and describe the existing approaches, trends, and their performance to inform beach water management policies. We conducted a comprehensive search strategy, including five databases and grey literature, screened abstracts for relevance, and extracted data using structured forms. Data were descriptively summarized. A total of 53 relevant studies were identified. Most studies (n = 44, 83%) were conducted in the United States and evaluated water quality using E. coli as fecal indicator bacteria (n = 46, 87%). Studies were primarily conducted in lakes (n = 40, 75%) compared to rivers (n = 13, 25%). The most commonly reported predictive model-building method was multiple linear regression (n = 37, 70%). Frequently used predictors in best-fitting models included rainfall (n = 39, 74%), turbidity (n = 31, 58%), wave height (n = 24, 45%), and wind speed and direction (n = 25, 47%, and n = 23, 43%, respectively). Of the 19 (36%) studies that measured accuracy, predictive models averaged an 81.0% accuracy, and all but one were more accurate than traditional methods. Limitations identifed by risk-of-bias assessment included not validating models (n = 21, 40%), limited reporting of whether modelling assumptions were met (n = 40, 75%), and lack of reporting on handling of missing data (n = 37, 70%). Additional research is warranted on the utility and accuracy of more advanced predictive modelling methods, such as Bayesian networks and artificial neural networks, which were investigated in comparatively fewer studies and creating risk of bias tools for non-medical predictive modelling.
Collapse
Affiliation(s)
- Cole Heasley
- School of Occupational and Public Health, Ryerson University, Toronto, Ontario, Canada
| | - J. Johanna Sanchez
- School of Occupational and Public Health, Ryerson University, Toronto, Ontario, Canada
| | - Jordan Tustin
- School of Occupational and Public Health, Ryerson University, Toronto, Ontario, Canada
| | - Ian Young
- School of Occupational and Public Health, Ryerson University, Toronto, Ontario, Canada
| |
Collapse
|
12
|
Burch TR, Stokdyk JP, Spencer SK, Kieke BA, Firnstahl AD, Muldoon MA, Borchardt MA. Quantitative Microbial Risk Assessment for Contaminated Private Wells in the Fractured Dolomite Aquifer of Kewaunee County, Wisconsin. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:67003. [PMID: 34160247 PMCID: PMC8221031 DOI: 10.1289/ehp7815] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 03/23/2021] [Accepted: 05/07/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND Private wells are an important source of drinking water in Kewaunee County, Wisconsin. Due to the region's fractured dolomite aquifer, these wells are vulnerable to contamination by human and zoonotic gastrointestinal pathogens originating from land-applied cattle manure and private septic systems. OBJECTIVE We determined the magnitude of the health burden associated with contamination of private wells in Kewaunee County by feces-borne gastrointestinal pathogens. METHODS This study used data from a year-long countywide pathogen occurrence study as inputs into a quantitative microbial risk assessment (QMRA) to predict the total cases of acute gastrointestinal illness (AGI) caused by private well contamination in the county. Microbial source tracking was used to associate predicted cases of illness with bovine, human, or unknown fecal sources. RESULTS Results suggest that private well contamination could be responsible for as many as 301 AGI cases per year in Kewaunee County, and that 230 and 12 cases per year were associated with a bovine and human fecal source, respectively. Furthermore, Cryptosporidium parvum was predicted to cause 190 cases per year, the most out of all 8 pathogens included in the QMRA. DISCUSSION This study has important implications for land use and water resource management in Kewaunee County and informs the public health impacts of consuming drinking water produced in other similarly vulnerable hydrogeological settings. https://doi.org/10.1289/EHP7815.
Collapse
Affiliation(s)
- Tucker R. Burch
- Environmentally Integrated Dairy Management Research Unit, U.S. Dairy Forage Research Center, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Marshfield, Wisconsin, USA
| | - Joel P. Stokdyk
- Upper Midwest Water Science Center, U.S. Geological Survey, Marshfield, Wisconsin, USA
| | - Susan K. Spencer
- Environmentally Integrated Dairy Management Research Unit, U.S. Dairy Forage Research Center, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Marshfield, Wisconsin, USA
| | - Burney A. Kieke
- Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research Institute, Marshfield, Wisconsin, USA
| | - Aaron D. Firnstahl
- Upper Midwest Water Science Center, U.S. Geological Survey, Marshfield, Wisconsin, USA
| | - Maureen A. Muldoon
- Wisconsin Geological and Natural History Survey, University of Wisconsin-Madison Division of Extension, Madison, Wisconsin, USA
| | - Mark A. Borchardt
- Environmentally Integrated Dairy Management Research Unit, U.S. Dairy Forage Research Center, U.S. Department of Agriculture-Agricultural Research Service (USDA-ARS), Marshfield, Wisconsin, USA
| |
Collapse
|
13
|
Zhang X, Chen L, Shen Z. Impacts of rapid urbanization on characteristics, sources and variation of fecal coliform at watershed scale. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 286:112195. [PMID: 33631515 DOI: 10.1016/j.jenvman.2021.112195] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/11/2021] [Accepted: 02/13/2021] [Indexed: 05/04/2023]
Abstract
Microbial pollution is an environmental problem of growing concern for threatening human health. However, the impacts of rapid urbanization on characteristics, sources and variation of fecal coliform (FC) at watershed scale have not been fully explored. In this study, FC characteristics were monitored monthly for 2 years at 21 river sections in an urbanizing watershed, while the sources and continuously annual variation were quantified by integrating two commonly-used models. The results showed that FC varied from 103 to 106 MPN/L, indicating a great spatiotemporal variation at watershed scale. Peak FC occurred in summer and autumn among upstream and downstream areas, respectively. Besides, 65% impermeable surface was identified as the threshold of urban level, beyond which the key FC source would shift from agriculture to urban. It was also found that the changes of urban landscape patterns had poor correlation with annual variation of FC. In comparison, urbanization speed was identified as the major driver with the threshold of 30% for deteriorating FC pollution. The Low Impact Development could result in a 5.13%-97.59% reduction of FC at watershed scale.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Lei Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| | - Zhenyao Shen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
14
|
Searcy RT, Boehm AB. A Day at the Beach: Enabling Coastal Water Quality Prediction with High-Frequency Sampling and Data-Driven Models. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1908-1918. [PMID: 33471505 DOI: 10.1021/acs.est.0c06742] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
To reduce the incidence of recreational waterborne illness, fecal indicator bacteria (FIB) are measured to assess water quality and inform beach management. Recently, predictive FIB models have been used to aid managers in making beach posting and closure decisions. However, those predictive models must be trained using rich historical data sets consisting of FIB and environmental data that span years, and many beaches lack such data sets. Here, we investigate whether water quality data collected during discrete short duration, high-frequency beach sampling events (e.g., samples collected at sub-hourly intervals for 24-48 h) are sufficient to train predictive models that can be used for beach management. We use data collected during six high-frequency sampling events at three California marine beaches and train a total of 126 models using common data-driven techniques. Tide, solar irradiation, water temperature, significant wave height, and offshore wind speed were found to be the most important environmental variables in the models. We validate the predictive performance of models using withheld data. Random forests are consistently the top performing model type. Overall, we find that data-driven models trained using high-frequency FIB and environmental data perform well at predicting water quality and can be used to inform public health decisions at beaches.
Collapse
Affiliation(s)
- Ryan T Searcy
- Department of Civil & Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, Palo Alto 94305, California, United States
| | - Alexandria B Boehm
- Department of Civil & Environmental Engineering, Stanford University, 473 Via Ortega, Stanford, Palo Alto 94305, California, United States
| |
Collapse
|
15
|
Stokdyk JP, Firnstahl AD, Walsh JF, Spencer SK, de Lambert JR, Anderson AC, Rezania LIW, Kieke BA, Borchardt MA. Viral, bacterial, and protozoan pathogens and fecal markers in wells supplying groundwater to public water systems in Minnesota, USA. WATER RESEARCH 2020; 178:115814. [PMID: 32325219 DOI: 10.1016/j.watres.2020.115814] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 03/25/2020] [Accepted: 04/08/2020] [Indexed: 05/04/2023]
Abstract
Drinking water supply wells can be contaminated by a broad range of waterborne pathogens. However, groundwater assessments frequently measure microbial indicators or a single pathogen type, which provides a limited characterization of potential health risk. This study assessed contamination of wells by testing for viral, bacterial, and protozoan pathogens and fecal markers. Wells supplying groundwater to community and noncommunity public water systems in Minnesota, USA (n = 145) were sampled every other month over one or two years and tested using 23 qPCR assays. Eighteen genetic targets were detected at least once, and microbiological contamination was widespread (96% of 145 wells, 58% of 964 samples). The sewage-associated microbial indicators HF183 and pepper mild mottle virus were detected frequently. Human or zoonotic pathogens were detected in 70% of wells and 21% of samples by qPCR, with Salmonella and Cryptosporidium detected more often than viruses. Samples positive by qPCR for adenovirus (HAdV), enterovirus, or Salmonella were analyzed by culture and for genotype or serotype. qPCR-positive Giardia and Cryptosporidium samples were analyzed by immunofluorescent assay (IFA), and IFA and qPCR concentrations were correlated. Comparisons of indicator and pathogen occurrence at the time of sampling showed that total coliforms, HF183, and Bacteroidales-like HumM2 had high specificity and negative predictive values but generally low sensitivity and positive predictive values. Pathogen-HF183 ratios in sewage have been used to estimate health risks from HF183 concentrations in surface water, but in our groundwater samples Cryptosporidium oocyst:HF183 and HAdV:HF183 ratios were approximately 10,000 times higher than ratios reported for sewage. qPCR measurements provided a robust characterization of microbiological water quality, but interpretation of qPCR data in a regulatory context is challenging because few studies link qPCR measurements to health risk.
Collapse
Affiliation(s)
- Joel P Stokdyk
- U.S. Geological Survey Upper Midwest Water Science Center, 2615 Yellowstone Drive, Marshfield, WI, 54449, United States
| | - Aaron D Firnstahl
- U.S. Geological Survey Upper Midwest Water Science Center, 2615 Yellowstone Drive, Marshfield, WI, 54449, United States
| | - James F Walsh
- Minnesota Department of Health, 625 Robert St. N, St. Paul, MN, 55164, United States
| | - Susan K Spencer
- U.S. Department of Agriculture-Agricultural Research Service, Environmentally Integrated Dairy Management Research Unit, 2615 Yellowstone Drive, Marshfield, WI, 54449, United States
| | - Jane R de Lambert
- Minnesota Department of Health, 625 Robert St. N, St. Paul, MN, 55164, United States
| | - Anita C Anderson
- Minnesota Department of Health, 625 Robert St. N, St. Paul, MN, 55164, United States
| | - Lih-In W Rezania
- Minnesota Department of Health, 625 Robert St. N, St. Paul, MN, 55164, United States
| | - Burney A Kieke
- Marshfield Clinic Research Institute, 1000 N. Oak Ave, Marshfield, WI, 54449, United States
| | - Mark A Borchardt
- U.S. Department of Agriculture-Agricultural Research Service, Environmentally Integrated Dairy Management Research Unit, 2615 Yellowstone Drive, Marshfield, WI, 54449, United States.
| |
Collapse
|
16
|
Zhang X, Zhi X, Chen L, Shen Z. Spatiotemporal variability and key influencing factors of river fecal coliform within a typical complex watershed. WATER RESEARCH 2020; 178:115835. [PMID: 32330732 PMCID: PMC7160644 DOI: 10.1016/j.watres.2020.115835] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/30/2020] [Accepted: 04/14/2020] [Indexed: 05/08/2023]
Abstract
Fecal coliform bacteria are a key indicator of human health risks; however, the spatiotemporal variability and key influencing factors of river fecal coliform have yet to be explored in a rural-suburban-urban watershed with multiple land uses. In this study, the fecal coliform concentrations in 21 river sections were monitored for 20 months, and 441 samples were analyzed. Multivariable regressions were used to evaluate the spatiotemporal dynamics of fecal coliform. The results showed that spatial differences were mainly dominated by urbanization level, and environmental factors could explain the temporal dynamics of fecal coliform in different urban patterns except in areas with high urbanization levels. Reducing suspended solids is a direct way to manage fecal coliform in the Beiyun River when the natural factors are difficulty to change, such as temperature and solar radiation. The export of fecal coliform from urban areas showed a quick and sensitive response to rainfall events and increased dozens of times in the short term. Landscape patterns, such as the fragmentation of impervious surfaces and the overall landscape, were identified as key factors influencing urban non-point source bacteria. The results obtained from this study will provide insight into the management of river fecal pollution.
Collapse
Affiliation(s)
- Xiaoyue Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| | - Xiaosha Zhi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China; Satellite Environment Centre, Ministry of Environmental Protection, Beijing, 100094, PR China
| | - Lei Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China.
| | - Zhenyao Shen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, PR China
| |
Collapse
|
17
|
Fan L, Zhang X, Zeng R, Wang S, Jin C, He Y, Shuai J. Verification of Bacteroidales 16S rRNA markers as a complementary tool for detecting swine fecal pollution in the Yangtze Delta. J Environ Sci (China) 2020; 90:59-66. [PMID: 32081341 DOI: 10.1016/j.jes.2019.11.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/02/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
To correctly assess and properly manage the public health risks associated with exposure to contaminated water, it is necessary to identify the source of fecal pollution in a watershed. In this study, we evaluated the efficacy of our two previously developed real time-quantitative PCR (qPCR) assays for the detection of swine-associated Bacteroidales genetic markers (gene 1-38, gene 3-53) in the Yangtze Delta watershed of southeastern China. The results indicated that the gene 1-38 and 3-53 markers exhibited high accuracy (92.5%, 91.7% conditional probability, respectively) in detecting Bacteroidales spp. in water samples. According to binary logistic regression (BLR), these two swine-associated markers were well correlated (P < 0.05) with fecal indicators (Escherichia coli and Enterococci spp.) and zoonotic pathogens (E. coli O157: H7, Salmonella spp. and Campylobacter spp.) in water samples. In contrast, concentrations of conventional fecal indicator bacteria (FIB) were not correlated with zoonotic pathogens, suggesting that they are noneffective at detecting fecal pollution events. Collectively, the results obtained in this study demonstrated that a swine-targeted qPCR assay based on two Bacteroidales genes markers (gene 1-38, gene 3-53) could be a useful tool in determining the swine-associated impacts of fecal contamination in a watershed.
Collapse
Affiliation(s)
- Lihua Fan
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou 310058, China
| | - Xiaofeng Zhang
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou 310016, China
| | - Ruoxue Zeng
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou 310016, China
| | - Suhua Wang
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou 310016, China
| | - Chenchen Jin
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou 310016, China
| | - Yongqiang He
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou 310016, China
| | - Jiangbing Shuai
- Zhejiang Academy of Science and Technology for Inspection and Quarantine, Hangzhou 310016, China.
| |
Collapse
|
18
|
Soller JA, Eftim SE, Nappier SP. Comparison of Predicted Microbiological Human Health Risks Associated with de Facto, Indirect, and Direct Potable Water Reuse. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13382-13389. [PMID: 31577425 PMCID: PMC7155932 DOI: 10.1021/acs.est.9b02002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Increasing interest in recycling water for potable purposes makes understanding the risks associated with potential acute microbial hazards important. We compared risks from de facto reuse, indirect potable reuse (IPR), and direct potable reuse (DPR) scenarios using a previously published quantitative microbial risk assessment methodology and literature review results. The de facto reuse simulation results are compared to a Cryptosporidium spp. database collected for the Long Term 2 Enhanced Surface Water Treatment Rule's information collection rule (ICR) and to a literature review of norovirus (NoV) densities in ambient surface waters. The de facto simulation results with a treated wastewater effluent contribution of 1% in surface waters and a residence time of 30 days most closely match the ICR dataset. The de facto simulations also suggest that using NoV monitoring data from surface waters may overestimate microbial risks, compared to NoV data from raw sewage coupled with wastewater treatment reduction estimates. The predicted risks from IPR and DPR are consistently lower than those for the de facto reuse scenarios assuming the AWTFs are operating within design specifications. These analyses provide insight into the microbial risks associated with various potable reuse scenarios and highlight the need to carefully consider drinking water treatment choices when wastewater effluent is a component of any drinking water supply.
Collapse
Affiliation(s)
- Jeffrey A Soller
- Soller Environmental, LLC , 3022 King Street , Berkeley , California 94703 , United States
| | - Sorina E Eftim
- ICF, LLC , 9300 Lee Highway , Fairfax , Virginia 22031 , United States
| | - Sharon P Nappier
- US Environmental Protection Agency, Office of Water, Office of Science and Technology , 1200 Pennsylvania Avenue, NW , Washington , District of Columbia 20460 , United States
| |
Collapse
|
19
|
Federigi I, Verani M, Donzelli G, Cioni L, Carducci A. The application of quantitative microbial risk assessment to natural recreational waters: A review. MARINE POLLUTION BULLETIN 2019; 144:334-350. [PMID: 31180003 DOI: 10.1016/j.marpolbul.2019.04.073] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 06/09/2023]
Abstract
This review examines the aims of and approaches to the Quantitative Microbial Risk Assessment (QMRA) of untreated recreational waters. The literature search was conducted on four databases and yielded 54 papers, which were analyzed on a quantitative (time-trend, geographical distribution, water type) and qualitative (aims, source of microbial data, pathogens and their measurement or estimation, ways to address variability and uncertainty, sensitivity analysis) basis. In addition, the parameters, implications, and limitations were discussed for each QMRA step. Since 2003, the number of papers has greatly increased, highlighting the importance of QMRA for the risk management of recreational waters. Nevertheless, QMRA still exhibits critical issues, above all regarding contamination data and dose-response relationships. To our knowledge, this is the first review to give a wide panoramic view on QMRA in relation to recreational exposure to untreated waters. This could be useful in identifying the current knowledge gaps and research needs.
Collapse
Affiliation(s)
- Ileana Federigi
- QMRA Lab, Department of Biology, University of Pisa, Via S. Zeno 35/39, Pisa 56127, Italy.
| | - Marco Verani
- QMRA Lab, Department of Biology, University of Pisa, Via S. Zeno 35/39, Pisa 56127, Italy.
| | - Gabriele Donzelli
- QMRA Lab, Department of Biology, University of Pisa, Via S. Zeno 35/39, Pisa 56127, Italy.
| | - Lorenzo Cioni
- Scuola Normale Superiore, Piazza dei Cavalieri 7, 56123 Pisa, Italy.
| | - Annalaura Carducci
- QMRA Lab, Department of Biology, University of Pisa, Via S. Zeno 35/39, Pisa 56127, Italy.
| |
Collapse
|
20
|
Brouwer AF, Masters NB, Eisenberg JNS. Quantitative Microbial Risk Assessment and Infectious Disease Transmission Modeling of Waterborne Enteric Pathogens. Curr Environ Health Rep 2019; 5:293-304. [PMID: 29679300 DOI: 10.1007/s40572-018-0196-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Waterborne enteric pathogens remain a global health threat. Increasingly, quantitative microbial risk assessment (QMRA) and infectious disease transmission modeling (IDTM) are used to assess waterborne pathogen risks and evaluate mitigation. These modeling efforts, however, have largely been conducted independently for different purposes and in different settings. In this review, we examine the settings where each modeling strategy is employed. RECENT FINDINGS QMRA research has focused on food contamination and recreational water in high-income countries (HICs) and drinking water and wastewater in low- and middle-income countries (LMICs). IDTM research has focused on large outbreaks (predominately LMICs) and vaccine-preventable diseases (LMICs and HICs). Human ecology determines the niches that pathogens exploit, leading researchers to focus on different risk assessment research strategies in different settings. To enhance risk modeling, QMRA and IDTM approaches should be integrated to include dynamics of pathogens in the environment and pathogen transmission through populations.
Collapse
Affiliation(s)
- Andrew F Brouwer
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Nina B Masters
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | |
Collapse
|
21
|
Devane ML, Moriarty EM, Robson B, Lin S, Wood D, Webster-Brown J, Gilpin BJ. Relationships between chemical and microbial faecal source tracking markers in urban river water and sediments during and post-discharge of human sewage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:1588-1604. [PMID: 30360285 DOI: 10.1016/j.scitotenv.2018.09.258] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
This study explores the relationships between faecal source tracking (FST) markers (quantitative Polymerase Chain Reaction (qPCR) markers and steroids), microbial indicators, the faecal ageing ratio of atypical colonies/total coliforms (AC/TC) and potential human pathogens (Giardia, Cryptosporidium and Campylobacter). Faecal source PCR markers tested were GenBac3, HumM3, HumBac (HF183-Bac708R); Bifidobacterium adolescentis, wildfowl and canine-associated markers. Sediment and water samples from the Avon River were collected during and post-discharge of untreated human sewage inputs, following a series of earthquakes, which severely damaged the Christchurch sewerage system. Significant, positive Spearman Ranks (rs) correlations were observed between human-associated qPCR markers and steroid FST markers and Escherichia coli and F-specific RNA bacteriophage (rs 0.57 to 0.84, p < 0.001) in water samples. These human source indicative FST markers demonstrated that they were also effective predictors of potentially pathogenic protozoa in water (rs 0.43-0.74, p ≤ 0.002), but correlated less well with Campylobacter. Human-associated qPCR and steroid markers showed significant, substantial agreement between the two FST methods (Cohen's kappa, 0.78, p = 0.023), suggesting that water managers could be confident in the results using either method under these contamination conditions. Low levels of fluorescent whitening agents (FWA) (mean 0.06 μg/L, range 0.01-0.40 μg/L) were observed in water throughout the study, but steroids and FWA appeared to be retained in river sediments, months after continuous sewage discharges had ceased. No relationship was observed between chemical FST markers in sediments and the overlying water, and few correlations in sediment between chemical FST markers and target microorganisms. The low values observed for the faecal ageing ratio, AC/TC in water, were significantly, negatively correlated with increasing pathogen detection. This study provides support for the use of the AC/TC ratio, and qPCR and steroid FST markers as indicators of health risks associated with the discharge of raw human sewage into a freshwater system.
Collapse
Affiliation(s)
- Megan L Devane
- Institute of Environmental Science and Research Limited, Christchurch Science Centre, PO Box 29-181, Christchurch, New Zealand.
| | - Elaine M Moriarty
- Institute of Environmental Science and Research Limited, Christchurch Science Centre, PO Box 29-181, Christchurch, New Zealand
| | - Beth Robson
- Institute of Environmental Science and Research Limited, Christchurch Science Centre, PO Box 29-181, Christchurch, New Zealand
| | - Susan Lin
- Institute of Environmental Science and Research Limited, Christchurch Science Centre, PO Box 29-181, Christchurch, New Zealand
| | - David Wood
- Institute of Environmental Science and Research Limited, Christchurch Science Centre, PO Box 29-181, Christchurch, New Zealand
| | - Jenny Webster-Brown
- Waterways Centre for Freshwater Management, University of Canterbury, Private Bag 4800, Christchurch, New Zealand
| | - Brent J Gilpin
- Institute of Environmental Science and Research Limited, Christchurch Science Centre, PO Box 29-181, Christchurch, New Zealand
| |
Collapse
|
22
|
McClary JS, Ramos NA, Boehm AB. Photoinactivation of uncultured, indigenous enterococci. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:104-112. [PMID: 30525134 DOI: 10.1039/c8em00443a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Enterococci are used to monitor recreational water quality worldwide, so understanding their fate and transport in the environment is essential to the protection of human health. As such, researchers have documented enterococci inactivation under various exposure conditions and in diverse water matrices. However, the majority of studies have been performed using lab-cultured bacteria, which are distinct from indigenous, uncultured bacteria found in the environment. Here we investigate the photoinactivation of indigenous, uncultured enterococci from a range of sources, including wastewater treatment plants (WWTPs), marine beaches, urban streams, and a wastewater-influenced pond. We concentrated indigenous enterococci from their sources using filtration and centrifugation, placed them in a clear buffer solution, and then exposed them to simulated sunlight to measure their photoinactivation rates. First order decay rate constants (k) of indigenous, uncultured enterococci spanned an order of magnitude, from 0.3 to 2.3 m2 kJUVB-1. k values of indigenous enterococci from WWTPs tended to be larger than those from surface waters. The k value of lab-cultured Enterococcus faecalis was larger than those of indigenous, uncultured enterococci from most sources. Negative associations between the fraction of pigmented enterococci and sunlight susceptibility were observed. This work suggests that caution should be taken when extending results on bacterial photoinactivation obtained using lab-cultured bacteria to environmental bacteria, and that enterococci pigmentation may be a useful metric for estimating photoinactivation rate constants.
Collapse
Affiliation(s)
- Jill S McClary
- Civil & Environmental Engineering, Stanford University, Stanford, CA, USA.
| | | | | |
Collapse
|
23
|
Lenaker PL, Corsi SR, McLellan SL, Borchardt MA, Olds HT, Dila DK, Spencer SK, Baldwin AK. Human-Associated Indicator Bacteria and Human-Specific Viruses in Surface Water: A Spatial Assessment with Implications on Fate and Transport. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:12162-12171. [PMID: 30991470 DOI: 10.1021/acs.est.8b03481] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hydrologic, seasonal, and spatial variability of sewage contamination was studied at six locations within a watershed upstream from water reclamation facility (WRF) effluent to define relative loadings of sewage from different portions of the watershed. Fecal pollution from human sources was spatially quantified by measuring two human-associated indicator bacteria (HIB) and eight human-specific viruses (HSV) at six stream locations in the Menomonee River watershed in Milwaukee, Wisconsin from April 2009 to March 2011. A custom, automated water sampler, which included HSV filtration, was deployed at each location and provided unattended, flow-weighted, large-volume (30-913 L) sampling. In addition, wastewater influent samples were composited over discrete 7 day periods from the two Milwaukee WRFs. Of the 8 HSV, only 3 were detected, present in up to 38% of the 228 stream samples, while at least 1 HSV was detected in all WRF influent samples. HIB occurred more often with significantly higher concentrations than the HSV in stream and WRF influent samples ( p < 0.05). HSV yield calculations showed a loss from upstream to the most-downstream sub-watershed of the Menomonee River, and in contrast, a positive HIB yield from this same sub-watershed emphasizes the complexity in fate and transport properties between HSV and HIB. This study demonstrates the utility of analyzing multiple HSV and HIB to provide a weight-of-evidence approach for assessment of fecal contamination at the watershed level, provides an assessment of relative loadings for prioritizing areas within a watershed, and demonstrates how loadings of HSV and HIB can be inconsistent, inferring potential differences in fate and transport between the two indicators of human fecal presence.
Collapse
Affiliation(s)
- Peter L Lenaker
- U.S. Geological Survey, Upper Midwest Water Science Center , 8505 Research Way , Middleton , Wisconsin 53562 , United States
| | - Steven R Corsi
- U.S. Geological Survey, Upper Midwest Water Science Center , 8505 Research Way , Middleton , Wisconsin 53562 , United States
| | - Sandra L McLellan
- School of Freshwater Sciences , University of Wisconsin-Milwaukee , 600 East Greenfield Avenue , Milwaukee , Wisconsin 53204 , United States
| | - Mark A Borchardt
- U.S. Department of Agriculture, Agricultural Research Service , 2615 Yellowstone Drive , Marshfield , Wisconsin 54449 , United States
| | - Hayley T Olds
- U.S. Geological Survey, Upper Midwest Water Science Center , 8505 Research Way , Middleton , Wisconsin 53562 , United States
| | - Deborah K Dila
- School of Freshwater Sciences , University of Wisconsin-Milwaukee , 600 East Greenfield Avenue , Milwaukee , Wisconsin 53204 , United States
| | - Susan K Spencer
- U.S. Department of Agriculture, Agricultural Research Service , 2615 Yellowstone Drive , Marshfield , Wisconsin 54449 , United States
| | - Austin K Baldwin
- U.S. Geological Survey, Upper Midwest Water Science Center , 8505 Research Way , Middleton , Wisconsin 53562 , United States
| |
Collapse
|
24
|
Devane ML, Weaver L, Singh SK, Gilpin BJ. Fecal source tracking methods to elucidate critical sources of pathogens and contaminant microbial transport through New Zealand agricultural watersheds - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 222:293-303. [PMID: 29860123 DOI: 10.1016/j.jenvman.2018.05.033] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/07/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
In New Zealand, there is substantial potential for microbial contaminants from agricultural fecal sources to be transported into waterways. The flow and transport pathways for fecal contaminants vary at a range of scales and is dependent on chemical, physical and biological attributes of pathways, soils, microorganisms and landscape characteristics. Understanding contaminant transport pathways from catchment to stream can aid water management strategies. It is not practical, however to conduct direct field measurement for all catchments on the fate and transport of fecal pathogens due to constraints on time, personnel, and material resources. To overcome this problem, fecal source tracking can be utilised to link catchment characteristics to fecal signatures identifying critical sources. In this article, we have reviewed approaches to identifying critical sources and pathways for fecal microorganisms from agricultural sources, and make recommendations for the appropriate use of these fecal source tracking (FST) tools.
Collapse
Affiliation(s)
- Megan L Devane
- Institute of Environmental Science and Research Ltd. (ESR), P.O. Box 29181, Christchurch, New Zealand.
| | - Louise Weaver
- Institute of Environmental Science and Research Ltd. (ESR), P.O. Box 29181, Christchurch, New Zealand
| | - Shailesh K Singh
- National Institute of Water and Atmospheric Research, 10 Kyle St, Riccarton Christchurch, 8011, New Zealand
| | - Brent J Gilpin
- Institute of Environmental Science and Research Ltd. (ESR), P.O. Box 29181, Christchurch, New Zealand
| |
Collapse
|
25
|
Ebomah KE, Adefisoye MA, Okoh AI. Pathogenic Escherichia coli Strains Recovered from Selected Aquatic Resources in the Eastern Cape, South Africa, and Its Significance to Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15071506. [PMID: 30018212 PMCID: PMC6069279 DOI: 10.3390/ijerph15071506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/10/2018] [Indexed: 12/13/2022]
Abstract
The prevalence of pathogenic microorganisms, as well as the proliferation of antimicrobial resistance, pose a significant threat to public health. However, the magnitude of the impact of aquatic environs concerning the advent and propagation of resistance genes remains vague. Escherichia coli (E. coli) are widespread and encompass a variety of strains, ranging from non-pathogenic to highly pathogenic. This study reports on the incidence and antibiotic susceptibility profiles of E. coli isolates recovered from the Nahoon beach and its canal waters in South Africa. A total of 73 out of 107 (68.2%) Polymerase chain reaction confirmed E. coli isolates were found to be affirmative for at least one virulence factor. These comprised of enteropathogenic E. coli 11 (10.3%), enteroinvasive E. coli 14 (13.1%), and neonatal meningitis E. coli 48 (44.9%). The phenotypic antibiogram profiles of the confirmed isolates revealed that all 73 (100%) were resistant to ampicillin, whereas 67 (91.8%) of the pathotypes were resistant to amikacin, gentamicin, and ceftazidime. About 61 (83.6%) and 51 (69.9%) were resistant to tetracycline and ciprofloxacin, respectively, and about 21.9% (16) demonstrated multiple instances of antibiotic resistance, with 100% exhibiting resistance to eight antibiotics. The conclusion from our findings is that the Nahoon beach and its canal waters are reservoirs of potentially virulent and antibiotic-resistant E. coli strains, which thus constitute a potent public health risk.
Collapse
Affiliation(s)
- Kingsley Ehi Ebomah
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa.
| | - Martins Ajibade Adefisoye
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa.
| | - Anthony Ifeanyi Okoh
- SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice 5700, South Africa.
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice 5700, South Africa.
| |
Collapse
|
26
|
Quantitative Microbial Risk Assessment for Workers Exposed to Bioaerosol in Wastewater Treatment Plants Aimed at the Choice and Setup of Safety Measures. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15071490. [PMID: 30011925 PMCID: PMC6069154 DOI: 10.3390/ijerph15071490] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 06/21/2018] [Accepted: 07/12/2018] [Indexed: 12/24/2022]
Abstract
Biological risk assessment in occupational settings currently is based on either qualitative or semiquantitative analysis. In this study, a quantitative microbial risk assessment (QMRA) has been applied to estimate the human adenovirus (HAdV) health risk due to bioaerosol exposure in a wastewater treatment plant (WWTP). A stochastic QMRA model was developed considering HAdV as the index pathogen, using its concentrations in different areas and published dose–response relationship for inhalation. A sensitivity analysis was employed to examine the impact of input parameters on health risk. The QMRA estimated a higher average risk in sewage influent and biological oxidation tanks (15.64% and 12.73% for an exposure of 3 min). Sensitivity analysis indicated HAdV concentration as a predominant factor in the estimated risk. QMRA results were used to calculate the exposure limits considering four different risk levels (one illness case per 100, 1.000, 10.000, and 100.000 workers): for 3 min exposures, we obtained 565, 170, 54, and 6 GC/m3 of HAdV. We also calculated the maximum time of exposure for each level for different areas. Our findings can be useful to better define the effectiveness of control measures, which would thus reduce the virus concentration or the exposure time.
Collapse
|
27
|
McClary JS, Boehm AB. Transcriptional Response of Staphylococcus aureus to Sunlight in Oxic and Anoxic Conditions. Front Microbiol 2018; 9:249. [PMID: 29599752 PMCID: PMC5863498 DOI: 10.3389/fmicb.2018.00249] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 01/31/2018] [Indexed: 12/20/2022] Open
Abstract
The transcriptional response of Staphylococcus aureus strain Newman to sunlight exposure was investigated under both oxic and anoxic conditions using RNA sequencing to gain insight into potential mechanisms of inactivation. S. aureus is a pathogenic bacterium detected at recreational beaches which can cause gastrointestinal illness and skin infections, and is of increasing public health concern. To investigate the S. aureus photostress response in oligotrophic seawater, S. aureus cultures were suspended in seawater and exposed to full spectrum simulated sunlight. Experiments were performed under oxic or anoxic conditions to gain insight into the effects of oxygen-mediated and non-oxygen-mediated inactivation mechanisms. Transcript abundance was measured after 6 h of sunlight exposure using RNA sequencing and was compared to transcript abundance in paired dark control experiments. Culturable S. aureus decayed following biphasic inactivation kinetics with initial decay rate constants of 0.1 and 0.03 m2 kJ−1 in oxic and anoxic conditions, respectively. RNA sequencing revealed that 71 genes had different transcript abundance in the oxic sunlit experiments compared to dark controls, and 18 genes had different transcript abundance in the anoxic sunlit experiments compared to dark controls. The majority of genes showed reduced transcript abundance in the sunlit experiments under both conditions. Three genes (ebpS, NWMN_0867, and NWMN_1608) were found to have the same transcriptional response to sunlight between both oxic and anoxic conditions. In the oxic condition, transcripts associated with porphyrin metabolism, nitrate metabolism, and membrane transport functions were increased in abundance during sunlight exposure. Results suggest that S. aureus responds differently to oxygen-dependent and oxygen-independent photostress, and that endogenous photosensitizers play an important role during oxygen-dependent indirect photoinactivation.
Collapse
Affiliation(s)
- Jill S McClary
- Civil and Environmental Engineering, Stanford University, Stanford, CA, United States
| | - Alexandria B Boehm
- Civil and Environmental Engineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
28
|
Brown KI, Graham KE, Soller JA, Boehm AB. Estimating the probability of illness due to swimming in recreational water with a mixture of human- and gull-associated microbial source tracking markers. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:1528-1541. [PMID: 29114693 DOI: 10.1039/c7em00316a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Beaches often receive fecal contamination from more than one source. Human sources include untreated sewage as well as treated wastewater effluent, and animal sources include wildlife such as gulls. Different contamination sources are expected to pose different health risks to swimmers. Genetic microbial source tracking (MST) markers can be used to detect bacteria that are associated with different animal sources, but the health risks associated with a mixture of MST markers are unknown. This study presents a method for predicting these health risks, using human- and gull-associated markers as an example. Quantitative Microbial Risk Assessment (QMRA) is conducted with MST markers as indicators. We find that risks associated with exposure to a specific concentration of a human-associated MST marker (HF) are greater if the HF source is untreated sewage rather than treated wastewater effluent. We also provide a risk-based threshold of HF from untreated sewage at a beach, to stay below a predicted illness risk of 3 per 100 swimmers, that is a function of gull-associated MST marker (CAT) concentration.
Collapse
Affiliation(s)
- Kendra I Brown
- Department of Civil and Environmental Engineering, Environmental Engineering and Science, Stanford University, 94305-4020, USA.
| | | | | | | |
Collapse
|
29
|
Murphy HM, Meng Z, Henry R, Deletic A, McCarthy DT. Current Stormwater Harvesting Guidelines Are Inadequate for Mitigating Risk from Campylobacter During Nonpotable Reuse Activities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:12498-12507. [PMID: 29035523 DOI: 10.1021/acs.est.7b03089] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Campylobacter is a pathogen frequently detected in urban stormwater worldwide. It is one of the leading causes of enteric disease in many developed countries and is the leading cause of enteric disease in Australia. Prior to harvesting stormwater, adequate treatment is necessary to mitigate risks derived from such harmful pathogens. The goal of this research was to estimate the health risks associated with the exposure to Campylobacter when harvesting urban stormwater for toilet flushing and irrigation activities, and the role treatment options play in limiting risks. Campylobacter data collected from several urban stormwater systems in Victoria, Australia, were the inputs of a Quantitative Microbial Risk Assessment model. The model included seven treatment scenarios, spanning wetlands, biofilters, and more traditional treatment trains including those recommended by the Australian Guidelines for Water Recycling. According to our modeling and acceptable risk thresholds, only two treatment scenarios could supply water of sufficient quality for toilet flushing and irrigation end-uses: (1) using stormwater biofilters coupled with UV-treatment and (2) a more conventional coagulation, filtration, UV, and chlorination treatment plant. Importantly, our modeling results suggest that current guidelines in place for stormwater reuse are not adequate for protecting against exposure to Campylobacter. However, more research is required to better define whether the Campylobacter detectable in stormwater are pathogenic to humans.
Collapse
Affiliation(s)
- Heather M Murphy
- Division of Environmental Health, College of Public Health, Temple University , Philadelphia, Pennsylvania 19122, United States
| | - Ze Meng
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Department of Civil Engineering, Monash Infrastructure Institute, Monash University , Clayton, Victoria 3800, Australia
| | - Rebekah Henry
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Department of Civil Engineering, Monash Infrastructure Institute, Monash University , Clayton, Victoria 3800, Australia
| | - Ana Deletic
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Department of Civil Engineering, Monash Infrastructure Institute, Monash University , Clayton, Victoria 3800, Australia
| | - David T McCarthy
- Environmental and Public Health Microbiology Laboratory (EPHM Lab), Department of Civil Engineering, Monash Infrastructure Institute, Monash University , Clayton, Victoria 3800, Australia
| |
Collapse
|
30
|
Climate change-induced increases in precipitation are reducing the potential for solar ultraviolet radiation to inactivate pathogens in surface waters. Sci Rep 2017; 7:13033. [PMID: 29026153 PMCID: PMC5638896 DOI: 10.1038/s41598-017-13392-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 09/22/2017] [Indexed: 11/09/2022] Open
Abstract
Climate change is accelerating the release of dissolved organic matter (DOM) to inland and coastal waters through increases in precipitation, thawing of permafrost, and changes in vegetation. Our modeling approach suggests that the selective absorption of ultraviolet radiation (UV) by DOM decreases the valuable ecosystem service wherein sunlight inactivates waterborne pathogens. Here we highlight the sensitivity of waterborne pathogens of humans and wildlife to solar UV, and use the DNA action spectrum to model how differences in water transparency and incident sunlight alter the ability of UV to inactivate waterborne pathogens. A case study demonstrates how heavy precipitation events can reduce the solar inactivation potential in Lake Michigan, which provides drinking water to over 10 million people. These data suggest that widespread increases in DOM and consequent browning of surface waters reduce the potential for solar UV inactivation of pathogens, and increase exposure to infectious diseases in humans and wildlife.
Collapse
|
31
|
Singh G, Vajpayee P, Rani N, Amoah ID, Stenström TA, Shanker R. Exploring the potential reservoirs of non specific TEM beta lactamase (bla(TEM)) gene in the Indo-Gangetic region: A risk assessment approach to predict health hazards. JOURNAL OF HAZARDOUS MATERIALS 2016; 314:121-128. [PMID: 27111425 DOI: 10.1016/j.jhazmat.2016.04.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 03/21/2016] [Accepted: 04/13/2016] [Indexed: 06/05/2023]
Abstract
The emergence of antimicrobial resistant bacteria is an important public health and environmental contamination issue. Antimicrobials of β-lactam group accounts for approximately two thirds, by weight, of all antimicrobials administered to humans due to high clinical efficacy and low toxicity. This study explores β-lactam resistance determinant gene (blaTEM) as emerging contaminant in Indo-Gangetic region using qPCR in molecular beacon format. Quantitative Microbial Risk Assessment (QMRA) approach was adopted to predict risk to human health associated with consumption/exposure of surface water, potable water and street foods contaminated with bacteria having blaTEM gene. It was observed that surface water and sediments of the river Ganga and Gomti showed high numbers of blaTEM gene copies and varied significantly (p<0.05) among the sampling locations. The potable water collected from drinking water facility and clinical settings exhibit significant number of blaTEM gene copies (13±0.44-10200±316 gene copies/100mL). It was observed that E.crassipes among aquatic flora encountered in both the rivers had high load of blaTEM gene copies. The information on prevalence of environmental reservoirs of blaTEM gene containing bacteria in Indo-Gangetic region and risk associated will be useful for formulating strategies to protect public from menace of clinical risks linked with antimicrobial resistant bacteria.
Collapse
Affiliation(s)
- Gulshan Singh
- Environmental Microbiology, CSIR - Indian Institute of Toxicology Research, Post Box - 80, Mahatma Gandhi Marg, Lucknow, U.P., India; SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Poornima Vajpayee
- Environmental Microbiology, CSIR - Indian Institute of Toxicology Research, Post Box - 80, Mahatma Gandhi Marg, Lucknow, U.P., India
| | - Neetika Rani
- Environmental Microbiology, CSIR - Indian Institute of Toxicology Research, Post Box - 80, Mahatma Gandhi Marg, Lucknow, U.P., India
| | - Isaac Dennis Amoah
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Thor Axel Stenström
- SARChI Chair, Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Rishi Shanker
- Environmental Microbiology, CSIR - Indian Institute of Toxicology Research, Post Box - 80, Mahatma Gandhi Marg, Lucknow, U.P., India; Institute of Life Sciences, School of Science and Technology, Ahmedabad University, Ahmedabad-380009, Gujarat, India.
| |
Collapse
|