1
|
Yu Y, Ding C, Tong H, Ren N, You S. Flashover-Inspired Electro-Assisted Crystallization for Controllable Freeze Desalination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7399-7407. [PMID: 40168602 DOI: 10.1021/acs.est.4c14381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
Freeze desalination (FD) offers a promising solution for desalining industrial saline wastewater in cold regions. However, salt entrapment in the close-dendritic ice pore network is uncontrollable, which makes ice-salt separation a challenge. To address this issue, this study reported the electro-assisted crystallization (EAC) to realize the controllable FD, inspired by the ice purification during insulator flashover frequently observed in power transmission systems. The experiment performed at -20 °C demonstrated that EAC allowed ice crystallization with an open ice pore network, whose open-area percentage was increased from 25 to 41% as current density was raised from 10 to 30 mA cm-2. The EAC could achieve 89.3% desalination efficiency from 35 g L-1 saltwater at 30 mA cm-2, the value being four times that obtained for direct FD. Based on the principle of physical field synergy, the spontaneous salt release and controllable FD were likely the results of electro-heat synergy between Joule heating and dipole polarization effects. This study not only provides a novel pathway for controllable ice-salt separation inspired by flashover phenomenon but also suggests a potential technology for desalination treatment of water or wastewater in cold regions.
Collapse
Affiliation(s)
- Yuan Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chi Ding
- Beijing Engineering Corporation Limited, Power China, Beijing 100024, China
| | - Hailong Tong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, P. R. China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
2
|
Aber S, Shi Z, Xing K, Rameezdeen R, Chow CWK, Hagare D, Jindal T. Microbial Desalination Cell for Sustainable Water Treatment: A Critical Review. GLOBAL CHALLENGES (HOBOKEN, NJ) 2023; 7:2300138. [PMID: 37829683 PMCID: PMC10566805 DOI: 10.1002/gch2.202300138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/25/2023] [Indexed: 10/14/2023]
Abstract
In view of increasing threats arising from the shortage of fresh water, there is an urgent need to propose sustainable technologies for the exploitation of unconventional water sources. As a derivative of microbial fuel cells (MFCs), microbial desalination cell (MDC) has the potential of desalinating saline/brackish water while simultaneously generating electricity, as well as treating wastewater. Therefore, it is worth investigating its practicability as a potential sustainable desalination technology. This review article first introduces the fundamentals and annual trends of MDCs. The desalination of diverse types of solutions using MDCs along with their life cycle impact assessment (LCIA) and economic analysis is studied later. Finally, limitations and areas for improvement, prospects, and potential applications of this technology are discussed. Due to the great advantages of MDCs, improving their design, building materials, efficiency, and throughput will offer them as a significant alternative to the current desalination technologies.
Collapse
Affiliation(s)
- Soheil Aber
- Sustainable Infrastructure and Resource Management (SIRM)UniSA STEMUniversity of South AustraliaMawson LakesSA5095Australia
| | - Zhining Shi
- Sustainable Infrastructure and Resource Management (SIRM)UniSA STEMUniversity of South AustraliaMawson LakesSA5095Australia
| | - Ke Xing
- Sustainable Infrastructure and Resource Management (SIRM)UniSA STEMUniversity of South AustraliaMawson LakesSA5095Australia
| | - Raufdeen Rameezdeen
- Sustainable Infrastructure and Resource Management (SIRM)UniSA STEMUniversity of South AustraliaMawson LakesSA5095Australia
| | - Christopher W. K. Chow
- Sustainable Infrastructure and Resource Management (SIRM)UniSA STEMUniversity of South AustraliaMawson LakesSA5095Australia
| | - Dharmappa Hagare
- School of Engineering, Design and Built EnvironmentWestern Sydney UniversityPenrithNSW2751Australia
| | - Tanu Jindal
- Amity Institute of Environmental Toxicology, Safety and ManagementAmity UniversityNoida201303India
| |
Collapse
|
3
|
Zhou S, Huang L, Wang G, Wang W, Zhao R, Sun X, Wang D. A review of the development in shale oil and gas wastewater desalination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162376. [PMID: 36828060 DOI: 10.1016/j.scitotenv.2023.162376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/19/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
The development of the shale oil and gas extraction industry has heightened concerns about shale oil and gas wastewater (SOGW). This review comprehensively summarizes, analyzes, and evaluates multiple issues in SOGW desalination. The detailed analysis of SOGW water quality and various disposal strategies with different water quality standards reveals the water quality characteristics and disposal status of SOGW, clarifying the necessity of desalination for the rational management of SOGW. Subsequently, potential and implemented technologies for SOGW desalination are reviewed, mainly including membrane-based, thermal-based, and adsorption-based desalination technologies, as well as bioelectrochemical desalination systems, and the research progress of these technologies in desalinating SOGW are highlighted. In addition, various pretreatment methods for SOGW desalination are comprehensively reviewed, and the synergistic effects on SOGW desalination that can be achieved by combining different desalination technologies are summarized. Renewable energy sources and waste heat are also discussed, which can be used to replace traditional fossil energy to drive SOGW desalination and reduce the negative impact of shale oil and gas exploitation on the environment. Moreover, real project cases for SOGW desalination are presented, and the full-scale or pilot-scale on-site treatment devices for SOGW desalination are summarized. In order to compare different desalination processes clearly, operational parameters and performance data of varying desalination processes, including feed salinity, water flux, salt removal rate, water recovery, energy consumption, and cost, are collected and analyzed, and the applicability of different desalination technologies in desalinating SOGW is qualitatively evaluated. Finally, the recovery of valuable inorganic resources in SOGW is discussed, which is a meaningful research direction for SOGW desalination. At present, the development of SOGW desalination has not reached a satisfactory level, and investing enough energy in SOGW desalination in the future is still necessary to achieve the optimal management of SOGW.
Collapse
Affiliation(s)
- Simin Zhou
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Likun Huang
- School of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Guangzhi Wang
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China.
| | - Wei Wang
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Rui Zhao
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Xiyu Sun
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| | - Dongdong Wang
- School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, China
| |
Collapse
|
4
|
Akash S, Sivaprakash B, Rajamohan N. Microbial electro deionization for waste water treatment - A critical review on methods, applications and mechanism. ENVIRONMENTAL RESEARCH 2022; 214:113999. [PMID: 35932837 DOI: 10.1016/j.envres.2022.113999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/04/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Electro deionization using microbial communities has been proven as a competent method for desalination and abatement of water pollution by removing ionic chemicals from the target waters. Microbial Desalination Cell (MDC) facilitates microbial deionization which can either support or be a substitute for the conventional desalination methods. Generation of electricity is accomplished by the bio electrochemical oxidation of organic compounds present as contaminants in wastewater which in turn attribute to the migration of ions in MDC system. The present review aims to elucidate the theory, principles and the application of microbial desalination cell and microbial fuel cell (MFC) in treatment of saline and wastewaters. Air cathode MDC and stacked MDC for purification of saline water are found to give promising results. Air pump assisted microbial desalination cell reported 150.39 ppm h-1 of salt removal with an operational time period of 80 h and showed consistent results. Hence the air cathode assisted MDC showed dominant capacity of salt removal compared to stacked MDC. Also, three major types of microbial fuel cell, namely photosynthetic biofilm MFC, constructive wetland MFC and ceramic membrane supported MFC are reviewed for their potentials in wastewater treatment by deionization method and electricity generation. Complete (100%) removal of chemical oxygen demand was reported by photosynthetic microbial fuel cell operated for 16 days having 435.8 Ω of external resistance. When constructive wetland microbial fuel cell was operated for 10 days with 1000 ohms of external resistance, it exhibited complete (100%) removal of chemical oxygen demand from the wastewater. About 92% of chemical oxygen demand removal was demonstrated by ceramic membrane supported microbial fuel. Compared to ceramic membrane microbial fuel cell, photosynthetic and constructive wetland microbial fuel cell displayed better performance in terms of pollutant removal capacity and economical factor. Ability of the electrogenic species, namely Geobacter, Shewanella, Clostridium and Bacillus and the photosynthetic species, namely Chorella Vulgaris Rhodopsuedomonas, and Scenedesmus abundans in microbial deionization methods and their performance levels reported by several researchers are presented.
Collapse
Affiliation(s)
- S Akash
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar PC, 608002, India
| | - Baskaran Sivaprakash
- Department of Chemical Engineering, Annamalai University, Annamalai Nagar PC, 608002, India
| | - Natarajan Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Sohar, PC-311, Oman.
| |
Collapse
|
5
|
He Y, Wang L, Chen Z, Huang X, Wang X, Zhang X, Wen X. Novel catalytic ceramic membranes anchored with MnMe oxide and their catalytic ozonation performance towards atrazine degradation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120362] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
6
|
Zhang H, Wang X, Li Y, Zuo K, Lyu C. A novel MnOOH coated nylon membrane for efficient removal of 2,4-dichlorophenol through peroxymonosulfate activation. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125526. [PMID: 34030406 DOI: 10.1016/j.jhazmat.2021.125526] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/25/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
2,4-Dichlorophenol (2,4-DCP) is a highly toxic water contaminant. In this study, we demonstrate a novel catalytic filtration membrane by coating MnOOH nanoparticles on nylon membrane (MnOOH@nylon) for improved removal of 2,4-DCP through a synergetic "trap-and-zap" process. In this hybrid membrane, the underlying nylon membrane provides high adsorption affinity for 2,4-DCP. While the immobilized MnOOH nanoparticles on the membrane surface provide catalytic property for peroxymonosulfate activation to produce reactive oxygen species (ROS), which migrate with the fluid to the underlying nylon membrane pore channels and react with the adsorbed 2,4-DCP with a much higher rate (0.9575 mg L-1 min-1) than that in the suspended MnOOH particle system (0.1493 mg L-1 min-1). The forced flow in the small voids of the MnOOH nanoparticle coating layer (< 200 nm) and channels of nylon membrane (~220 nm) is critical to improve the 2,4-DCP adsorption, ROS production, and 2,4-DCP degradation. The hybrid MnOOH@nylon membrane also improves the stability of the MnOOH nanoparticles and the resistibility to competitive anions, due to much higher concentration ratio of the adsorbed 2,4-DCP and produced ROS versus background competitive ions in the membrane phase. This study provides a generally applicable approach to achieve high removal of target contaminants in catalytic membrane processes.
Collapse
Affiliation(s)
- Hourui Zhang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130026, PR China
| | - Xiansheng Wang
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130026, PR China
| | - Yicheng Li
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130026, PR China
| | - Kuichang Zuo
- Department of Civil and Environmental Engineering, Rice University, MS 519, 6100 Main Street, Houston 77005, USA.
| | - Cong Lyu
- Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130026, PR China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun 130026, PR China.
| |
Collapse
|
7
|
Salehmin MNI, Lim SS, Satar I, Daud WRW. Pushing microbial desalination cells towards field application: Prevailing challenges, potential mitigation strategies, and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143485. [PMID: 33279184 DOI: 10.1016/j.scitotenv.2020.143485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 10/27/2020] [Accepted: 10/27/2020] [Indexed: 06/12/2023]
Abstract
Microbial desalination cells (MDCs) have been experimentally proven as a versatile bioelectrochemical system (BES). They have the potential to alleviate environmental pollution, reduce water scarcity and save energy and operational costs. However, MDCs alone are inadequate to realise a complete wastewater and desalination treatment at a high-efficiency performance. The assembly of identical MDC units that hydraulically and electrically connected can improve the performance better than standalone MDCs. In the same manner, the coupling of MDCs with other BES or conventional water reclamation technology has also exhibits a promising performance. However, the scaling-up effort has been slowly progressing, leading to a lack of knowledge for guiding MDC technology into practicality. Many challenges remain unsolved and should be mitigated before MDCs can be fully implemented in real applications. Here, we aim to provide a comprehensive chronological-based review that covers technological limitations and mitigation strategies, which have been developed for standalone MDCs. We extend our discussion on how assembled, coupled and scaled-up MDCs have improved in comparison with standalone and lab-scale MDC systems. This review also outlines the prevailing challenges and potential mitigation strategies for scaling-up based on large-scale specifications and evaluates the prospects of selected MDC systems to be integrated with conventional anaerobic digestion (AD) and reverse osmosis (RO). This review offers several recommendations to promote up-scaling studies guided by the pilot scale BES and existing water reclamation technologies.
Collapse
Affiliation(s)
| | - Swee Su Lim
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - Ibdal Satar
- Department of Food Technology, Faculty of Industrial Technology, Universitas Ahmad Dahlan (UAD), 55166 Umbulharjo, Yogyakarta, Indonesia
| | - Wan Ramli Wan Daud
- Fuel Cell Institute, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia; Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia.
| |
Collapse
|
8
|
Wang Y, Xu A, Cui T, Zhang J, Yu H, Han W, Shen J, Li J, Sun X, Wang L. Construction and application of a 1-liter upflow-stacked microbial desalination cell. CHEMOSPHERE 2020; 248:126028. [PMID: 32018109 DOI: 10.1016/j.chemosphere.2020.126028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 06/10/2023]
Abstract
As increasing demand of global reuse water, microbial desalination cell (MDC) is developed as a potential desalination approach to drive ion migration and separation through biodegradation without any additional energy. A novel, efficient, stable reactor coupled stacked MDC with upflow MDC was constructed, which was named as upflow-stacked MDC (USMDC). Compared with the traditional stacked MDC and upflow MDC, the desalination and generation performance of the USMDC was evaluated. Results showed that, after 24 h, the desalination ratio of USMDC can reach 91.9% when the external resistance was 1.5 Ω, which was 1.18 and 1.48 times higher than SMDC and UMDC, respectively. The long-term performance of the desalination efficiency was tested, which was maintained at 87.2-96.0% and stable for consecutive 120 days. Then, it was also the investigated that the relationship between desalination rate and external resistance during every period. The USMDC produced a maximum power density of 32.91 W m-3. In addition, the difference of current density between USMDC and SMDC indicates the turbulence generated by cylindrical structure could effectively decrease the internal resistance. It was also corroborated that salt concentration gradient and bipolar electrodialysis would decline the charge transfer efficiency. Accordingly, USMDC was verified having the superior desalination performance thus providing the possibility for application in wastewater reuse.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Anlin Xu
- School of Environmental Science and Engineering, Nanjing Tech University, Nanjing, China
| | - Tao Cui
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jingjing Zhang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Hongxia Yu
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiqing Han
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Jinyou Shen
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jiansheng Li
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiuyun Sun
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Lianjun Wang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| |
Collapse
|
9
|
|
10
|
Sun N, Zhang X, Zhao C, Wang H, Lu H, Kang S, Zhou H, Zhang H, Zhao H, Wang G. Three‐Dimensional N‐doped Porous Carbon Derived from Monosodium Glutamate for Capacitive Deionization and the Oxygen Reduction Reaction. ChemElectroChem 2018. [DOI: 10.1002/celc.201801063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Na Sun
- Key Laboratory of Materials Physics Centre for Environmental and Energy Nanomaterials Anhui Key Laboratory of Nanomaterials and Nanotechnology Institute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
- Science Island Branch of Graduate SchoolUniversity of Science and Technology of China Hefei, Anhui 230026 China
| | - Xian Zhang
- Key Laboratory of Materials Physics Centre for Environmental and Energy Nanomaterials Anhui Key Laboratory of Nanomaterials and Nanotechnology Institute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
| | - Cuijiao Zhao
- Key Laboratory of Materials Physics Centre for Environmental and Energy Nanomaterials Anhui Key Laboratory of Nanomaterials and Nanotechnology Institute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
- Science Island Branch of Graduate SchoolUniversity of Science and Technology of China Hefei, Anhui 230026 China
| | - Haojie Wang
- Key Laboratory of Materials Physics Centre for Environmental and Energy Nanomaterials Anhui Key Laboratory of Nanomaterials and Nanotechnology Institute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
- Science Island Branch of Graduate SchoolUniversity of Science and Technology of China Hefei, Anhui 230026 China
| | - Haisheng Lu
- Key Laboratory of Materials Physics Centre for Environmental and Energy Nanomaterials Anhui Key Laboratory of Nanomaterials and Nanotechnology Institute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
- Science Island Branch of Graduate SchoolUniversity of Science and Technology of China Hefei, Anhui 230026 China
| | - Shenghong Kang
- Key Laboratory of Materials Physics Centre for Environmental and Energy Nanomaterials Anhui Key Laboratory of Nanomaterials and Nanotechnology Institute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
| | - Hongjian Zhou
- Key Laboratory of Materials Physics Centre for Environmental and Energy Nanomaterials Anhui Key Laboratory of Nanomaterials and Nanotechnology Institute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
| | - Haimin Zhang
- Key Laboratory of Materials Physics Centre for Environmental and Energy Nanomaterials Anhui Key Laboratory of Nanomaterials and Nanotechnology Institute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
| | - Huijun Zhao
- Key Laboratory of Materials Physics Centre for Environmental and Energy Nanomaterials Anhui Key Laboratory of Nanomaterials and Nanotechnology Institute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
- Centre for Clean Environment and Energy Gold Coast CampusGriffith University Queensland 4222 Australia
| | - Guozhong Wang
- Key Laboratory of Materials Physics Centre for Environmental and Energy Nanomaterials Anhui Key Laboratory of Nanomaterials and Nanotechnology Institute of Solid State PhysicsChinese Academy of Sciences Hefei 230031 P. R. China
| |
Collapse
|
11
|
Zuo K, Chen M, Liu F, Xiao K, Zuo J, Cao X, Zhang X, Liang P, Huang X. Coupling microfiltration membrane with biocathode microbial desalination cell enhances advanced purification and long-term stability for treatment of domestic wastewater. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.10.034] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Analysis of Anodes of Microbial Fuel Cells When Carbon Brushes Are Preheated at Different Temperatures. Catalysts 2017. [DOI: 10.3390/catal7110312] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|