1
|
Murphy CWM, Davis GB, Rayner JL, Walsh T, Bastow TP, Butler AP, Puzon GJ, Morgan MJ. The role of predicted chemotactic and hydrocarbon degrading taxa in natural source zone depletion at a legacy petroleum hydrocarbon site. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128482. [PMID: 35739665 DOI: 10.1016/j.jhazmat.2022.128482] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 06/15/2023]
Abstract
Petroleum hydrocarbon contamination is a global problem which can cause long-term environmental damage and impacts water security. Natural source zone depletion (NSZD) is the natural degradation of such contaminants. Chemotaxis is an aspect of NSZD which is not fully understood, but one that grants microorganisms the ability to alter their motion in response to a chemical concentration gradient potentially enhancing petroleum NSZD mass removal rates. This study investigates the distribution of potentially chemotactic and hydrocarbon degrading microbes (CD) across the water table of a legacy petroleum hydrocarbon site near Perth, Western Australia in areas impacted by crude oil, diesel and jet fuel. Core samples were recovered and analysed for hydrocarbon contamination using gas chromatography. Predictive metagenomic profiling was undertaken to infer functionality using a combination of 16 S rRNA sequencing and PICRUSt2 analysis. Naphthalene contamination was found to significantly increase the occurrence of potential CD microbes, including members of the Comamonadaceae and Geobacteraceae families, which may enhance NSZD. Further work to explore and define this link is important for reliable estimation of biodegradation of petroleum hydrocarbon fuels. Furthermore, the outcomes suggest that the chemotactic parameter within existing NSZD models should be reviewed to accommodate CD accumulation in areas of naphthalene contamination, thereby providing a more accurate quantification of risk from petroleum impacts in subsurface environments, and the scale of risk mitigation due to NSZD.
Collapse
Affiliation(s)
- Cameron W M Murphy
- Environmental and Water Resources Section, Department of Civil and Environmental Engineering, Imperial College of Science,Technology and Medicine, Exhibition Road, London, United Kingdom; Centre for Environment and Life Sciences, CSIRO Land and Water, Private Bag No 5, Wembley, WA 6913, Australia
| | - Greg B Davis
- Centre for Environment and Life Sciences, CSIRO Land and Water, Private Bag No 5, Wembley, WA 6913, Australia
| | - John L Rayner
- Centre for Environment and Life Sciences, CSIRO Land and Water, Private Bag No 5, Wembley, WA 6913, Australia
| | - Tom Walsh
- Black Mountain Laboratories, CSIRO Land and Water, Acton, P.O. Box 1700, Canberra, ACT 2601, Australia
| | - Trevor P Bastow
- Centre for Environment and Life Sciences, CSIRO Land and Water, Private Bag No 5, Wembley, WA 6913, Australia
| | - Adrian P Butler
- Environmental and Water Resources Section, Department of Civil and Environmental Engineering, Imperial College of Science,Technology and Medicine, Exhibition Road, London, United Kingdom
| | - Geoffrey J Puzon
- Centre for Environment and Life Sciences, CSIRO Land and Water, Private Bag No 5, Wembley, WA 6913, Australia.
| | - Matthew J Morgan
- Black Mountain Laboratories, CSIRO Land and Water, Acton, P.O. Box 1700, Canberra, ACT 2601, Australia
| |
Collapse
|
2
|
Hargreaves J, van West P. Oomycete-Root Interactions. METHODS IN RHIZOSPHERE BIOLOGY RESEARCH 2019. [DOI: 10.1007/978-981-13-5767-1_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
3
|
Sungthong R, Tauler M, Grifoll M, Ortega-Calvo JJ. Mycelium-Enhanced Bacterial Degradation of Organic Pollutants under Bioavailability Restrictions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11935-11942. [PMID: 28921965 DOI: 10.1021/acs.est.7b03183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This work examines the role of mycelia in enhancing the degradation by attached bacteria of organic pollutants that have poor bioavailability. Two oomycetes, Pythium oligandrum and Pythium aphanidermatum, were selected as producers of mycelial networks, while Mycobacterium gilvum VM552 served as a model polycyclic aromatic hydrocarbon (PAH) degrading bacterium. The experiments consisted of bacterial cultures exposed to a nondisturbed nonaqueous phase liquid (NAPL) layer containing a heavy fuel spiked with 14C-labeled phenanthrene that were incubated in the presence or absence of the mycelia of the oomycetes in both shaking and static conditions. At the end of the incubation, the changes in the total alkane and PAH contents in the NAPL residue were quantified. The results revealed that with shaking and the absence of mycelia, the strain VM552 grew by utilizing the bulk of alkanes and PAHs in the fuel; however, biofilm formation was incipient and phenanthrene was mineralized following zero-order kinetics, due to bioavailability limitations. The addition of mycelia favored biofilm formation and dramatically enhanced the mineralization of phenanthrene, up to 30 times greater than the rate without mycelia, possibly by providing a physical support to bacterial colonization and by supplying nutrients at the NAPL/water interface. The results in the static condition were very different because the bacterial strain alone degraded phenanthrene with sigmoidal kinetics but could not degrade alkanes or the bulk of PAHs. We suggest that bacteria/oomycete interactions should be considered not only in the design of new inoculants in bioremediation but also in biodegradation assessments of chemicals present in natural environments.
Collapse
Affiliation(s)
- Rungroch Sungthong
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC) , Avenida Reina Mercedes 10, Seville 41012, Spain
| | - Margalida Tauler
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona , Diagonal 643, Barcelona 08028, Spain
| | - Magdalena Grifoll
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona , Diagonal 643, Barcelona 08028, Spain
| | - Jose Julio Ortega-Calvo
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC) , Avenida Reina Mercedes 10, Seville 41012, Spain
| |
Collapse
|