1
|
Singh RR, Aminot Y, Héas-Moisan K, Preud'homme H, Munschy C. Cracked and shucked: GC-APCI-IMS-HRMS facilitates identification of unknown halogenated organic chemicals in French marine bivalves. ENVIRONMENT INTERNATIONAL 2023; 178:108094. [PMID: 37478678 DOI: 10.1016/j.envint.2023.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/23/2023]
Abstract
High resolution mass spectrometry (HRMS)-based non-target analysis coupled with ion mobility spectrometry (IMS) is gaining momentum due to its ability to provide complementary information which can be useful in the identification of unknown organic chemicals in support of efforts in unraveling the complexity of the chemical exposome. The chemical exposome in the marine environment, though not as well studied as its freshwater counterparts, is not foreign to chemical diversity specially when it comes to potentially bioaccumulative and bioactive polyhalogenated organic contaminants and natural products. In this work we present in detail how we utilized IMS-HRMS coupled with gas chromatographic separation and atmospheric pressure chemical ionization (APCI) to annotate polyhalogenated organic chemicals in French bivalves collected from 25 sites along the French coasts. We describe how we used open cheminformatic tools to exploit isotopologue patterns, isotope ratios, Kendrick mass defect (Cl scale), and collisional cross section (CCS), in order to annotate 157 halogenated features (level 1: 54, level 2: 47, level 3: 50, and level 4: 6). Grouping the features into 11 compound classes was facilitated by a KMD vs CCS plot which showed co-clustering of potentially structurally-related compounds. The features were semi-quantified to gain insight into the distribution of these halogenated features along the French coast, ultimately allowing us to differentiate between sites that are more anthropologically impacted versus sites that are potentially biodiverse.
Collapse
Affiliation(s)
- Randolph R Singh
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000, Nantes, France.
| | - Yann Aminot
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000, Nantes, France
| | - Karine Héas-Moisan
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000, Nantes, France
| | - Hugues Preud'homme
- IPREM-UMR5254, E2S UPPA, CNRS, Technopôle Helioparc, 2 Avenue P. Angot, 64053 Pau Cedex 9, France
| | - Catherine Munschy
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000, Nantes, France
| |
Collapse
|
2
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
3
|
Mukai K, Fujimori T, Anh HQ, Fukutani S, Kunisue T, Nomiyama K, Takahashi S. Extractable organochlorine (EOCl) and extractable organobromine (EOBr) in GPC-fractionated extracts from high-trophic-level mammals: Species-specific profiles and contributions of legacy organohalogen contaminants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:143843. [PMID: 33303197 DOI: 10.1016/j.scitotenv.2020.143843] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 06/12/2023]
Abstract
Previous studies have suggested that unidentified compounds constitute a large proportion of extractable organochlorine (EOCl) and extractable organobromine (EOBr) in the crude extracts without fractionation; however, the proportion of unidentified EOX (X = chlorine, bromine) associated with high-/low-molecular-weight compounds is still unknown. In this study, we applied gel permeation chromatography to fractionate extracts from archived liver samples of high-trophic marine and terrestrial mammals (striped dolphins, cats, and raccoon dogs), for which concentrations of legacy organohalogen contaminants (polychlorinated biphenyls, organochlorine pesticides, and polybrominated diphenyl ethers [PBDEs]) had been previously reported. EOX in high- (>1000 g/mol) and low- (≤1000 g/mol) molecular-weight fractions (EOX-H and EOX-L) were determined by neutron activation analysis. Comparison of EOCl and EOBr enabled the characterization among species. Despite small differences in the concentrations and molecular-weight profiles of EOCl among species, the contribution of chlorine in identified compounds to EOCl-L varied from 1.5% (cats) to 79% (striped dolphins). Considerable species-specific variations were observed in the concentrations of EOBr: striped dolphins exhibited significantly greater concentrations of both EOBr-H and EOBr-L than cats and/or raccoon dogs. Moreover, the contribution of bromine in PBDEs to EOBr-L was >50% in two cats, while it was <6% in other specimens. This is the first report on EOBr mass balance in cetaceans and on EOX mass balance in terrestrial mammals living close to humans. These results suggest the need for analysis of unidentified chlorinated compounds in terrestrial mammals and unidentified brominated compounds in marine mammals.
Collapse
Affiliation(s)
- Kota Mukai
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nisikyo-ku, Kyoto 615-8540, Japan
| | - Takashi Fujimori
- Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Katsura, Nisikyo-ku, Kyoto 615-8540, Japan.
| | - Hoang Quoc Anh
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | - Satoshi Fukutani
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori 590-0494, Japan
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| | - Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan; Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| |
Collapse
|
4
|
Liu X, Chen L, Yang M, Tan C, Chu W. The occurrence, characteristics, transformation and control of aromatic disinfection by-products: A review. WATER RESEARCH 2020; 184:116076. [PMID: 32698088 DOI: 10.1016/j.watres.2020.116076] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/13/2020] [Accepted: 06/15/2020] [Indexed: 05/27/2023]
Abstract
With the development of analytical technology, more emerging disinfection by-products (DBPs) have been identified and detected. Among them, aromatic DBPs, especially heterocyclic DBPs, possess relatively high toxicity compared with regulated DBPs, which has been proved by bioassays. Thus, the occurrence of aromatic DBPs is of great concern. This article provides a comprehensive review and summary of the characteristics, occurrence, transformation pathways and control of aromatic DBPs. Aromatic DBPs are frequently detected in drinking water, wastewater and swimming pool water, among which swimming pool water illustrates highest concentration. Considering the relatively high concentration and toxicity, halophenylacetonitriles (HPANs) and halonitrophenols (HNPs) are more likely to be toxicity driver among frequently detected phenyl DBPs. Aromatic DBPs can be viewed as important intermediate products of dissolved organic matter (DOM) during chlor(am)ination. High molecular weight DOM could convert to aromatic DBPs via direct or indirect pathways, and they can further decompose into regulated aliphatic DBPs such as trihalomethanes (THMs) and haloacetic acids (HAAs) by ring opening and side chain cleavage. Even though no single DBPs control strategy is efficient to all aromatic DBPs, the decrease of overall toxicity may be achieved by several methods including absorption, solar radiation and boiling. By systematically considering aromatic DBPs and aliphatic DBPs, a better trade-off can be made to reduce health risk induced by DBPs.
Collapse
Affiliation(s)
- Xiaoyu Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai, 200092, China
| | - Li Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai, 200092, China
| | - Mengting Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Chaoqun Tan
- School of Civil Engineering, Southeast University, Nanjing, 210096, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai, 200092, China; International Joint Research Center for Sustainable Urban Water System, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
5
|
Bidleman TF, Andersson A, Haglund P, Tysklind M. Will Climate Change Influence Production and Environmental Pathways of Halogenated Natural Products? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6468-6485. [PMID: 32364720 DOI: 10.1021/acs.est.9b07709] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Thousands of halogenated natural products (HNPs) pervade the terrestrial and marine environment. HNPs are generated by biotic and abiotic processes and range in complexity from low molecular mass natural halocarbons (nHCs, mostly halomethanes and haloethanes) to compounds of higher molecular mass which often contain oxygen and/or nitrogen atoms in addition to halogens (hHNPs). nHCs have a key role in regulating tropospheric and stratospheric ozone, while some hHNPs bioaccumulate and have toxic properties similar those of anthropogenic-persistent organic pollutants (POPs). Both chemical classes have common sources: biosynthesis by marine bacteria, phytoplankton, macroalgae, and some invertebrate animals, and both may be similarly impacted by alteration of production and transport pathways in a changing climate. The nHCs scientific community is advanced in investigating sources, atmospheric and oceanic transport, and forecasting climate change impacts through modeling. By contrast, these activities are nascent or nonexistent for hHNPs. The goals of this paper are to (1) review production, sources, distribution, and transport pathways of nHCs and hHNPs through water and air, pointing out areas of commonality, (2) by analogy to nHCs, argue that climate change may alter these factors for hHNPs, and (3) suggest steps to improve linkage between nHCs and hHNPs science to better understand and predict climate change impacts.
Collapse
Affiliation(s)
- Terry F Bidleman
- Department of Chemistry, Umeå University (UmU), SE-901 87 Umeå, Sweden
| | - Agneta Andersson
- Department of Ecology & Environmental Science, UmU, SE-901 87 Umeå, Sweden
- Umeå Marine Sciences Centre, UmU, SE-905 71 Hörnefors, Sweden
| | - Peter Haglund
- Department of Chemistry, Umeå University (UmU), SE-901 87 Umeå, Sweden
| | - Mats Tysklind
- Department of Chemistry, Umeå University (UmU), SE-901 87 Umeå, Sweden
| |
Collapse
|
6
|
Pessah IN, Lein PJ, Seegal RF, Sagiv SK. Neurotoxicity of polychlorinated biphenyls and related organohalogens. Acta Neuropathol 2019; 138:363-387. [PMID: 30976975 PMCID: PMC6708608 DOI: 10.1007/s00401-019-01978-1] [Citation(s) in RCA: 122] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 02/12/2019] [Accepted: 02/19/2019] [Indexed: 01/28/2023]
Abstract
Halogenated organic compounds are pervasive in natural and built environments. Despite restrictions on the production of many of these compounds in most parts of the world through the Stockholm Convention on Persistent Organic Pollutants (POPs), many "legacy" compounds, including polychlorinated biphenyls (PCBs), are routinely detected in human tissues where they continue to pose significant health risks to highly exposed and susceptible populations. A major concern is developmental neurotoxicity, although impacts on neurodegenerative outcomes have also been noted. Here, we review human studies of prenatal and adult exposures to PCBs and describe the state of knowledge regarding outcomes across domains related to cognition (e.g., IQ, language, memory, learning), attention, behavioral regulation and executive function, and social behavior, including traits related to attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). We also review current understanding of molecular mechanisms underpinning these associations, with a focus on dopaminergic neurotransmission, thyroid hormone disruption, calcium dyshomeostasis, and oxidative stress. Finally, we briefly consider contemporary sources of organohalogens that may pose human health risks via mechanisms of neurotoxicity common to those ascribed to PCBs.
Collapse
Affiliation(s)
- Isaac N Pessah
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 VM3B, Davis, CA, 95616, USA.
| | - Pamela J Lein
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, 1089 VM3B, Davis, CA, 95616, USA
| | - Richard F Seegal
- Professor Emeritus, School of Public Health, University at Albany, Rensselaer, NY, USA
| | - Sharon K Sagiv
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California, Berkeley, CA, USA
| |
Collapse
|
7
|
Fujii Y, Kato Y, Kozai M, Matsuishi T, Harada KH, Koizumi A, Kimura O, Endo T, Haraguchi K. Different profiles of naturally produced and anthropogenic organohalogens in the livers of cetaceans from the Sea of Japan and the North Pacific Ocean. MARINE POLLUTION BULLETIN 2018; 136:230-242. [PMID: 30509803 DOI: 10.1016/j.marpolbul.2018.08.051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 06/25/2018] [Accepted: 08/23/2018] [Indexed: 05/03/2023]
Abstract
Levels and profiles of naturally produced halogenated bipyrroles (Br4Cl2-DBP and Cl7-MBP), methoxylated tetrabromodiphenyl ethers (6-MeO-BDE47), anthropogenic perfluoroalkyl substances (PFASs) and legacy persistent organic pollutants (POPs) were investigated in the livers of 14 cetaceans from the Sea of Japan and the North Pacific Ocean. The concentrations of Br4Cl2-DBP (4 to 4900 ng/g-wet), Cl7-MBP (16 to 3960 ng/g-wet) and 6-MeO-BDE47 (7 to 190 ng/g-wet) were higher in the order of killer whales > toothed whales > baleen whales. Profiles of PFASs were dominated by perfluoroundecanoic and perfluorotridecanoic acids (10 to 540 ng/g-wet), sum of which accounted for 70% of total measured PFASs. Regional difference was observed for Cl7-MBP and PFASs, which were higher in the Sea of Japan, whereas Br4Cl2-DBP was in the North Pacific Ocean. Specific accumulation pattern of these natural contaminants in cetaceans around northern Japan could help compare the exposure profile of PFASs and POPs among other geographic regions.
Collapse
Affiliation(s)
- Yukiko Fujii
- Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Yoshihisa Kato
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1, Sanuki, Kagawa 769-2193, Japan
| | - Mai Kozai
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, 1314-1, Sanuki, Kagawa 769-2193, Japan
| | - Takashi Matsuishi
- Faculty of Fisheries Sciences, Hokkaido University, 3-1-1, Minato-cho, Hakodate, Hokkaido 041-8611, Japan
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo, Kyoto 606-8501, Japan
| | - Akio Koizumi
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo, Kyoto 606-8501, Japan
| | - Osamu Kimura
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Tetsuya Endo
- School of Pharmaceutical Sciences, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Tobetsu, Hokkaido 061-0293, Japan
| | - Koichi Haraguchi
- Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan.
| |
Collapse
|
8
|
Imamura K, Ueno Y, Akimoto S, Eda K, Du Y, Eerdun C, Wang M, Nishinaka K, Tsuda A. An Acid-Responsive Single Trichromatic Luminescent Dye That Provides Pure White-Light Emission. CHEMPHOTOCHEM 2017; 1:427-431. [PMID: 29104915 PMCID: PMC5658979 DOI: 10.1002/cptc.201700108] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Indexed: 11/26/2022]
Abstract
A novel acid‐responsive single trichromatic luminescent dye capable of emitting pure white light (WL) is reported. A newly designed p‐phenylene‐bridged bipyrrole bearing N‐alkylimino groups (1 a) specifically provides WL emission upon mixing with trifluoroacetic acid (TFA) in a CH2Cl2 solution. The emission originates from the trichromatic luminescent behavior of 1 a upon protonation of the imino groups. The blue‐light‐emitting 1 a exhibits dramatic color changes in fluorescence to orange and green upon mono‐ and diprotonation, respectively, providing a wide emission band in the range of λ=400–800 nm that provide WL when the compound is in a dynamic equilibrium between the three states. The sample also exhibits low self‐absorption of the emitted light and a high fluorescence quantum yield upon excitation with UV light.
Collapse
Affiliation(s)
- Keigo Imamura
- Department of Chemistry, Graduate School of Science Kobe University1-1 Rokkodai-cho, Nada-ku Kobe 657-8501Japan
| | - Yoshifumi Ueno
- Department of Chemistry, Graduate School of Science Kobe University1-1 Rokkodai-cho, Nada-ku Kobe 657-8501Japan
| | - Seiji Akimoto
- Department of Chemistry, Graduate School of Science Kobe University1-1 Rokkodai-cho, Nada-ku Kobe 657-8501Japan
| | - Kazuo Eda
- Department of Chemistry, Graduate School of Science Kobe University1-1 Rokkodai-cho, Nada-ku Kobe 657-8501Japan
| | - Yanqing Du
- School of Pharmaceutical Sciences Inner Mongolia Medical University, Jinshan Economic & Technology Development District Hohhot, Inner Mongolia 010100 P.R. China
| | - Chaolu Eerdun
- School of Pharmaceutical Sciences Inner Mongolia Medical University, Jinshan Economic & Technology Development District Hohhot, Inner Mongolia 010100 P.R. China
| | - Meiling Wang
- School of Pharmaceutical Sciences Inner Mongolia Medical University, Jinshan Economic & Technology Development District Hohhot, Inner Mongolia 010100 P.R. China
| | - Kumiko Nishinaka
- Department of Chemistry, Graduate School of Science Kobe University1-1 Rokkodai-cho, Nada-ku Kobe 657-8501Japan
| | - Akihiko Tsuda
- Department of Chemistry, Graduate School of Science Kobe University1-1 Rokkodai-cho, Nada-ku Kobe 657-8501Japan.,Department of Chemistry Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu Shiga 520-2192 Japan
| |
Collapse
|
9
|
Hauler C, Vetter W. Synthesis, structure elucidation, and determination of polyhalogenated N-methylpyrroles (PMPs) in blue mussels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:26029-26039. [PMID: 28942571 DOI: 10.1007/s11356-017-0229-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/13/2017] [Indexed: 06/07/2023]
Abstract
Polyhalogenated N-methylpyrroles (PMPs) are halogenated natural products (HNPs) recently detected in seagrass, blue mussels, and other marine organisms. In this study, we synthesized 2,3,4,5-tetrachloro-N-methylpyrrole (Cl4-MP), 2,3,4,5-tetrabrominated-N-methylpyrrole (Br4-MP, aka TBMP), and mixed tetrahalogenated (Cl and Br) N-methylpyrrole congeners. Use of one- and two-dimensional 1H and 13C NMR verified the structures of isolated/enriched 3,4-dibromo-2,5-dichloro-N-methylpyrrole (3,4-Br2-2,5-Cl2-MP), 2,3,4-tribromo-5-chloro-N-methylpyrrole (2,3,4-Br3-5-Cl-MP), and 3-bromo-2,4,5-trichloro-N-methylpyrrole (3-Br-2,4,5-Cl3-MP). GC/EI-MS and GC/ECNI-MS mass spectra of the five PMPs were studied with regard to fragmentation pattern and individual responses which were strongly affected by the presence (or absence) of Br in α-position(s). Quantitative solutions of the synthesized standards were used to determine the elution order of isomers and to quantify PMPs in selected blue mussel samples (Mytilus sp.) from the European Atlantic coast (Spain, France), the North Sea (the Netherlands, Germany) and Baltic Sea (Germany). PMPs were detected in all samples and the concentrations ranged between 0.6 and 52 μg/kg lipids with Br4-MP being the most abundant representative of this substance class.
Collapse
Affiliation(s)
- Carolin Hauler
- Institute of Food Chemistry, University of Hohenheim, Garbenstraße 28, 70599, Stuttgart, Germany
| | - Walter Vetter
- Institute of Food Chemistry, University of Hohenheim, Garbenstraße 28, 70599, Stuttgart, Germany.
| |
Collapse
|
10
|
Yang Y, Pignatello JJ. Participation of the Halogens in Photochemical Reactions in Natural and Treated Waters. Molecules 2017; 22:E1684. [PMID: 29027977 PMCID: PMC6151492 DOI: 10.3390/molecules22101684] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/01/2017] [Accepted: 10/04/2017] [Indexed: 11/17/2022] Open
Abstract
Halide ions are ubiquitous in natural waters and wastewaters. Halogens play an important and complex role in environmental photochemical processes and in reactions taking place during photochemical water treatment. While inert to solar wavelengths, halides can be converted into radical and non-radical reactive halogen species (RHS) by sensitized photolysis and by reactions with secondary reactive oxygen species (ROS) produced through sunlight-initiated reactions in water and atmospheric aerosols, such as hydroxyl radical, ozone, and nitrate radical. In photochemical advanced oxidation processes for water treatment, RHS can be generated by UV photolysis and by reactions of halides with hydroxyl radicals, sulfate radicals, ozone, and other ROS. RHS are reactive toward organic compounds, and some reactions lead to incorporation of halogen into byproducts. Recent studies indicate that halides, or the RHS derived from them, affect the concentrations of photogenerated reactive oxygen species (ROS) and other reactive species; influence the photobleaching of dissolved natural organic matter (DOM); alter the rates and products of pollutant transformations; lead to covalent incorporation of halogen into small natural molecules, DOM, and pollutants; and give rise to certain halogen oxides of concern as water contaminants. The complex and colorful chemistry of halogen in waters will be summarized in detail and the implications of this chemistry for global biogeochemical cycling of halogen, contaminant fate in natural waters, and water purification technologies will be discussed.
Collapse
Affiliation(s)
- Yi Yang
- Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, 123 Huntington St., P.O. Box 1106, New Haven, CT 06504-1106, USA.
| | - Joseph J Pignatello
- Department of Environmental Sciences, The Connecticut Agricultural Experiment Station, 123 Huntington St., P.O. Box 1106, New Haven, CT 06504-1106, USA.
| |
Collapse
|