1
|
Chen J, Yao Y, Yan Y, Li X, Liu Y. Self-Recycled electron donor resists disfavored oxidation reconstruction of Cu (I)-based electrocatalyst for nitrate removal by charge compensation. WATER RESEARCH 2025; 272:122959. [PMID: 39674143 DOI: 10.1016/j.watres.2024.122959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
The overuse of nitrate has led to the accumulation in natural water, being a globe issue in environment and human health. Electrochemical NO3- reduction reaction (eNO3RR) to ammonia occurs under ambient condition with low energy consumption and the yield of value-added product, being promising for NO3- removal. Cu(I)-based eNO3RR catalysts suffer from unavoidable oxidation reconstruction to Cu(II), reducing the performance of NO3- removal. In this work, we demonstrate charge compensation strategy to resist oxidation reconstruction of Cu(I)-based eNO3RR catalysts by introducing self-recycled electron donor. Taking Ti(III)-modified Cu2O/Cu as the proof-of-concept model, electron donor Ti(III) can donate electron to Cu(II) to regenerate Cu(I), meanwhile the expended Ti(III) can be recycled from the generated Ti(IV) via intervalence charge transfer (IVCT). Benefiting from those, Ti-Cu2O/Cu-10 exhibits significantly improved activity and durability for NO3- removal compared to Cu2O/Cu. The percentage of NO3- removal keeps at ∼95.0 % with the initial concentration of 60 mg•L-1 NO3--N at -0.9 V vs. RHE in 15 consecutive cycling tests (corresponding to 30 h). This work presents a feasible strategy to resist oxidation reconstruction of Cu(I)-based eNO3RR catalysts, making NO3- removal more effective, more durable, and more sustainable.
Collapse
Affiliation(s)
- Jiaqi Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yuan Yao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Yu Yan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xiaoxiao Li
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Yang Liu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| |
Collapse
|
2
|
Kong X, Ma J, Garg S, Waite TD. Tailored Metal-Organic Frameworks for Water Purification: Perfluorinated Fe-MOFs for Enhanced Heterogeneous Catalytic Ozonation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:8988-8999. [PMID: 38725314 DOI: 10.1021/acs.est.4c01133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
An industrially viable catalyst for heterogeneous catalytic ozonation (HCO) in water purification requires the characteristics of good dispersion of active species on its surface, efficient electron transfer for ozone decay, and maximum active species utilization. While metal-organic frameworks (MOFs) represent an attractive platform for HCO, the metal nodes in the unmodified MOFs exhibit low catalytic activity. Herein, we present a perfluorinated Fe-MOF catalyst by substituting H atoms on the metalated ligands with F atoms (termed 4F-MIL-88B) to induce structure evolution. The Lewis acidity of 4F-MIL-88B was enhanced via the formation of Fe nodes, tailoring the electron distribution on the catalyst surface. As a result of catalyst modification, the rate constant for degradation of the target compounds examined increased by ∼700% compared with that observed for the unmodified catalyst. Experimental evidence and theoretical calculations showed that the modulated polarity and the enhanced electron transfer between the catalyst and ozone molecules contributed to the adsorption and transformation of O3 to •OH on the catalyst surface. Overall, the results of this study highlight the significance of tailoring the metalated ligands to develop highly efficient and stable MOF catalysts for HCO and provide an in-depth mechanistic understanding of their structure-function evolution, which is expected to facilitate the applications of nanomaterial-based processes in water purification.
Collapse
Affiliation(s)
- Xiangtong Kong
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Shikha Garg
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - T David Waite
- Water Research Centre, School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
- UNSW Centre for Transformational Environmental Technologies (CTET), Yixing, Jiangsu Province 214206, P.R. China
| |
Collapse
|
3
|
Yang L, Zhao J, Xu D, Luo X, Han Y, Tang X, Liang H. Rational design of a hydrophilic nanoarray-structured electro-Fenton membrane for antibiotics removal and fouling mitigation: An intensified catalysis process in an oxygen vacancy-mediated cathodic microreactor. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134138. [PMID: 38574657 DOI: 10.1016/j.jhazmat.2024.134138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/02/2024] [Accepted: 03/24/2024] [Indexed: 04/06/2024]
Abstract
Electro-Fenton membranes (EFMs) can synchronously realize organic micropollutants destruction and fouling mitigation in a single filtration process with the assistance of hydroxyl radicals (•OH). Herein, a nanoarray-structured EFM (NS-EFM) was designed by assembling Fenton reactive CoFe-LDH nanowires using a low-temperature hydrothermal method. Combined with a defect-engineering strategy, the oxygen vacancies (OVac) in the CoFe-LDH nanoarrays were tailored by manipulating the stoichiometry of cations to optimize the Fenton reactivity of NS-EFMs. The optimized NS-EFM demonstrated exceptional sulfamethoxazole (SMX) removal (99.4%) and fast degradation kinetics (0.0846 min-1), but lower energy consumption (0.22 kWh m-3 per log removal of SMX). In-depth mechanism analysis revealed that the intrinsic electronic properties of OVac endowed NS-EFM with enhanced reactivity and charge transferability at metallic active sites of CoFe-LDH, thereby intensifying •OH generation. Besides, the nanoarray-structured NS-EFM built a confined microreactor space, leading to expedited •OH microflow to SMX. Meanwhile, the hydrophilic nature of CoFe-LDH nanoarrays synergistically contributed to the high flux recovery (95.0%) and minimal irreversible membrane fouling (5.0%), effectively alleviating membrane fouling within pores and on surfaces. This study offers insights into the potential of defect engineering as a foundational strategy in the design of EFMs, significantly advancing the treatment of organic pollutants and control of membrane fouling.
Collapse
Affiliation(s)
- Liu Yang
- Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jing Zhao
- Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Daliang Xu
- Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xinsheng Luo
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, PR China
| | - Yonghui Han
- Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiaobin Tang
- Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Heng Liang
- Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
4
|
Fei WQ, Guan J, Wan ZH, Zhang CM, Sun XF. Easily scale 3D conductive gradient fiber membrane for contaminants removal and fouling mitigation under electrochemical assistance. CHEMOSPHERE 2024; 353:141358. [PMID: 38311042 DOI: 10.1016/j.chemosphere.2024.141358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/06/2024]
Abstract
An electrochemical membrane filtration system provides an innovative approach to enhance contaminant removal and mitigate membrane fouling. There is an urgent need to develop portable, versatile, and efficient electrochemical membranes for affordable wastewater treatment. Here, a 3D conductive gradient fiber membrane (CC/PVDF) with a gradient porous structure was prepared using a two-step phase inversion method. Methyl orange (MO) was utilized as model organic substance to investigate the electrochemical performance of the CC/PVDF membrane. At applied potentials of +2 V, +3 V, -2 V and -3 V, the removal efficiency of MO was 5.1, 5.3, 4.8, and 5.1 times higher than at 0 V. A dramatic flux loss of 35.02% occurred on the membrane without electrochemistry, interestingly, whereas the flux losses were only 23.59%-10.24% in the applied potential after 30 min of filtration, which were approximately 1.18, 1.28, 1.29 and 1.38 times as high as that without electrochemistry, respectively. The enhanced removal and anti-fouling performances of the membranes were attributed to the functions of electrochemical degradation, electrostatic repulsion, and electrically enhanced wettability. Electrochemical generation of Hydrogen peroxide, along with HO• radicals, was detected and direct electron transfer and HO• were proved to be the dominant oxidants responsible for MO degradation. The intermediate oxidation products were identified by mass spectrometry, and an electrochemical degradation pathway of MO was proposed based on bond-breaking oxidation, ring-opening reactions, and complete oxidation. All the findings emphasize that the ECMF system possesses superior efficiency and creative potential for water purification applications.
Collapse
Affiliation(s)
- Wen-Qing Fei
- School of Environmental Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jing Guan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zhang-Hong Wan
- School of Environmental Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Chun-Miao Zhang
- School of Environmental Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xue-Fei Sun
- School of Environmental Science and Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
5
|
Du H, Hu X, Huang Y, Bai Y, Fei Y, Gao M, Li Z. A review of copper-based Fenton reactions for the removal of organic pollutants from wastewater over the last decade: different reaction systems. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27609-27633. [PMID: 38589591 DOI: 10.1007/s11356-024-33220-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
In recent years, as global industrialization has intensified, environmental pollution has become an increasingly serious problem. Improving water quality and achieving wastewater purification remain top priorities for environmental health initiatives. The Fenton process is favored by researchers due to its high efficiency and ease of operation. Central to the Fenton process is a catalyst used to activate hydrogen peroxide, rapidly degrading pollutants, improving water quality. Among various catalysts developed, copper-based catalysts have attracted considerable attention due to their affordability, high activity, and stable performance. Based on this, this paper reviews the development of copper-based Fenton systems over the past decade. It mainly involves the research and application of copper-based catalysts in different Fenton systems, including photo-Fenton, electro-Fenton, microwave-Fenton, and ultrasonic-Fenton. This review provides a fundamental reference for the subsequent studies of copper-based Fenton systems, contributing to the goal of transitioning these systems from laboratory research into practical environmental applications.
Collapse
Affiliation(s)
- Huixian Du
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Xuefeng Hu
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
| | - Yao Huang
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Yaxing Bai
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Yuhuan Fei
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Meng Gao
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| | - Zilong Li
- School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China
| |
Collapse
|
6
|
Qiu Z, Chu C, Wang K, Shen J, Zhu X, Kamran MA, Chen B. Sequential anodic oxidation and cathodic electro-Fenton in the Janus electrified membrane for reagent-free degradation of pollutants. WATER RESEARCH 2023; 246:120674. [PMID: 37857008 DOI: 10.1016/j.watres.2023.120674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/26/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
Electrified membrane technologies have recently demonstrated high potential in tackling water pollution, yet their practical applications are challenged by relying on large precursor doses. Here, we developed a Janus porous membrane (JPEM) with synergic direct oxidation by Magnéli phase Ti4O7 anode and electro-Fenton reactions by CuFe2O4 cathode. Organic pollutants were first directly oxidized on the Ti4O7 anode, where the extracted electrons from pollutants were transported to the cathode for electro-Fenton production of hydroxyl radical (·OH). The cathodic ·OH further enhanced the mineralization of organic pollutant degradation intermediates. With the sequential anodic and cathodic oxidation processes, the reagent-free JPEM showed competitive performance in rapid degradation (removal rate of 0.417 mg L-1 s-1) and mineralization (68.7 % decrease in TOC) of sulfamethoxazole. The JPEM system displayed general performance to remove phenol, carbamazepine, and perfluorooctanoic acid. The JPEM runs solely on electricity and oxygen that is comparable to that of PEM relies on large precursor doses and, therefore, operation friendly and environmental sustainability. The high pollutant removal and mineralization achieved by rational design of the reaction processes sheds light on a new approach for constructing an efficient electrified membrane.
Collapse
Affiliation(s)
- Zhen Qiu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Kun Wang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Jianjian Shen
- Dqchance. Science and Technology co Ltd, Hangzhou 310058, China
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Muhammad Aqeel Kamran
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Zhejiang 311400, China.
| |
Collapse
|
7
|
Liu Z, Shen F, Shi L, Tong Q, Tang M, Li Y, Peng M, Jiao Z, Jiang Y, Ao L, Fu W, Lv X, Jiang G, Hou L. Electronic Structure Optimization and Proton-Transfer Enhancement on Titanium Oxide-Supported Copper Nanoparticles for Enhanced Nitrogen Recycling from Nitrate-Contaminated Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37364020 DOI: 10.1021/acs.est.3c03431] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Electrocatalytic reduction of nitrate to NH3 (NO3RR) on Cu offers sustainable NH3 production and nitrogen recycling from nitrate-contaminated water. However, Cu affords limited NO3RR activity owing to its unfavorable electronic state and the slow proton transfer on its surface, especially in neutral/alkaline media. Furthermore, although a synchronous "NO3RR and NH3 collection" system has been developed for nitrogen recycling from nitrate-laden water, no system is designed for natural water that generally contains low-concentration nitrate. Herein, we demonstrate that depositing Cu nanoparticles on a TiO2 support enables the formation of electron-deficient Cuδ+ species (0 < δ ≤ 2), which are more active than Cu0 in NO3RR. Furthermore, TiO2-Cu coupling induces local electric-field enhancement that intensifies water adsorption/dissociation at the interface, accelerating proton transfer for NO3RR on Cu. With the dual enhancements, TiO2-Cu delivers an NH3-N selectivity of 90.5%, mass activity of 41.4 mg-N h gCu-1, specific activity of 377.8 mg-N h-1 m-2, and minimal Cu leaching (<25.4 μg L-1) when treating 22.5 mg L-1 of NO3--N at -0.40 V, outperforming most of the reported Cu-based catalysts. A sequential NO3RR and NH3 collection system based on TiO2-Cu was then proposed, which could recycle nitrogen from nitrate-contaminated water under a wide concentration window of 22.5-112.5 mg L-1 at a rate of 209-630 mgN m-2 h-1. We also demonstrated this system could collect 83.9% of nitrogen from NO3--N (19.3 mg L-1) in natural lake water.
Collapse
Affiliation(s)
- Zixun Liu
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Fei Shen
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Li Shi
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Qiuwen Tong
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Mu'e Tang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yiming Li
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Min Peng
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Zhaojie Jiao
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yan Jiang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Liang Ao
- Chongqing Academy of Eco-Environmental Science, Chongqing 400700, China
- Chongqing Institute of Geology and Mineral Resources, Chongqing 400700, China
| | - Wenyang Fu
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Xiaoshu Lv
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
| | - Guangming Jiang
- Engineering Research Center for Waste Oil Recovery Technology and Equipment, Ministry of Education, Chongqing Technology and Business University, Chongqing 400067, China
- Chongqing Academy of Eco-Environmental Science, Chongqing 400700, China
- Chongqing Institute of Geology and Mineral Resources, Chongqing 400700, China
| | - Li'an Hou
- High Tech Inst Beijing, Beijing 100000, China
| |
Collapse
|
8
|
Mo Y, Li Y, Wang L, Zhang L, Li J. Electroactive membrane with the electroactive layer beneath the separation layer to eliminate the interference of humic acid in the oxidation of antibiotics. WATER RESEARCH 2023; 239:120064. [PMID: 37201374 DOI: 10.1016/j.watres.2023.120064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/27/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023]
Abstract
Removing harmful antibiotics is essential to reclaiming water from municipal secondary effluent. Electroactive membranes are effective in the removal of antibiotics but challenged by the abundant coexisting macromolecular organic pollutants in municipal secondary effluent. To eliminate the interference of macromolecular organic pollutants in the removal of antibiotics, we propose a novel electroactive membrane with a top polyacrylonitrile (PAN) ultrafiltration layer and a bottom electroactive layer composed of carbon nanotubes (CNTs) and polyaniline (PANi). When filtering the mixture of tetracycline (TC, a typical antibiotic) and humic acid (HA, a typical macromolecular organic pollutant), the PAN-CNT/PANi membrane performed sequential removal. It retained HA at the PAN layer (by ∼96%) and allowed TC to reach the electroactive layer where it was electrochemically oxidized (e.g., by ∼92% at 1.5 V). The TC removal of the PAN-CNT/PANi membrane was marginally affected by HA, unlike that of the control membrane with the electroactive layer on the top that showed decreased TC removal after the addition of HA (e.g., decreased by 13.2% at 1 V). The decreased TC removal of the control membrane was attributed to the attachment (but not competitive oxidation) of HA on the electroactive layer that impaired the electrochemical reactivity. The HA removal prior to TC degradation realized by the PAN-CNT/PANi membrane avoided the attachment of HA and guaranteed TC removal on the electroactive layer. Long-term filtration for 9 h revealed the stability of the PAN-CNT/PANi membrane, and its advantageous structural design was conformed in the context of real secondary effluents.
Collapse
Affiliation(s)
- Yinghui Mo
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Yu Li
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Liang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Lu Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Jianxin Li
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, China; School of Materials Science and Engineering, Tiangong University, Tianjin 300387, China
| |
Collapse
|
9
|
Catalytic degradation of carbamazepine by metal organic frameworks (MOFs) derived magnetic catalyst Fe@PC in an electro-Fenton coupled membrane filtration system: Performance, Pathway, and Mechanism. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Mushtaq A, Cho H, Ryu H, Ahmed MA, Saif Ur Rehman M, Han JI. Novel metallic stainless-steel mesh-supported conductive membrane and its performance in the electro-filtration process. CHEMOSPHERE 2022; 308:136160. [PMID: 36030940 DOI: 10.1016/j.chemosphere.2022.136160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/06/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
In this study, we demonstrate the fabrication of a thoroughly metallic electro-conductive membrane by using simple filtration to uniformly coat AgNWs dispersion through stainless steel (SUS)-mesh, which functions both as filter and a flexible conductive substrate. The as-prepared AgNWs networks layer on the SUS-mesh was further strengthened by electroplating Ag layers (P-SUS membrane); exhibiting an overall electrical conductivity of 9.2 × 104 S/m, which is up to 42 times greater than the conductivity of pristine SUS-mesh. The P-SUS membrane exhibited adequate physical durability against chemical and mechanical stresses under prolonged filtration, and high pure water flux of 534 ± 54 LMH/bar. This electro-membrane displayed the anticipated flux recovery in harvesting microalgae (Chlorella sp. HS-2) when filtration was done with the membrane used as a cathode: micro-sized bubbles, generated from the cathodic membrane, functioned to detach the foulants and recover the relative flux to a significant level. The P-SUS membrane indeed possesses necessary traits that the polymer-support membrane lacks, in terms of not only electrical conductivity and mechanical strength but also filtration performance with anti-fouling capability, all of which are of necessity to be considered workable electroconductive membrane.
Collapse
Affiliation(s)
- Azeem Mushtaq
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea; Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Pakistan
| | - Hoon Cho
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hoyoung Ryu
- Department of Chemical and Biomolecular Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Muhammad Ajaz Ahmed
- Graduate School of International Agricultural Technology, Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang, 232-916, Republic of Korea
| | - Muhammad Saif Ur Rehman
- Department of Chemical Engineering, Khawaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, Pakistan
| | - Jong-In Han
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
11
|
Mo Y, Zhang L, Zhao X, Li J, Wang L. A critical review on classifications, characteristics, and applications of electrically conductive membranes for toxic pollutant removal from water: Comparison between composite and inorganic electrically conductive membranes. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129162. [PMID: 35643008 DOI: 10.1016/j.jhazmat.2022.129162] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/23/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Research efforts have recently been directed at developing electrically conductive membranes (EMs) for pressure-driven membrane separation processes to remove effectively the highly toxic pollutants from water. EMs serve as both the filter and the electrode during filtration. With the assistance of a power supply, EMs can considerably improve the toxic pollutant removal efficiency and even realize chemical degradation to reduce their toxicity. Organic-inorganic composite EMs and inorganic EMs show remarkable differences in characteristics, removal mechanisms, and application situations. Understanding their differences is highly important to guide the future design of EMs for specific pollutant removal from water. However, reviews concerning the differences between composite and inorganic EMs are still lacking. In this review, we summarize the classifications, fabrication techniques, and characteristics of composite and inorganic EMs. We also elaborate on the removal mechanisms and performances of EMs toward recalcitrant organic pollutants and toxic inorganic ions in water. The comparison between composite and inorganic EMs is emphasized particularly in terms of the membrane characteristics (pore size, permeability, and electrical conductivity), application situations, and underlying removal mechanisms. Finally, the energy consumption and durability of EMs are evaluated, and future perspectives are presented.
Collapse
Affiliation(s)
- Yinghui Mo
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, PR China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, PR China.
| | - Lu Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, PR China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Xin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, PR China
| | - Jianxin Li
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, PR China; School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China
| | - Liang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Membrane Science and Technology, Tiangong University, Tianjin 300387, PR China; School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, PR China
| |
Collapse
|
12
|
Zhang X, Huang J, Cheng X, Chen H, Liu Q, Yao P, Ngo HH, Nghiem LD. Mitigation of reverse osmosis membrane fouling by electrochemical-microfiltration- activated carbon pretreatment. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120615] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
13
|
Li Z, Li X, Li Y, Li J, Yi Q, Gao F, Wang Z. Efficient removal of micropollutants from low-conductance surface water using an electrochemical Janus ceramic membrane filtration system. WATER RESEARCH 2022; 220:118627. [PMID: 35609428 DOI: 10.1016/j.watres.2022.118627] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/12/2022] [Accepted: 05/15/2022] [Indexed: 06/15/2023]
Abstract
Electrochemical membrane filtration (EMF) technology is effective to remove the micropollutant in the wastewater but its efficacy is drastically compromised in treating the surface water having a typically low conductivity. In this work, a Janus Fe-Pt electrochemical ceramic membrane (ECM) was fabricated by depositing a thin Fe layer on the side of a ceramic membrane facing feed (cathode) and Pt layer on the other side facing permeate (anode). The low Fe-Pt electrode distance (∼1 mm) ensured a decent conductance of the EMF system even in the low-salinity surface water and thereby maintained the removal efficiency of the micropollutant. It was identified that hydroxyl radicals (•OH) generated via anodic water oxidation and cathodic heterogenous Fenton process on bilateral sides of ECM were the dominant reactive oxygen species. The EMF system not only achieved 74% removal of atrazine (ATZ) from the low-conductance synthetic surface water with a low energy consumption (3.6 Wh per gATZ or 7.2 Wh m - 3), but also realized a stable removal of ATZ from real surface water over a continuous filtration experiment of 168 h. The theoretical computations and experimental analysis identified the degradation pathway, i.e., the dechlorination and dealkylation of ATZ in the EMF system. This study highlights the great potential of the Janus ECM in removing micropollutants from low-conductance surface water and wastewater.
Collapse
Affiliation(s)
- Zhouyan Li
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
| | - Xuesong Li
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China.
| | - Yang Li
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
| | - Jiayi Li
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
| | - Qiuying Yi
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
| | - Fei Gao
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
| | - Zhiwei Wang
- School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, State Key Laboratory of Pollution Control and Resource Reuse, Tongji Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China.
| |
Collapse
|
14
|
Electrochemical removal and recovery of phosphorus from wastewater using cathodic membrane filtration reactor. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.07.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Tian C, Dai R, Chen M, Wang X, Shi W, Ma J, Wang Z. Biofouling suppresses effluent toxicity in an electrochemical filtration system for remediation of sulfanilic acid-contaminated water. WATER RESEARCH 2022; 219:118545. [PMID: 35550968 DOI: 10.1016/j.watres.2022.118545] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/14/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Electrochemical filtration system (EFS) has received broad interest due to its high efficiency for organic contaminants removal. However, the porous nature of electrodes and flow-through operation mode make it susceptible to potential fouling. In this work, we systematically investigated the impacts of biofouling on sulfanilic acid (SA) removal and effluent toxicity in an EFS. Results showed that the degradation efficiency of SA slightly deteriorated from 92.3% to 81.1% at 4.0 V due to the electrode fouling. Surprisingly, after the occurrence of fouling, the toxicity (in terms of luminescent bacteria inhibition) of the EFS effluent decreased from 72.3% to 40.2%, and cytotoxicity assay exhibited similar tendency. Scanning electron microscopy and confocal laser scanning microscopy analyses revealed that biofouling occurred on the porous cathode, and live microorganisms were the dominant contributors, which are expected to play an important role in toxicity suppression. The relative abundance of Flavobacterium genus, related to the degradation of p-nitrophenol (an aromatic intermediate product of SA), increased on the membrane cathode after fouling. The analysis of degradation pathway confirmed the synergetic effects of electrochemical oxidation and biodegradation in removal of SA and its intermediate products in a bio-fouled EFS, accounting for the decrease of the effluent toxicity. Results of our study, for the first time, highlight the critical role of biofouling in detoxication using EFS for the treatment of contaminated water.
Collapse
Affiliation(s)
- Chenxin Tian
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Mei Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xueye Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Tongji Advanced Membrane Technology Center, Shanghai 200092, China.
| |
Collapse
|
16
|
Ren L, Ma J, Chen M, Qiao Y, Dai R, Li X, Wang Z. Recent advances in electrocatalytic membrane for the removal of micropollutants from water and wastewater. iScience 2022; 25:104342. [PMID: 35602955 PMCID: PMC9117875 DOI: 10.1016/j.isci.2022.104342] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The increasing occurrence of micropollutants in water and wastewater threatens human health and ecological security. Electrocatalytic membrane (EM), a new hybrid water treatment platform that integrates membrane separation with electrochemical technologies, has attracted extensive attention in the removal of micropollutants from water and wastewater in the past decade. Here, we systematically review the recent advances of EM for micropollutant removal from water and wastewater. The mechanisms of the EM for micropollutant removal are first introduced. Afterwards, the related membrane materials and operating conditions of the EM are summarized and analyzed. Lastly, the challenges and future prospects of the EM in research and applications are also discussed, aiming at a more efficient removal of micropollutants from water and wastewater.
Collapse
Affiliation(s)
- Lehui Ren
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Mei Chen
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Yiwen Qiao
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xuesong Li
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
- Corresponding author
| |
Collapse
|
17
|
Meta-analysis of electrically conductive membranes: A comparative review of their materials, applications, and performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
18
|
Du Z, Ji M, Li R. Effects of different Ca 2+ behavior patterns in the electric field on membrane fouling formation and removal of trace organic compounds. J Environ Sci (China) 2022; 111:292-300. [PMID: 34949359 DOI: 10.1016/j.jes.2021.03.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/20/2021] [Accepted: 03/31/2021] [Indexed: 06/14/2023]
Abstract
The effects of Ca2+ on membrane fouling and trace organic compounds (TrOCs) removal in an electric field-assisted microfiltration system were investigated in the presence of Na+ alone for comparison. In the electric field, negatively charged bovine serum albumin (BSA) migrated towards the anode far away from the membrane surface, resulting in a 42.9% transmembrane pressure (TMP) reduction in the presence of Na+ at 1.5 V. In contrast, because of the stronger charge shielding of Ca2+, the electrophoretic migration of BSA was limited and led to a neglectable effect of the electric field (1.5 V) on membrane fouling. However, under 3 V applied voltage, the synergistic effects of electrochemical oxidation and bridging interaction between Ca2+ and BSA promoted the formation of denser settleable flocs and a thinner porous cake layer, which alleviated membrane fouling with a 64.5% decrease in TMP and nearly 100% BSA removal. The TrOCs elimination increased with voltage and reached 29.4%-80.4% at 3 V. The electric field could prolong the contact between TrOCs and strong oxidants generated on the anode, which enhanced the TrOCs removal. However, a stronger charge shielding ability of Ca2+ weakened the electric field force and thus lowered the TrOCs removal.
Collapse
Affiliation(s)
- Zhen Du
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Ruying Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
19
|
Wang X, Ren L, Zha W, Li Z, Dai R, Wang Z. Removal of p-toluenesulfonic acid from wastewater using a filtration-enhanced electro-Fenton reactor. RSC Adv 2022; 12:25424-25432. [PMID: 36199312 PMCID: PMC9451130 DOI: 10.1039/d2ra04921j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/29/2022] [Indexed: 11/21/2022] Open
Abstract
A filtration-enhanced electro-Fenton reactor was developed for the removal of p-toluenesulfonic acid from wastewater.
Collapse
Affiliation(s)
- Xueye Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Lehui Ren
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Wengui Zha
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Zhouyan Li
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
20
|
Making Waves: Zero Liquid Discharge for Sustainable Industrial Effluent Management. WATER 2021. [DOI: 10.3390/w13202852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Zero liquid discharge (ZLD) aims to minimize liquid waste generation whilst extend water supply, and this industrial strategy has attracted renewed interest worldwide in recent years. In spite of the advantages such as reduced water pollution and resource recovery from waste, there are several challenges to overcome prior to wider applications of ZLD. This study will examine the main processes involved in ZLD, and analyze their limitations and potential solutions. This study also differs from past reviews on the subject, by providing a summary of the challenges that were found light of in prevalent studies. To fulfill the sustainable vision, future research that can bridge the gap between the theoretical study and industrial practice is highlighted.
Collapse
|
21
|
Ren L, Chen M, Zheng J, Li Z, Tian C, Wang Q, Wang Z. Efficacy of a novel electrochemical membrane-aerated biofilm reactor for removal of antibiotics from micro-polluted surface water and suppression of antibiotic resistance genes. BIORESOURCE TECHNOLOGY 2021; 338:125527. [PMID: 34274586 DOI: 10.1016/j.biortech.2021.125527] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 06/13/2023]
Abstract
An electrochemical membrane-aerated biofilm reactor (EMABR) was developed for removing sulfamethoxazole (SMX) and trimethoprim (TMP) from contaminated water. The exertion of electric field greatly enhanced the degradation of SMX and TMP in the EMABR (~60%) compared to membrane-aerated biofilm reactor (MABR, < 10%), due to the synergistic effects of the electro-oxidation (the generation of reactive oxygen species) and biological degradation. Microbial community analyses demonstrated that the EMABR enriched the genus of Xanthobacter, which was potentially capable of degrading aromatic intermediates. Moreover, the EMABR had a lower relative abundance of antibiotic resistance genes (ARGs) (0.23) compared to the MABR (0.56), suggesting the suppression of ARGs in the EMABR. Further, the SMX and TMP degradation pathways were proposed based on the detection of key intermediate products. This study demonstrated the potential of EMABR as an effective technology for removing antibiotics from micro-polluted surface water and suppressing the development of ARGs.
Collapse
Affiliation(s)
- Lehui Ren
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Mei Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Junjian Zheng
- College of Life and Environmental Science, Guilin University of Electronic Technology, Guilin 541004, PR China
| | - Zhouyan Li
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Chenxin Tian
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Qiaoying Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| |
Collapse
|
22
|
Immobiling enzyme-like ligand in the ultrafiltration membrane to remove the micropollutant for the ultrafast water purification. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Chen M, Lei Q, Ren L, Li J, Li X, Wang Z. Efficacy of electrochemical membrane bioreactor for virus removal from wastewater: Performance and mechanisms. BIORESOURCE TECHNOLOGY 2021; 330:124946. [PMID: 33743278 DOI: 10.1016/j.biortech.2021.124946] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 06/12/2023]
Abstract
Wastewater treatment facilities play pivotal roles in preventing the transmission of water-borne viruses and protecting human health. In this study, a new electrochemical membrane bioreactor (EMBR) was proposed to achieve a long-lasting and efficient removal of virus from wastewater. Results showed that applying a low electric field (2.0 V) in EMBR system could achieve ~100% removal efficiency at both batch tests and continuous flow experiments. In contrast, the control MBR, without the exertion of electric field, exhibited a very low removal efficiency (19.8% on average). Moreover, the fouling in EMBR was significantly mitigated, which enabled its operation duration almost 3 times longer than that of the control. Further explorations suggested that the reactive oxidants generated on electrodes in the EMBR system were mainly responsible for MS2 removal. This study demonstrated the potential of utilizing the EMBR process to achieve an enhanced virus disinfection efficiency during the wastewater treatment process.
Collapse
Affiliation(s)
- Mei Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Qian Lei
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Lehui Ren
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jiayi Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuesong Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Shanghai 200092, China.
| |
Collapse
|
24
|
Li Z, Dai R, Yang B, Chen M, Wang X, Wang Z. An electrochemical membrane biofilm reactor for removing sulfonamides from wastewater and suppressing antibiotic resistance development: Performance and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124198. [PMID: 33068987 DOI: 10.1016/j.jhazmat.2020.124198] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/06/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Sulfonamides, such as sulfadiazine (SDZ), are frequently detected in water and wastewater with their toxic and persistent nature arousing much concern. In this work, a novel electrochemical membrane biofilm reactor (EMBfR) was constructed for the removal of SDZ whilst suppressing the development of antibiotic resistance genes (ARGs). Results showed that the EMBfR achieved 94.9% removal of SDZ, significantly higher than that of a control membrane biofilm reactor (MBfR) without electric field applied (44.3%) or an electrolytic reactor without biofilm (77.3%). Moreover, the relative abundance of ARGs in the EMBfR was only 32.0% of that in MBfR, suggesting that the production of ARGs was significantly suppressed in the EMBfR. The underlying mechanisms relate to (i) the change of the microbial community structure in the presence of the electric field, leading to the enrichment of potential aromatic-degrading microorganisms (e.g., Rhodococcus accounting for 51.0% of the total in the EMBfR compared to 10.0% in the MBfR) and (ii) the unique degradation pathway of SDZ in the EMBfR attributed to the synergistic effect between the electrochemical and biological processes. Our study highlights the benefits of EMBfR in removing pharmaceuticals from contaminated waters and suppressing the development (and transfer) of ARGs in the environment.
Collapse
Affiliation(s)
- Zhouyan Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Baichuan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Mei Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xueye Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
25
|
Katibi KK, Yunos KF, Che Man H, Aris AZ, bin Mohd Nor MZ, binti Azis RS. Recent Advances in the Rejection of Endocrine-Disrupting Compounds from Water Using Membrane and Membrane Bioreactor Technologies: A Review. Polymers (Basel) 2021; 13:392. [PMID: 33513670 PMCID: PMC7865700 DOI: 10.3390/polym13030392] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/20/2020] [Accepted: 11/27/2020] [Indexed: 12/22/2022] Open
Abstract
Water is a critical resource necessary for life to be sustained, and its availability should be secured, appropriated, and easily obtainable. The continual detection of endocrine-disrupting chemicals (EDCs) (ng/L or µg/L) in water and wastewater has attracted critical concerns among the regulatory authorities and general public, due to its associated public health, ecological risks, and a threat to global water quality. Presently, there is a lack of stringent discharge standards regulating the emerging multiclass contaminants to obviate its possible undesirable impacts. The conventional treatment processes have reportedly ineffectual in eliminating the persistent EDCs pollutants, necessitating the researchers to develop alternative treatment methods. Occurrences of the EDCs and the attributed effects on humans and the environment are adequately reviewed. It indicated that comprehensive information on the recent advances in the rejection of EDCs via a novel membrane and membrane bioreactor (MBR) treatment techniques are still lacking. This paper critically studies and reports on recent advances in the membrane and MBR treatment methods for removing EDCs, fouling challenges, and its mitigation strategies. The removal mechanisms and the operating factors influencing the EDCs remediation were also examined. Membranes and MBR approaches have proven successful and viable to eliminate various EDCs contaminants.
Collapse
Affiliation(s)
- Kamil Kayode Katibi
- Department of Agricultural and Biological Engineering, Faculty of Engineering and Technology, Kwara State University, Malete 23431, Nigeria;
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Khairul Faezah Yunos
- Department of Food and Process Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Hasfalina Che Man
- Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Ahmad Zaharin Aris
- Department of Environment, Faculty of Forestry and Environment, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
- Material Processing and Technology Laboratory (MPTL), Institute of Advance Technology (ITMA), Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Mohd Zuhair bin Mohd Nor
- Department of Food and Process Engineering, Faculty of Engineering, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
| | - Rabaah Syahidah binti Azis
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia;
- Materials Synthesis and Characterization Laboratory (MSCL), Institute of Advanced Technology (ITMA), Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| |
Collapse
|
26
|
Li J, Ma J, Dai R, Wang X, Chen M, Waite TD, Wang Z. Self-Enhanced Decomplexation of Cu-Organic Complexes and Cu Recovery from Wastewaters Using an Electrochemical Membrane Filtration System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:655-664. [PMID: 33103901 DOI: 10.1021/acs.est.0c05554] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Heavy metals in industrial wastewaters are typically present as stable metal-organic complexes with their cost-effective treatment remaining a significant challenge. Herein, a self-enhanced decomplexation scenario is developed using an electrochemical membrane filtration (EMF) system for efficient decomplexation and Cu recovery. Using Cu-EDTA as a model pollutant, the EMF system achieved 81.5% decomplexation of the Cu-EDTA complex and 72.4% recovery of Cu at a cell voltage of 3 V. The •OH produced at the anode first attacked Cu-EDTA to produce intermediate Cu-organic complexes that reacted catalytically with the H2O2 generated from the reduction of dissolved oxygen at the cathode to initiate chainlike self-enhanced decomplexation in the EMF system. The decomplexed Cu products were further reduced or precipitated at the cathodic membrane surface thereby achieving efficient Cu recovery. By scavenging H2O2 (excluding self-enhanced decomplexation), the rate of decomplexation decreased from 8.8 × 10-1 to 4.1 × 10-1 h-1, confirming the important role of self-enhanced decomplexation in this system. The energy efficiency of this system is 93.5 g kWh-1 for Cu-EDTA decomplexation and 15.0 g kWh-1 for Cu recovery, which is much higher than that reported in the previous literature (i.e., 7.5 g kWh-1 for decomplexation and 1.2 g kWh-1 for recovery). Our results highlight the potential of using EMF for the cost-effective treatment of industrial wastewaters containing heavy metals.
Collapse
Affiliation(s)
- Jiayi Li
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jinxing Ma
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xueye Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Mei Chen
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - T David Waite
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
27
|
Asif MB, Maqbool T, Zhang Z. Electrochemical membrane bioreactors: State-of-the-art and future prospects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140233. [PMID: 32570070 DOI: 10.1016/j.scitotenv.2020.140233] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 06/11/2023]
Abstract
Integration of an electrochemical process with membrane bioreactor (MBR) has attracted considerable attention in the last decade for simultaneous improvement in pollutant removal and hydraulic performance of MBR. Electrochemical MBR (eMBR) with sacrificial anodes has been observed to achieve enhanced phosphorus (up to 40%) and micropollutant removal (5-60%). This is because direct anodic oxidation, indirect oxidation by reactive oxygen species and electrocoagulation can supplement the biological process. The application of an electric field can substantially reduce membrane fouling by 10% to 95% in the eMBR as compared to the conventional MBR. Sacrificial electrodes (e.g., iron or aluminium) have been reported to be more suitable for fouling mitigation than non-sacrificial electrodes (e.g., titanium). However, during prolonged operation, metal ions released from sacrificial electrodes can adversely affect microbial activity and could accumulate in activated sludge. Depending on the current density and electrode material (sacrificial or non- sacrificial), anodic oxidation, electrocoagulation, electrophoresis and/or electroosmosis mechanisms are responsible for suppressing membrane fouling propensity. This paper critically reviews the current status of the electrochemical MBR technology and presents a concise summary of eMBR configurations and electrode materials. Comparative removal of bulk organics, nutrients and micropollutants in the eMBR and conventional MBR is discussed, and performance governing factors are elucidated. Impacts of operating conditions such as current density on mixed liquor properties (e.g., floc size and zeta potential) and microbial activity are elucidated. The extent of membrane fouling mitigation along with associated mechanisms as well as energy consumption is explained and critically analysed. Future research directions are suggested to fast track the scalability of eMBR, which include but are not limited to electrode lifetime, development of self-cleaning conductive membranes, optimisation of operating parameters, removal of emerging micropollutants, accumulation of toxic metals in activated sludge, and degradation by-products and ecotoxicity.
Collapse
Affiliation(s)
- Muhammad Bilal Asif
- Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Tahir Maqbool
- Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhenghua Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua-Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
28
|
Chen M, Ren L, Qi K, Li Q, Lai M, Li Y, Li X, Wang Z. Enhanced removal of pharmaceuticals and personal care products from real municipal wastewater using an electrochemical membrane bioreactor. BIORESOURCE TECHNOLOGY 2020; 311:123579. [PMID: 32473522 DOI: 10.1016/j.biortech.2020.123579] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/21/2020] [Accepted: 05/22/2020] [Indexed: 06/11/2023]
Abstract
A novel electrochemical membrane bioreactor (EMBR) was developed for enhancing PPCPs removal from real municipal wastewater. Compared to the control MBR (CMBR) without applying electric field, EMBR exhibited higher removal efficiencies for 14 PPCPs among all investigated PPCPs, including 3 fluoroquinolones, 2 macrolides, 6 sulfonamides and 3 anti-inflammatory drugs, while no significant difference was observed for the rest 8 PPCPs. The enhanced removal of 14 PPCPs was mainly attributed to electrooxidation by the direct anodic oxidation and reactive oxygen species-mediated indirect oxidation. Moreover, membrane fouling rates of EMBR (0.55 ± 0.10 kPa/d) were significantly reduced compared with CMBR (0.99 ± 0.09 kPa/d). Microbial activities and community analyses demonstrated that the applied electric field had no noticeable adverse impact on microbial viabilities, richness and diversity. These findings demonstrated that this EMBR enhanced pollutant removal and mitigated membrane fouling simultaneously, highlighting the potential of the novel technology to be used for removing PPCPs from wastewater.
Collapse
Affiliation(s)
- Mei Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Lehui Ren
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Kangquan Qi
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Qiang Li
- Putuo District Center for Disease Control and Prevention, Shanghai 200092, China
| | - Miaoju Lai
- Putuo District Center for Disease Control and Prevention, Shanghai 200092, China
| | - Yang Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuesong Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Shanghai 200092, China.
| |
Collapse
|
29
|
Development of an Electrochemical Ceramic Membrane Bioreactor for the Removal of PPCPs from Wastewater. WATER 2020. [DOI: 10.3390/w12061838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The removal of pharmaceutical and personal care products (PPCPs) from water and wastewater is of great significance for eco-system safety. In this study, an electrochemical ceramic membrane bioreactor (ECMBR) was developed for removing seven groups (24 kinds in total) of PPCPs from real wastewater. In the presence of an electric field (2 V/cm), the ECMBR could enhance the removal efficiencies for most targeted PPCPs without having adverse impacts on conventional pollutant removal and membrane filtration. The ECMBR achieved higher removal efficiencies for fluoroquinolones (82.8%), β-blockers (24.6%), and sulfonamides (41.0%) compared to the control (CMBR) (52.9%, 4.6%, and 36.4%). For trimethoprim, ECMBR also significantly increased the removal to 66.5% compared to 15.6% in CMBR. Furthermore, the exertion of an electric field did not cause significant changes in microbial communities, suggesting that the enhanced removal of PPCPs should be attributed to the electrochemical oxidation of the built-in electrodes in the ECMBR.
Collapse
|
30
|
Li J, Pham AN, Dai R, Wang Z, Waite TD. Recent advances in Cu-Fenton systems for the treatment of industrial wastewaters: Role of Cu complexes and Cu composites. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122261. [PMID: 32066018 DOI: 10.1016/j.jhazmat.2020.122261] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/02/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
Cu-based Fenton systems have been recognized as a promising suite of technologies for the treatment of industrial wastewaters due to their high catalytic oxidation capacity. Rapid progress regarding Cu Fenton systems has been made not only in fundamental mechanistic aspects of these systems but also with regard to applications over the past decade. Based on available literature, this review synthesizes the recent advances regarding both the understanding and applications of Cu-based Fenton processes for industrial wastewater treatment. Cu-based catalysts that are essential to the effectiveness of use of Cu Fenton reactions for oxidation of target species are mainly classified into two types: (i) Cu complexes with organic or inorganic ligands, and (ii) Cu composites with inorganic materials. Performance of the Cu-based catalysts for the removal of organic pollutants in industrial wastewaters are reviewed, with the key operating parameters illustrated. Furthermore, the roles of Cu complexes and composites in both homogeneous and heterogeneous Cu-Fenton systems are critically examined with particular focus on the mechanisms involved. Perspectives and future efforts needed for Cu-based Fenton systems using Cu complexes and composites for industrial wastewater treatment are presented.
Collapse
Affiliation(s)
- Jiayi Li
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - A Ninh Pham
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - T David Waite
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; School of Civil and Environmental Engineering, The University of New South Wales, Sydney, New South Wales, 2052, Australia
| |
Collapse
|
31
|
Li X, Liu L, Liu T, Zhang D, An C, Yang F. An active electro-Fenton PVDF/SS/PPy cathode membrane can remove contaminant by filtration and mitigate fouling by pairing with sacrificial iron anode. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118100] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Liu S, Liu R, Zhang Y, Han W, Li J, Sun X, Shen J, Wang L. Development of a 3D ordered macroporous RuO 2 electrode for efficient pyrazole removal from water. CHEMOSPHERE 2019; 237:124471. [PMID: 31401428 DOI: 10.1016/j.chemosphere.2019.124471] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/24/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Inability to remove biologically toxic and persistent contaminants is a critical issue in traditional water treatment processes. In this study, a novel 3D macroporous RuO2 (3D-RuO2) electrode with uniform and interconnected cavities has been fabricated via templated electrodeposition approach for treatment of persistent pyrazole. The physicochemical properties of the electrodes are characterized by means of SEM, BET, XRD, LSV and CV measurements. The results show that structural features of the 3D-RuO2 play important roles in the electrocatalysis performance. Thanks to the abundant crystal defect sites, 3D-RuO2 electrode possesses more mesopores within the skeleton, resulting in 17.9 and 2.2 times larger specific surface area compared to traditional flat thermal-deposited (TF-RuO2) and electrodeposited RuO2 (EF-RuO2) respectively. At a current density of 5 mA cm-2, the pyrazole removal rate on 3D-RuO2 is 1.7 times and 1.3 times that of TF-RuO2 and EF-RuO2. The energy consumption for 50% of pyrazole removal on 3D-RuO2 is 0.05 kWh g-1pyrazole, much lower than that of TF-RuO2 (0.11 kWh g-1pyrazole) and EF-RuO2 (0.075 kWh g-1pyrazole). The improved removal performance of 3D-RuO2 electrode is attributed to its strong electro-adsorption capacity (270.3 μg cm-2), leading to enhanced mass transfer of pollutants to the electrode surface. The mass transfer coefficient (κm) is estimated as 2.4 × 10-6 m s-1 for 3D-RuO2, which is 3.9 and 2.3 times as much as that of TF-RuO2 and EF-RuO2. Finally, contribution of different electron transfer approaches to pyrazole degradation under anodic polarization was investigated by ROS scavenging experiments.
Collapse
Affiliation(s)
- Siqi Liu
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Ruiqian Liu
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Yonghao Zhang
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Weiqing Han
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China.
| | - Jiansheng Li
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Xiuyun Sun
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jinyou Shen
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Lianjun Wang
- Key Laboratory of Jiangsu Province for Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
33
|
Chen M, Xu J, Dai R, Wu Z, Liu M, Wang Z. Development of a moving-bed electrochemical membrane bioreactor to enhance removal of low-concentration antibiotic from wastewater. BIORESOURCE TECHNOLOGY 2019; 293:122022. [PMID: 31470228 DOI: 10.1016/j.biortech.2019.122022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/10/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
Removal of low-concentration (ng/L ~ μg/L) antibiotics from water calls for the development of cost-effective treatment technologies. In this study, a novel moving-bed electrochemical membrane bioreactor (MEMBR) was developed for removing sulfamethoxazole (SMX). Results showed that the introduction of external electric field and carbon felt particles could efficiently eliminate SMX (removal efficiency of 88.9%). In contrast, the moving-bed membrane bioreactor (MMBR) took a long time to acclimate microorganism, reaching a removal efficiency of 43.9%. Transmembrane pressure increase rate was much lower in MEMBR (1.06 kPa/d) compared to MMBR (1.72 kPa/d). The presence of carriers increased the generation of reactive oxygen species, contributing to SMX removal. Microbial community analysis revealed that the introduction of electric field could increase microbial community richness/diversity and enrich the phyla of Actinobacteria and Gemmatimonadete, potentially capable of mineralizing SMX. These results clearly demonstrated the potential of this novel MEMBR to be used for enhanced micropollutants removal from water/wastewater.
Collapse
Affiliation(s)
- Mei Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jun Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Mingxian Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; International Joint Research Center for Sustainable Urban Water System, Shanghai 200092, China.
| |
Collapse
|
34
|
Liang S, Li M, Cao J, Zuo K, Bian Y, Xiao K, Huang X. Integrated ultrafiltration–capacitive-deionization (UCDI) for enhanced antifouling performance and synchronous removal of organic matter and salts. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.05.085] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Liu Y, Liu N, Qu R, Zhang W, Wei Y, Feng L. PG-PEI-Ag NPs-Decorated Membrane for Pretreatment of Laboratory Wastewater: Simultaneous Removal of Water-Insoluble Organic Solvents and Water-Soluble Anionic Organic Pollutants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:7680-7690. [PMID: 31099583 DOI: 10.1021/acs.langmuir.9b00515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Generally, waste liquid in laboratory can be roughly classified into organic wastewater and inorganic wastewater. However, in some experiments, organic phase and water phase are inevitably mixed together, leaving the postclassification and disposal intractable. Traditionally, we used methods like distillation and extraction to separate these two phases, however, always consuming significant amounts of labor and time and meanwhile having an unsatisfactory separation efficiency. Here, we proposed an improved processing method with a propyl gallate (PG)-polyethyleneimine (PEI)-Ag nanoparticles (NPs)-decorated membrane, possessing the special wettability designed for organic and water phase separation. Accordingly, various kinds of organic solvents/water mixtures were tested, where the PG-PEI-Ag NPs-decorated membrane was used like a common filter paper, fixed onto the funnel of the waste liquid barrel. Afterward, the two phase mixtures were poured onto the membrane; as a result, the organic phase was blocked above while the water phase was left below. All kinds of organic solvents/water mixtures showed higher than 99.90% removal efficiency. Besides, the membrane can remove water-soluble anionic organic molecules through electrostatic interaction. Thus, along the phase separation, anionic organic molecules in water can be removed simultaneously. This pretreatment of lab wastewater with the PG-PEI-Ag NPs-decorated membrane is simple and efficient, relieving the pressure of postcollection and disposal to some extent.
Collapse
Affiliation(s)
- Ya'nan Liu
- Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| | - Na Liu
- Institute of Materials for Energy and Environment, School of Materials Science and Engineering , Qingdao University , Qingdao 266071 , P. R. China
| | - Ruixiang Qu
- Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| | - Weifeng Zhang
- Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| | - Yen Wei
- Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| | - Lin Feng
- Department of Chemistry , Tsinghua University , Beijing 100084 , P. R. China
| |
Collapse
|
36
|
Removal of p-chloroaniline from polluted waters using a cathodic electrochemical ceramic membrane reactor. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.10.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
37
|
Fu W, Wang X, Zheng J, Liu M, Wang Z. Antifouling performance and mechanisms in an electrochemical ceramic membrane reactor for wastewater treatment. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.077] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Xu S, Zheng J, Wu Z, Liu M, Wang Z. Degradation of p-chloroaniline using an electrochemical ceramic microfiltration membrane with built-in electrodes. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.09.186] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
39
|
Ma J, Dai R, Chen M, Khan SJ, Wang Z. Applications of membrane bioreactors for water reclamation: Micropollutant removal, mechanisms and perspectives. BIORESOURCE TECHNOLOGY 2018; 269:532-543. [PMID: 30195697 DOI: 10.1016/j.biortech.2018.08.121] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
Membrane bioreactors (MBRs) have attracted attention in water reclamation as a result of the recent technical advances and cost reduction in membranes. However, the increasing occurrence of micropollutants in wastewaters has posed new challenges. Therefore, we reviewed the current state of research to identify the outstanding needs in this field. In general, the fate of micropollutants in MBRs relates to sorption, biodegradation and membrane separation processes. Hydrophobic, nonionized micropollutants are favorable in sorption, and the biological degradation shows higher efficiency at relatively long SRTs (30-40 days) and HRTs (20-30 h), as a result of co-metabolism, metabolism and/or ion trapping. Although the membrane rejection rates for micropollutants are generally minor, final water quality can be improved via combination with other technologies. This review highlights the challenges and perspectives that should be addressed to facilitate the extended use of MBRs for the removal of micropollutants in water reclamation.
Collapse
Affiliation(s)
- Jinxing Ma
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Safety, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China; UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Safety, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Mei Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Safety, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Stuart J Khan
- UNSW Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Safety, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
40
|
Mameda N, Park H, Choo KH. Electrochemical filtration process for simultaneous removal of refractory organic and particulate contaminants from wastewater effluents. WATER RESEARCH 2018; 144:699-708. [PMID: 30096695 DOI: 10.1016/j.watres.2018.08.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
Versatile electrochemical reactions are effective for removing a wide range of water contaminants. This study focuses on the development and testing of bifunctional electrocatalytic filter anodes as reactive and separating media for the simultaneous removal of refractory dissolved organic and particulate contaminants from real wastewater effluents. The results show that the TiO2 particle interlayers formed between the Ti fiber support and the top composite metal oxide catalyst layers assist in reducing filter pores to an effective size range that enables removal of most particulates within the wastewater. The double-sheet design, which is a sandwich-structured module with an internal void space for permeate, prevents filter fouling, and transmembrane pressure can be maintained at a very low level of <5 kPa during batch and continuous flow reactor operations. Substantive and simultaneous removal of dissolved organics (e.g., chromophores, fluorophores, 1,4-dioxane, chemical oxygen demand, and total organic carbon) and particulate matter (i.e., turbidity) are achieved, although removal rates and efficacies differ depending on the electric current density applied. Decolorization and particulate rejection occur swiftly and immediately, but 1,4-dioxane degradation is relatively slow and quite time-dependent. Possible 1,4-dioxane degradation pathways during electrocatalysis are also proposed. Electrochemical filtration technology shows considerable promise for use in the next generation of advanced wastewater treatment solutions.
Collapse
Affiliation(s)
- Naresh Mameda
- Advanced Institute of Water Industry, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Hyeona Park
- Department of Environmental Engineering, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Kwang-Ho Choo
- Advanced Institute of Water Industry, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; Department of Environmental Engineering, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
41
|
Zheng J, Yan K, Wu Z, Liu M, Wang Z. Effective Removal of Sulfanilic Acid From Water Using a Low-Pressure Electrochemical RuO 2-TiO 2@Ti/PVDF Composite Membrane. Front Chem 2018; 6:395. [PMID: 30238003 PMCID: PMC6135927 DOI: 10.3389/fchem.2018.00395] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 08/15/2018] [Indexed: 12/12/2022] Open
Abstract
Removal of sulfanilic acid (SA) from water is an urgent but still challenging task. Herein, we developed a low pressure electrochemical membrane filtration (EMF) system for SA decontamination using RuO2-TiO2@Ti/PVDF composite membrane to serve as not only a filter but also an anode. Results showed that efficient removal of SA was achieved in this EMF system. At a charging voltage of 1.5 V and a electrolyte concentration of 15 mM, flow-through operation with a hydraulic retention time (HRT) of 2 h led to a high SA removal efficiency (80.4%), as expected from the improved contact reaction of this compound with ROS present at the anode surface. Cyclic voltammetry (CV) analysis indicated that the direct anodic oxidation played a minor role in SA degradation. Electron spin resonance (ESR) spectra demonstrated the production of •OH in the EMF system. Compared to the cathodic polarization, anodic generated ROS was more likely responsible for SA removal. Scavenging tests suggested that adsorbed •OH on the anode (>•OH) played a dominant role in SA degradation, while O2•- was an important intermediate oxidant which mediated the production of •OH. The calculated mineralization current efficiency (MCE) of the flow-through operated system 29.3% with this value much higher than that of the flow-by mode (5.1%). As a consequence, flow-through operation contributed to efficient oxidation of SA toward CO2 and nontoxic carboxylic acids accounting for 71.2% of initial C. These results demonstrate the potential of the EMF system to be used as an effective technology for water decontamination.
Collapse
Affiliation(s)
- Junjian Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, China
| | - Kaili Yan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, China
| | - Zhichao Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, China
| | - Mingxian Liu
- School of Chemical Science and Engineering, Tongji University, Shanghai, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai, China
| |
Collapse
|
42
|
Jiang WL, Xia X, Han JL, Ding YC, Haider MR, Wang AJ. Graphene Modified Electro-Fenton Catalytic Membrane for in Situ Degradation of Antibiotic Florfenicol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9972-9982. [PMID: 30067345 DOI: 10.1021/acs.est.8b01894] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The removal of low-concentration antibiotics from water to alleviate the potential threat of antibiotic-resistant bacteria and genes calls for the development of advanced treatment technologies with high efficiency. In this study, a novel graphene modified electro-Fenton (e-Fenton) catalytic membrane (EFCM) was fabricated for in situ degradation of low-concentration antibiotic florfenicol. The removal efficiency was 90%, much higher than that of electrochemical filtration (50%) and single filtration process (27%). This demonstrated that EFCM acted not only as a cathode for e-Fenton oxidation process in a continuous mode but also as a membrane barrier to concentrate and enhance the mass transfer of florfenicol, which increased its oxidation chances. The removal rate of florfenicol by EFCM was much higher (10.2 ± 0.1 mg m-2 h-1) than single filtration (2.5 ± 0.1 mg m-2 h-1) or batch e-Fenton processes (4.3 ± 0.05 mg m-2 h-1). Long-term operation and fouling experiment further demonstrated the durability and antifouling property of EFCM. Four main degradation pathways of florfenicol were proposed by tracking the degradation byproducts. The above results highlighted the feasibility of this integrated membrane catalysis process for advanced water purification.
Collapse
Affiliation(s)
- Wen-Li Jiang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing , China
| | - Xue Xia
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Jing-Long Han
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing , China
| | - Yang-Cheng Ding
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing , China
| | - Muhammad Rizwan Haider
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing , China
| | - Ai-Jie Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing , China
- State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology , Harbin , 150090 , China
| |
Collapse
|
43
|
Dynamic cross-flow electro-Fenton process coupled to anodic oxidation for wastewater treatment: Application to the degradation of acetaminophen. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2018.03.063] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
44
|
Sun J, Wang Q, Zhang J, Wang Z, Wu Z. Degradation of sulfadiazine in drinking water by a cathodic electrochemical membrane filtration process. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.05.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Li X, Liu L, Yang F. CFC/PVDF/GO-Fe3+ membrane electrode and flow-through system improved E-Fenton performance with a low dosage of aqueous iron. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
46
|
Mameda N, Park HJ, Choo KH. Membrane electro-oxidizer: A new hybrid membrane system with electrochemical oxidation for enhanced organics and fouling control. WATER RESEARCH 2017; 126:40-49. [PMID: 28918077 DOI: 10.1016/j.watres.2017.09.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/10/2017] [Accepted: 09/03/2017] [Indexed: 06/07/2023]
Abstract
The synergistic combination of membrane filtration with advanced oxidation is of particular interest for next-generation wastewater treatment technologies. A membrane electro-oxidizer (MEO) hybridizing a submerged microfilter and an electrochemical cell was developed and investigated for tertiary treatment of secondary industrial (textile) wastewater effluent. Laboratory- and pilot-scale MEO systems were designed and evaluated for treatment efficiency and membrane fouling control. The MEO achieved substantial removal of color (50-90%), turbidity (>90%), and bacteria (>4 log) as well as chemical oxygen demand (13-31%) and 1,4-dioxane (∼25-53%). Fluorescence-based parallel factor analysis disclosed the degradation of humic-like organics with fluorophores. Size exclusion chromatograms with organic carbon detection confirmed the removal of specific organic molecules with ∼100 Da. While investigating the effects of oxidant quenching agents, reactive chlorine species and hydrogen peroxide were found to be most responsible for the anodic oxidation of secondary effluent organics. The efficacy of membrane fouling mitigation by the MEO was greater when higher electric current densities were applied, but was not dependent on the number of electrochemical cells installed. The MEO is a promising technology for enhanced organics removal with simultaneous fouling control due to its multifunctional active oxidants.
Collapse
Affiliation(s)
- Naresh Mameda
- Advanced Institute of Water Industry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Hyung-June Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Kwang-Ho Choo
- Advanced Institute of Water Industry, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea; Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea.
| |
Collapse
|