1
|
Coll C, Screpanti C, Hafner J, Zhang K, Fenner K. Read-Across of Biotransformation Potential between Activated Sludge and the Terrestrial Environment: Toward Making It Practical and Plausible. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:1790-1800. [PMID: 39809460 PMCID: PMC11780744 DOI: 10.1021/acs.est.4c09306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025]
Abstract
Recent emphasis on the development of safe-and-sustainable-by-design chemicals highlights the need for methods facilitating the early assessment of persistence. Activated sludge experiments have been proposed as a time- and resource-efficient way to predict half-lives in simulation studies. Here, this persistence "read-across" approach was developed to be more broadly and robustly applicable. We evaluated 21 previously used reference plant protection products (PPPs) for their broader applicability in calibrating regression and classification models for predicting half-lives in soil (DT50OECD307) and water-sediment systems (DT50OECD308) based on their half-life in sludge and the organic carbon-water partition coefficient KOC as predictors. The calibrated regression models showed satisfactory predictions of DT50OECD307 for another 22 test PPPs. Performance was less satisfying for the prediction of DT50OECD308 for 46 active pharmaceutical ingredients (APIs), suggesting a need for expanding the set of calibration substances and more experimental KOC values. The classification models mostly correctly classified persistent and non-persistent test compounds for both PPPs and APIs, which is relevant for early-stage screening of persistence. Transformation products of the reference compounds in activated sludge samples were consistent with the reported degradation pathways in soil, particularly with respect to major aerobic, enzyme-catalyzed transformation reactions. Overall, "reading across" biotransformation in environmental compartments such as soils or sediments from experiments with activated sludge outperformed three widely used in silico approaches for estimating half-lives and hence has immediate potential to support early assessment of biodegradability when aiming to develop chemicals that are safe and sustainable by design.
Collapse
Affiliation(s)
- Claudia Coll
- Eawag, Swiss
Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
- Soil Health
Research Center, Biology Research, Syngenta
Crop Protection AG, Schaffhauserstrasse 101, Stein CH-4332, Switzerland
| | - Claudio Screpanti
- Soil Health
Research Center, Biology Research, Syngenta
Crop Protection AG, Schaffhauserstrasse 101, Stein CH-4332, Switzerland
| | - Jasmin Hafner
- Eawag, Swiss
Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
- Department
of Chemistry, University of Zürich, Zürich 8057, Switzerland
| | - Kunyang Zhang
- Eawag, Swiss
Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
- Department
of Chemistry, University of Zürich, Zürich 8057, Switzerland
| | - Kathrin Fenner
- Eawag, Swiss
Federal Institute of Aquatic Science and Technology, Dübendorf 8600, Switzerland
- Department
of Chemistry, University of Zürich, Zürich 8057, Switzerland
| |
Collapse
|
2
|
Colachis M, Lilly JL, Trigg E, Kucharzyk KH. Analytical tools to assess polymer biodegradation: A critical review and recommendations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176920. [PMID: 39461538 DOI: 10.1016/j.scitotenv.2024.176920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/29/2024]
Abstract
Many petroleum-derived plastic materials are highly recalcitrant and persistent in the environment, posing significant threats to human and ecological receptors due to their accumulation in ecosystems. In recent years, research efforts have focused on advancing biological methods for polymer degradation. Enzymatic depolymerization has emerged as particularly relevant for biobased plastic recycling, potentially scalable for industrial use. Biodegradation involves adsorption to the plastic solid surface, followed by an interfacial reaction, resulting in cleavage of bonds of polymer chains exposed on the surface. Here, widely varying substrate-specific kinetics are observed, with the polymer's properties possessing a significant impact on the rate of this interfacial catalysis. Thus, there is a critical need for sensitive and accurate characterization of the material surface during and after interfacial depolymerization to fully understand the reaction mechanisms. Here, we provide a critical review of a range of techniques used in the analysis of material surfaces to characterize the chemical, topological, and morphological features relevant to the study of enzymatic biocatalysis, including microscopy techniques, spectroscopic techniques (e.g., X-ray diffraction analysis, Fourier transform infrared attenuated total reflectance spectroscopy, and mass spectrometry detection of analytes associated with degradation). Techniques for evaluation of surface energy and topology in their relevancy for sensitive detection of biological surface modifications are also discussed. In addition, this paper provides an overview of the strengths of these techniques and compares their performance in both sensitivity and throughput, including emerging techniques, which can be useful, particularly for the rapid analysis of the surface properties of polymeric materials in high-throughput screening of candidate biocatalysts. This research serves as a starting point in selecting and applying appropriate methodologies that provide direct evidence to the ongoing biotic degradation of polymeric materials.
Collapse
Affiliation(s)
- Matthew Colachis
- Battelle Memorial Institute, 505 King Ave, Columbus, OH 43201, United States
| | - Jacob L Lilly
- Battelle Memorial Institute, 505 King Ave, Columbus, OH 43201, United States
| | - Edward Trigg
- Cambium Biomaterials, 626 Bancroft Way, Suite A, Berkeley, California 94710, United States
| | | |
Collapse
|
3
|
Vidaurre R, Bramke I, Puhlmann N, Owen SF, Angst D, Moermond C, Venhuis B, Lombardo A, Kümmerer K, Sikanen T, Ryan J, Häner A, Janer G, Roggo S, Perkins AN. Design of greener drugs: aligning parameters in pharmaceutical R&D and drivers for environmental impact. Drug Discov Today 2024; 29:104022. [PMID: 38750927 DOI: 10.1016/j.drudis.2024.104022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/24/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
Active pharmaceutical ingredients (APIs) in the environment, primarily resulting from patient excretion, are of concern because of potential risks to wildlife. This has led to more restrictive regulatory policies. Here, we discuss the 'benign-by-design' approach, which encourages the development of environmentally friendly APIs that are also safe and efficacious for patients. We explore the challenges and opportunities associated with identifying chemical properties that influence the environmental impact of APIs. Although a straightforward application of greener properties could hinder the development of new drugs, more nuanced approaches could lead to drugs that benefit both patients and the environment. We advocate for an enhanced dialogue between research and development (R&D) and environmental scientists and development of a toolbox to incorporate environmental sustainability in drug development.
Collapse
Affiliation(s)
| | | | - Neele Puhlmann
- Institute for Sustainable Chemistry, Leuphana University of Lüneburg, Lüneburg, Germany
| | | | - Daniela Angst
- Novartis Pharma AG, Biomedical Research, Basel, Switzerland
| | - Caroline Moermond
- Centre for Safety of Substances and Products, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Bastiaan Venhuis
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Anna Lombardo
- Laboratory of Environmental Toxicology and Chemistry, Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCSS, Milano, Italy
| | - Klaus Kümmerer
- Institute for Sustainable Chemistry, Leuphana University of Lüneburg, Lüneburg, Germany
| | - Tiina Sikanen
- Faculty of Pharmacy, Drug Research Program, University of Helsinki, Helsinki, Finland
| | - Jim Ryan
- EHSS Shared Services, GSK, Stevenage, UK
| | - Andreas Häner
- Group Safety, Security, Health & Environmental Protection (SHE), F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Gemma Janer
- Novartis Pharma, Global HSE, Barcelona, Spain
| | - Silvio Roggo
- Novartis Pharma AG, Biomedical Research, Basel, Switzerland
| | | |
Collapse
|
4
|
Xu X, Li M, Yang L, Hu B. Remarkably and stable catalytic activity in reduction of 4-nitrophenol by sodium sesquicarbonate-supporting Fe 2O 3@Pt. RSC Adv 2023; 13:13556-13563. [PMID: 37152584 PMCID: PMC10155080 DOI: 10.1039/d3ra01930f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023] Open
Abstract
Reasonable design of bimetallic nanomaterials with support is beneficial to improve catalytic performance. This work reports a new kind of sodium sesquicarbonate-supporting Fe2O3@Pt via etching Fe3O4@Pt@SiO2, which exhibits highly efficient and stable catalytic reduction performance towards 4-NP. Sodium sesquicarbonate-supporting Fe2O3@Pt has an interconnected one-dimensional network structure that provides sufficient channels for mass transfer. At the same time, a large amount of Fe2O3@Pt is exposed on its surface, which hinders the aggregation of pt clusters and Fe2O3 nanoparticles, and facilitates the direct contact of Fe2O3@Pt reaction sites with reactant molecules, thus improving the catalytic rate of 4-NP reduction reaction. Moreover, the introduction of non-metallic Fe can not only reduce the consumption of precious metal Pt, but also improve the catalytic efficiency due to the synergistic effect. This study opens up a new avenue to develop robust catalysts for heterogeneous catalytic reactions.
Collapse
Affiliation(s)
- Xia Xu
- College of Science, Gansu Agricultural University Lanzhou 730070 P. R. China
| | - Mingqiang Li
- College of Chemistry, Xinjiang University Urumqi Xinjiang 830046 P. R. China
| | - Liming Yang
- College of Science, Gansu Agricultural University Lanzhou 730070 P. R. China
| | - Bing Hu
- College of Science, Gansu Agricultural University Lanzhou 730070 P. R. China
| |
Collapse
|
5
|
Davenport R, Curtis‐Jackson P, Dalkmann P, Davies J, Fenner K, Hand L, McDonough K, Ott A, Ortega‐Calvo JJ, Parsons JR, Schäffer A, Sweetlove C, Trapp S, Wang N, Redman A. Scientific concepts and methods for moving persistence assessments into the 21st century. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:1454-1487. [PMID: 34989108 PMCID: PMC9790601 DOI: 10.1002/ieam.4575] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 09/29/2021] [Accepted: 12/06/2021] [Indexed: 05/19/2023]
Abstract
The evaluation of a chemical substance's persistence is key to understanding its environmental fate, exposure concentration, and, ultimately, environmental risk. Traditional biodegradation test methods were developed many years ago for soluble, nonvolatile, single-constituent test substances, which do not represent the wide range of manufactured chemical substances. In addition, the Organisation for Economic Co-operation and Development (OECD) screening and simulation test methods do not fully reflect the environmental conditions into which substances are released and, therefore, estimates of chemical degradation half-lives can be very uncertain and may misrepresent real environmental processes. In this paper, we address the challenges and limitations facing current test methods and the scientific advances that are helping to both understand and provide solutions to them. Some of these advancements include the following: (1) robust methods that provide a deeper understanding of microbial composition, diversity, and abundance to ensure consistency and/or interpret variability between tests; (2) benchmarking tools and reference substances that aid in persistence evaluations through comparison against substances with well-quantified degradation profiles; (3) analytical methods that allow quantification for parent and metabolites at environmentally relevant concentrations, and inform on test substance bioavailability, biochemical pathways, rates of primary versus overall degradation, and rates of metabolite formation and decay; (4) modeling tools that predict the likelihood of microbial biotransformation, as well as biochemical pathways; and (5) modeling approaches that allow for derivation of more generally applicable biotransformation rate constants, by accounting for physical and/or chemical processes and test system design when evaluating test data. We also identify that, while such advancements could improve the certainty and accuracy of persistence assessments, the mechanisms and processes by which they are translated into regulatory practice and development of new OECD test guidelines need improving and accelerating. Where uncertainty remains, holistic weight of evidence approaches may be required to accurately assess the persistence of chemicals. Integr Environ Assess Manag 2022;18:1454-1487. © 2022 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | | | - Philipp Dalkmann
- Bayer AG, Crop Science Division, Environmental SafetyMonheimGermany
| | | | - Kathrin Fenner
- Eawag, Swiss Federal Institute of Aquatic Science and TechnologyDübendorfSwitzerland
- Department of ChemistryUniversity of ZürichZürichSwitzerland
| | - Laurence Hand
- Syngenta, Product Safety, Jealott's Hill International Research CentreBracknellUK
| | | | - Amelie Ott
- School of EngineeringNewcastle UniversityNewcastle upon TyneUK
- European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC)BrusselsBelgium
| | - Jose Julio Ortega‐Calvo
- Instituto de Recursos Naturales y Agrobiología de SevillaConsejo Superior de Investigaciones CientíficasSevillaSpain
| | - John R. Parsons
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Andreas Schäffer
- RWTH Aachen University, Institute for Environmental ResearchAachenGermany
| | - Cyril Sweetlove
- L'Oréal Research & InnovationEnvironmental Research DepartmentAulnay‐sous‐BoisFrance
| | - Stefan Trapp
- Department of Environmental EngineeringTechnical University of DenmarkBygningstorvetLyngbyDenmark
| | - Neil Wang
- Total Marketing & ServicesParis la DéfenseFrance
| | - Aaron Redman
- ExxonMobil Petroleum and ChemicalMachelenBelgium
| |
Collapse
|
6
|
Huang K, Zhang H. Classification and Regression Machine Learning Models for Predicting Aerobic Ready and Inherent Biodegradation of Organic Chemicals in Water. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12755-12764. [PMID: 35973069 DOI: 10.1021/acs.est.2c01764] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Machine learning (ML) is viewed as a promising tool for the prediction of aerobic biodegradation, one of the most important elimination pathways of organic chemicals from the environment. However, available models only have small datasets (<3200 records), make binary classification predictions, evaluate ready biodegradability, and do not incorporate experimental conditions (e.g., system setup and reaction time). This study addressed all these limitations by first compiling a large database of 12,750 records, considering both ready and inherent biodegradation under different conditions, and then developing regression and classification models using different chemical representations and ML algorithms. The best regression model (R2 = 0.54 and root mean square error of 0.25) and classification model (the prediction accuracy from 85.1%) achieved very good performance. The model interpretation indicated that the models correctly captured the effects of chemical substructures, following the order of C═O > O═C-O > OH > CH3 > halogen > branching > N > 6-member ring. The consideration of chemical speciation based on pKa and α notations did not affect the regression model performance but significantly improved the classification model performance (the accuracy increased to 87.6%). The models also showed large applicability domains and provided reasonable predictions for more than 98% of over 850,000 environmentally relevant chemicals in the Distributed Structure-Searchable Toxicity database. These robust, trustable models were finally made widely accessible through two free online predictors with graphical user interface.
Collapse
Affiliation(s)
- Kuan Huang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Huichun Zhang
- Department of Civil and Environmental Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
7
|
O'Keeffe J, Akunna J. Assessment of leachable and persistent dissolved organic carbon in sludges and biosolids from municipal wastewater treatment plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114565. [PMID: 35066192 DOI: 10.1016/j.jenvman.2022.114565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Environmental regulation of organic pollutants has not kept pace with the growth in the number and diversity of legacy and emerging organic substances now in use. Simpler and cheaper tools and methodologies are needed to quickly assess the organic pollutant risks in waste materials applied to land such as municipal wastewater treatment sludges and biosolids. This study attempts to provide these, using an approach that consists of chemical leaching and analysis of dissolved organic carbon and determination of its biodegradability by measuring persistent dissolved organic carbon. Primary and secondary sludges, dewatered sludge cake, and anaerobically and thermally treated biosolids obtained from various types of municipal wastewater treatment plants were used in the study. The study found little variability in the levels of dissolved organic carbon leached from primary sludges obtained from different municipal wastewater treatment plants but found significant differences for secondary sludges based on levels of nitrification at the municipal wastewater treatment plants. As predicted treated biosolids leached less dissolved organic carbon than untreated dry sludges but had relatively higher proportions of persistent or poorly biodegradable dissolved organic carbon. Across all tested sludges and biosolids persistent dissolved organic carbon ranged from 14 to 39%, with biosolids that have undergone anaerobic digestion and thermal treatment more likely to contain greater relative proportion of persistent dissolved organic carbon than untreated sludges. The approach presented in this study will be useful in assessing the effectiveness of current and widely employed sludge treatment methods in reducing persistent organic pollutants in biosolids disposed on land.
Collapse
Affiliation(s)
- Juliette O'Keeffe
- School of Applied Science, Division of Engineering and Food Sciences University of Abertay, Bell Street, Dundee, Scotland, DD1 1HG, UK.
| | - Joseph Akunna
- School of Applied Science, Division of Engineering and Food Sciences University of Abertay, Bell Street, Dundee, Scotland, DD1 1HG, UK.
| |
Collapse
|
8
|
Takekoshi S, Takano K, Matoba Y, Mukumoto M, Tachibana A. Establishing a ready biodegradability test system using OxiTop® to evaluate chemical fate in a realistic environment. JOURNAL OF PESTICIDE SCIENCE 2022; 47:35-42. [PMID: 35414760 PMCID: PMC8931551 DOI: 10.1584/jpestics.d21-046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
The purpose of this study is to propose the use of OxiTop® for measuring biochemical oxygen demand (BOD) under the Japanese Chemical Substances Control Law in order to properly evaluate chemical fate in a real environment. In our previous study, the biodegradation of test chemicals was accelerated by both adsorbing the chemical to silica gel with chloroform and increasing the medium volume from 300 to 3900 mL in the OECD 301F test using a coulometer. However, the biodegradability of these chemicals could not be evaluated based on BOD due to chloroform residue in the silica gel, or the medium volume could not be increased further due to the oven size of the coulometer. In this study, we established an evaluation system using OxiTop® based on BOD by increasing the medium volume to 9000 mL. Based on triplicate testing, increasing the medium volume accelerated biodegradation and decreased variation in BOD.
Collapse
Affiliation(s)
- Saki Takekoshi
- Sumitomo Chemical Co., Ltd. Environmental Health Science Laboratory, 1–98 Kasugadenaka 3-chome, Konohana-ku, Osaka 554–8558, Japan
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, 3–3–138 Sugimoto, Sumiyoshi-ku, Osaka 558–8585, Japan
| | - Kotaro Takano
- Sumitomo Chemical Co., Ltd. Environmental Health Science Laboratory, 1–98 Kasugadenaka 3-chome, Konohana-ku, Osaka 554–8558, Japan
| | - Yoshihide Matoba
- Sumitomo Chemical Co., Ltd. Environmental Health Science Laboratory, 1–98 Kasugadenaka 3-chome, Konohana-ku, Osaka 554–8558, Japan
| | - Makiko Mukumoto
- Sumitomo Chemical Co., Ltd. Environmental Health Science Laboratory, 1–98 Kasugadenaka 3-chome, Konohana-ku, Osaka 554–8558, Japan
| | - Akira Tachibana
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, 3–3–138 Sugimoto, Sumiyoshi-ku, Osaka 558–8585, Japan
| |
Collapse
|
9
|
Ye J, Wang S, Li G, He B, Chen X, Cui Y, Zhao W, Sun J. Insight into the Morphology-Dependent Catalytic Performance of CuO/CeO 2 Produced by Tannic Acid for Efficient Hydrogenation of 4-Nitrophenol. Chem Asian J 2021; 16:3371-3384. [PMID: 34431617 DOI: 10.1002/asia.202100696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/03/2021] [Indexed: 11/08/2022]
Abstract
The construction of a heterogeneous nanocatalyst with outstanding catalytic performance via an environmentally benign and cost-effective synthetic category has long been one of the challenges in nanotechnology. Herein, we synthesized highly efficient and low-cost mesoporous morphology-dependent CuO/CeO2 -Rods and CuO/CeO2 -Cubes catalysts by employing a green and multifunctional polyphenolic compound (tannic acid) as the stabilizer and chelating agent for 4-nitrophenol (4-NP) reduction reaction. The CuO/CeO2 -Rods exhibited excellent performance, of which the activity was 3.2 times higher than that of CuO/CeO2 -Cubes. This can be connected with the higher density of oxygen vacancy on CeO2 -Rods (110) than CeO2 -Cubes (100), the oxygen vacancy favors anchoring CuO species on the CeO2 support, which promotes the strong interaction between finely dispersed CuO and CeO2 -Rods at the interfacial positions and facilitates the electron transfer from BH4 - to 4-NP. The synergistic catalytic mechanism illustrated that 4-NP molecules preferentially adsorbed on the CeO2 , while H2 from BH4 - dissociated over CuO to form highly active H* species, contributing to achieving efficient hydrogenation of 4-NP. This study is expected to shed light on designing and synthesizing cost-effective and high-performance nanocatalysts through a greener synthetic method for the areas of catalysis, nanomaterial science and engineering, and chemical synthesis.
Collapse
Affiliation(s)
- Junqing Ye
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Shuaijun Wang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Gen Li
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Bin He
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xinyan Chen
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yuandong Cui
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Wanting Zhao
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Jian Sun
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China.,Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
10
|
Takekoshi S, Takano K, Matoba Y, Sato M, Tachibana A. Investigation of OECD 301F ready biodegradability test to evaluate chemical fate in a realistic environment. JOURNAL OF PESTICIDE SCIENCE 2021; 46:143-151. [PMID: 34135676 PMCID: PMC8175226 DOI: 10.1584/jpestics.d20-050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/13/2020] [Indexed: 06/12/2023]
Abstract
The OECD 301F ready biodegradability test has been approved for use under the Japanese Chemical Substances Control Law since 2018. This test uses activated sludge obtained from a sewage treatment plant instead of the standard activated sludge used for the 301C test. In addition, the test is allowed to add an inert support or emulsifying agent, and/or to change the volume of the test medium. In this study, we first confirmed that the standard sludge had lower biodegradation activities than the sludge taken from a sewage treatment plant. Second, we showed that biodegradation percentages were increased by adding suitable amounts of silica gel or Tween 80. Third, we found that the biodegradations were accelerated by only increasing the medium volume under the conditions that concentrations of chemical, silica gel, and sludge were held constant. These findings are expected to contribute to the appropriate evaluation of chemical fate in a realistic environment.
Collapse
Affiliation(s)
- Saki Takekoshi
- Sumitomo Chemical Co., Ltd. Environmental Health Science Laboratory, 1–98, Kasugadenaka 3-chome, Konohana-ku, Osaka 554–8558, Japan
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, 3–3–138 Sugimoto, Sumiyoshi-ku, Osaka 558–8585, Japan
| | - Kotaro Takano
- Sumitomo Chemical Co., Ltd. Environmental Health Science Laboratory, 1–98, Kasugadenaka 3-chome, Konohana-ku, Osaka 554–8558, Japan
| | - Yoshihide Matoba
- Sumitomo Chemical Co., Ltd. Environmental Health Science Laboratory, 1–98, Kasugadenaka 3-chome, Konohana-ku, Osaka 554–8558, Japan
| | - Masayuki Sato
- Sumitomo Chemical Co., Ltd. Environmental Health Science Laboratory, 1–98, Kasugadenaka 3-chome, Konohana-ku, Osaka 554–8558, Japan
| | - Akira Tachibana
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, 3–3–138 Sugimoto, Sumiyoshi-ku, Osaka 558–8585, Japan
| |
Collapse
|
11
|
Khuntia HK, Janardhana N, Chanakya HN. Household discharge of chemical products and its classification based on anaerobic biodegradability. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:39. [PMID: 33409667 DOI: 10.1007/s10661-020-08835-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 12/27/2020] [Indexed: 06/12/2023]
Abstract
Synthetic household chemical products (HCP) are used in various household activities. An average urban household was estimated to consume ~ 3 kg HCP per month while discarding 212-387 mg/L HCP in sewage comprising > 265 different chemical compounds. The high sorption properties of HCP and their antimicrobial resistance lead to their long-term persistence in the environment. The intrusion of HCPs and their breakdown products into food chain causes detrimental effects on health and ecology. HCPs comprise mostly of a mixture of xenobiotics, organic and inorganic compounds resulting in an impaired biodegradation. Yet, the biodegradability of HCPs is seldom assessed. Therefore, this research proposes a modified Gompertz model approach to analyze BMP data in order to classify commercially available HCPs into seven groups based on the observed levels of recalcitrance and is in turn coined "Anaerobic Biodegradability Index" (ABI, beginning from ABI-VI to ABI-0 wherein ABI-VI represents the highest degradability and ABI-0 the least). This approach emulates "Energy-Star" ratings of electrical appliances classified based on electrical efficiency. Results of such a classification indicated that HCPs containing ≥ 10% anionic surfactants such as laundry detergents, handwash gel, dishwasher chemicals, and creosote surface cleaner, exhibit lowered anaerobic degradability and were therefore categorized between ABI-0 and ABI-II. Whereas the highly degradable HCP such as toothpaste, shower gel, and hair shampoo were categorized in ABI-V and ABI-VI categories. We perceive that the weightages and concentrations can be used in the future to define the capability of various wastewater treatment systems and their tolerance to various ABI classes.
Collapse
Affiliation(s)
- Himanshu Kumar Khuntia
- Centre for Sustainable Technologies, Indian Institute of Science, Bengaluru, 560012, India.
| | - Naveen Janardhana
- Centre for Sustainable Technologies, Indian Institute of Science, Bengaluru, 560012, India
| | - H N Chanakya
- Centre for Sustainable Technologies, Indian Institute of Science, Bengaluru, 560012, India
| |
Collapse
|
12
|
Balakrishnan A, Kanchinadham SBK, Kalyanaraman C. Assessment on biodegradability prediction of tannery wastewater using EPI Suite BIOWIN model. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:732. [PMID: 33123797 DOI: 10.1007/s10661-020-08661-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
Biodegradation of organic compounds would reveal important information on the final fate of a chemical in the environment. However, establishing biodegradability and fate of a chemical is cumbersome. In this scenario, the use of multimedia models help in predicting the fate and half-life of any compound to establish biodegradability. The study commenced with collection of wastewater samples, after primary and secondary treatment, from a Common Effluent Treatment Plant (CETP) treating tannery wastewater. The samples were subjected to gas chromatography-mass spectrometry (GC-MS) analysis. The GC-MS analysis identified that polyphenolic compounds were detected after biological treatment. The identified compounds emanated from tanning, dyeing, and fatliquoring process of leather making. Estimation Program Interface (EPI) Suite BIOWIN 3 and BIOWIN 4 model prediction revealed that while the primary biodegradation time-frame ranged from days to weeks, the ultimate biodegradation took weeks in the case of all the detected compounds. This study established that BIOWIN model could be used as a screening tool to determine biodegradability of complex chemicals used in tanneries and help to design better treatment facility with enhanced efficiency for removal of polyphenolic compounds. This methodology can also be applied to other industrial wastewaters containing recalcitrant chemicals, and with the help of BIOWIN model, information on biodegradability of chemicals present in the wastewater can be obtained.
Collapse
Affiliation(s)
- Abirami Balakrishnan
- Environmental Science and Engineering Division, CSIR - Central Leather Research Institute, Adyar, Chennai, 600 020, India
| | | | - Chitra Kalyanaraman
- Environmental Science and Engineering Division, CSIR - Central Leather Research Institute, Adyar, Chennai, 600 020, India
| |
Collapse
|
13
|
Tan X, Qin J, Li Y, Zeng Y, Zheng G, Feng F, Li H. Self-supporting hierarchical PdCu aerogels for enhanced catalytic reduction of 4-nitrophenol. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122786. [PMID: 32353783 DOI: 10.1016/j.jhazmat.2020.122786] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
This work reports a new kind of self-assembled PdCu monolithic aerogels via a mild reduction process, which exhibits highly efficient catalytic reduction activity towards 4-nitrophenol. The enhanced catalytic reduction performance can be contributed the following unique features of PdCu aerogels: 1) the interconnected channels and three-dimensional network provide a platform for accelerating mass transfer during catalysis; 2) metallic aerogels combined with stretching ultrathin nanowires has a large surface area and good crystallinity affording sufficient reactive sites and high atom utilization; 3) the introduction of nonprecious Cu not only drastically cuts down the cost but also attains the excellent catalytic activity due to the bimetallic intrinsic synergetic effect; 4) the self-supporting feature is good for improving the durability of the catalyst. This study pushes a new avenue to develop robust catalysts for heterogeneous catalytic reactions.
Collapse
Affiliation(s)
- Xiaofeng Tan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Jun Qin
- Innovation & Application Engineering Research Center for Mesoporous Materials of Shanxi Province, College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, 037009, China
| | - Yan Li
- College of Optoelectronics Technology, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Yuting Zeng
- College of Optoelectronics Technology, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Gengxiu Zheng
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| | - Feng Feng
- Innovation & Application Engineering Research Center for Mesoporous Materials of Shanxi Province, College of Chemistry and Environmental Engineering, Shanxi Datong University, Datong, 037009, China.
| | - He Li
- College of Optoelectronics Technology, Chengdu University of Information Technology, Chengdu, 610225, China.
| |
Collapse
|
14
|
Ott A, Martin TJ, Acharya K, Lyon DY, Robinson N, Rowles B, Snape JR, Still I, Whale GF, Albright VC, Bäverbäck P, Best N, Commander R, Eickhoff C, Finn S, Hidding B, Maischak H, Sowders KA, Taruki M, Walton HE, Wennberg AC, Davenport RJ. Multi-laboratory Validation of a New Marine Biodegradation Screening Test for Chemical Persistence Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4210-4220. [PMID: 32162906 DOI: 10.1021/acs.est.9b07710] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Current biodegradation screening tests are not specifically designed for persistence assessment of chemicals, often show high inter- and intra-test variability, and often give false negative biodegradation results. Based on previous studies and recommendations, an international ring test involving 13 laboratories validated a new test method for marine biodegradation with a focus on improving the reliability of screening to determine the environmental degradation potential of chemicals. The new method incorporated increased bacterial cell concentrations to better represent the microbial diversity; a chemical is likely to be exposed in the sampled environments and ran beyond 60 days, which is the half-life threshold for chemical persistence in the marine environment. The new test provided a more reliable and less variable characterization of the biodegradation behavior of five reference chemicals (sodium benzoate, triethanolamine, 4-nitrophenol, anionic polyacrylamide, and pentachlorophenol), with respect to REACH and OSPAR persistence thresholds, than the current OECD 306 test. The proposed new method provides a cost-effective screening test for non-persistence that could streamline chemical regulation and reduce the cost and animal welfare implications of further higher tier testing.
Collapse
Affiliation(s)
- Amelie Ott
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Timothy J Martin
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Kishor Acharya
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Delina Y Lyon
- Shell Oil Company, 150 N. Dairy Ashford Rd., Houston, Texas 77079, United States
| | - Nik Robinson
- European Oilfield Specialty Chemicals Association (EOSCA), Aberdeen AB11 6YQ, United Kingdom
| | - Bob Rowles
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft NR33 0HT, United Kingdom
| | - Jason R Snape
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
- AstraZeneca Global Environment, Mereside, Alderley Park, Macclesfield, Cheshire, SK10 4TF, United Kingdom
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry CV4 7AL, United Kingdom
| | - Ian Still
- European Oilfield Specialty Chemicals Association (EOSCA), Aberdeen AB11 6YQ, United Kingdom
| | - Graham F Whale
- Risk Science Team, Shell International Ltd., 4 York Road, London SE1 7NA, United Kingdom
| | - Vurtice C Albright
- Toxicology & Environmental Research & Consulting, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Petra Bäverbäck
- Schlumberger, Sandslikroken 140, Sandsli, Bergen 5254, Norway
| | - Nicola Best
- Covance CRS Research Limited, Shardlow Business Park, London Road, Derby DE72 2GD, United Kingdom
| | - Ruth Commander
- Scymaris Ltd., Brixham Laboratory, Brixham TQ5 8BA, United Kingdom
| | - Curtis Eickhoff
- Nautilus Environmental Company, Inc., Burnaby, BC V5A 4N7, Canada
| | - Sarah Finn
- National Oilwell Varco (NOV), Flotta, Stromness, Orkney, KW16 3NP, United Kingdom
| | - Björn Hidding
- BASF SE, Carl-Bosch-Straße 38, Ludwigshafen am Rhein 67056, Germany
| | - Heiko Maischak
- Noack Laboratorien GmbH, Käthe-Paulus-Straße 1, Sarstedt, Hildesheim 31157, Germany
| | - Katherine A Sowders
- Baker Hughes - Environmental Services Group, 369 Marshall Ave., Webster Groves, Missouri 63119, United States
| | - Masanori Taruki
- Chemicals Evaluation and Research Institute, Japan, Kurume (CERI Kurume), 3-2-7 Miyanojin, Kurume-shi, Fukuoka 839-0801, Japan
| | - Helen E Walton
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft NR33 0HT, United Kingdom
| | | | - Russell J Davenport
- School of Engineering, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
15
|
Ott A, Martin TJ, Snape JR, Davenport RJ. Increased cell numbers improve marine biodegradation tests for persistence assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 706:135621. [PMID: 31841849 DOI: 10.1016/j.scitotenv.2019.135621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/15/2019] [Accepted: 11/17/2019] [Indexed: 04/15/2023]
Abstract
Currently available OECD biodegradation screening tests (BSTs) are not particularly suited for persistence screening. Their duration can be much less than international half-life thresholds for persistence and they are variable and stringent, therefore prone to false negatives. The present study extended test durations beyond 28 days and increased biomass concentrations for marine BSTs to better represent the microbial diversity inherent in the sampled environment. For this so-called environmentally relevant BST (erBST) marine cell concentrations were nominally increased 100-fold by tangential flow filtration. The marine erBST was validated against a standard BST using five 14C labeled reference compounds with a range of biodegradation potentials (aniline, 4-fluorophenol, 4-nitrophenol, 4-chloroaniline and pentachlorophenol) in a modified OECD 301B test. A full mass balance was collated to follow chemical fate in the tests. The erBST was more accurate and less variable than the comparator BST in assigning the reference compounds to their expected biodegradation classifications (non-persistent or potentially persistent). According to the REACH non-persistence criterion of ≥60% biodegradation over 60 days, the erBST correctly classified 60% of chemical replicates according to their expected biodegradation classification and had a coefficient of variation of 21% between replicates. In contrast, the BST correctly assessed 40% of reference chemicals in regards to their expected biodegradation classification with a coefficient of variation of 36%. All non-persistent chemicals showed increased degradation in the erBST, except for 4-chloroaniline, which did not degrade in either BST or erBST. Both tests showed no false positive results, correctly classifying the negative control pentachlorophenol as potentially persistent. Next, it is recommended to further validate the marine erBST in an inter-laboratory study incorporating different seawater sources to fully assess its variability and reliability.
Collapse
Affiliation(s)
- Amelie Ott
- Newcastle University, School of Engineering, Cassie Building, Newcastle upon Tyne NE1 7RU, UK.
| | - Timothy J Martin
- Newcastle University, School of Engineering, Cassie Building, Newcastle upon Tyne NE1 7RU, UK
| | - Jason R Snape
- Newcastle University, School of Engineering, Cassie Building, Newcastle upon Tyne NE1 7RU, UK; AstraZeneca Global Environment, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TF, UK; University of Warwick, School of Life Sciences, Gibbet Hill Campus, Coventry CV4 7AL, UK
| | - Russell J Davenport
- Newcastle University, School of Engineering, Cassie Building, Newcastle upon Tyne NE1 7RU, UK
| |
Collapse
|
16
|
Acharya K, Werner D, Dolfing J, Meynet P, Tabraiz S, Baluja MQ, Petropoulos E, Mrozik W, Davenport RJ. The experimental determination of reliable biodegradation rates for mono-aromatics towards evaluating QSBR models. WATER RESEARCH 2019; 160:278-287. [PMID: 31154125 DOI: 10.1016/j.watres.2019.05.075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 05/19/2019] [Accepted: 05/22/2019] [Indexed: 06/09/2023]
Abstract
Quantitative Structure Biodegradation Relationships (QSBRs) are a tool to predict the biodegradability of chemicals. The objective of this work was to generate reliable biodegradation data for mono-aromatic chemicals in order to evaluate and verify previously developed QSBRs models. A robust biodegradation test method was developed to estimate specific substrate utilization rates, which were used as a proxy for biodegradation rates of chemicals in pure culture. Five representative mono-aromatic chemicals were selected that spanned a wide range of biodegradability. Aerobic biodegradation experiments were performed for each chemical in batch reactors seeded with known degraders. Chemical removal, degrader growth and CO2 production were monitored over time. Experimental data were interpreted using a full carbon mass balance model, and Monod kinetic parameters (Y, Ks, qmax and μmax) for each chemical were determined. In addition, stoichiometric equations for aerobic mineralization of the test chemicals were developed. The theoretically estimated biomass and CO2 yields were similar to those experimentally observed; 35% (s.d ± 8%) of the recovered substrate carbon was converted to biomass, and 65% (s.d ± 8%) was mineralised to CO2. Significant correlations were observed between the experimentally determined specific substrate utilization rates, as represented by qmax and qmax/Ks, at high and low substrate concentrations, respectively, and the first order biodegradation rate constants predicted by a previous QSBR study. Similarly, the correlation between qmax and selected molecular descriptors characterizing the chemicals structure in a previous QSBR study was also significant. These results suggest that QSBR models can be reliable and robust in prioritising chemical half-lives for regulatory screening purposes.
Collapse
Affiliation(s)
- Kishor Acharya
- School of Engineering, Cassie Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom.
| | - David Werner
- School of Engineering, Cassie Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Jan Dolfing
- School of Engineering, Cassie Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Paola Meynet
- School of Engineering, Cassie Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Shamas Tabraiz
- School of Engineering, Cassie Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Marcos Quintela Baluja
- School of Engineering, Cassie Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Evangelos Petropoulos
- School of Engineering, Cassie Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Wojciech Mrozik
- School of Engineering, Cassie Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| | - Russell J Davenport
- School of Engineering, Cassie Building, Newcastle University, Newcastle upon Tyne, NE1 7RU, United Kingdom
| |
Collapse
|
17
|
Ott A, Martin TJ, Whale GF, Snape JR, Rowles B, Galay-Burgos M, Davenport RJ. Improving the biodegradability in seawater test (OECD 306). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:399-404. [PMID: 30802655 DOI: 10.1016/j.scitotenv.2019.02.167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 02/08/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Growth and extensive urbanisation of the human population has been accompanied by increased manufacture and use of chemical compounds. To classify the fate and behaviour of these compounds in the environment, a series of international standardised biodegradation screening tests (BSTs) were developed over 30 years ago. In recent years, regulatory emphasis (e.g. REACH) has shifted from measuring biodegradation towards prioritisations based on chemical persistence. In their current guise, BSTs are ineffective as screens for persistence. The marine BST OECD 306 in particular is prone to high levels of variation and produces a large number of fails, many of which can be considered false negatives. An ECETOC funded two-day workshop of academia, industry and regulatory bodies was held in 2015 to discuss improvements to the marine BSTs based on previous research findings from the Cefic LRI ECO11 project and other foregoing studies. During this workshop, methodological improvements to the OECD 306 test were discussed, in addition to clarifying guidance on testing and interpretation of results obtained from marine BSTs (such as pass criteria, lag phases, freshwater read across and complex substances). Methodologically: (i) increasing bacterial cell concentrations to better represent the bacterial diversity inherent in the sampled environments; and (ii) increasing test durations to investigate extended lag phases observed in marine assessments, were recommended to be validated in a multi-institutional ring test.
Collapse
Affiliation(s)
- Amelie Ott
- Newcastle University, School of Engineering, Newcastle-upon-Tyne NE1 7RU, UK.
| | - Timothy J Martin
- Newcastle University, School of Engineering, Newcastle-upon-Tyne NE1 7RU, UK.
| | - Graham F Whale
- Shell International Ltd., Risk Science Team, 4 York road, London SE1 7NA, UK.
| | - Jason R Snape
- Newcastle University, School of Engineering, Newcastle-upon-Tyne NE1 7RU, UK; AstraZeneca Global Environment, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, UK; School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry CV4 7AL, UK.
| | - Bob Rowles
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Pakefield Road, Lowestoft NR33 0HT, UK.
| | - Malyka Galay-Burgos
- European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC), Avenue Edmond Van Nieuwenhuyse 2, 1160 Auderghem, Belgium.
| | - Russell J Davenport
- Newcastle University, School of Engineering, Newcastle-upon-Tyne NE1 7RU, UK.
| |
Collapse
|
18
|
Martin TJ, Goodhead AK, Snape JR, Davenport RJ. Improving the ecological relevance of aquatic bacterial communities in biodegradability screening assessments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:1552-1559. [PMID: 30857116 PMCID: PMC5892456 DOI: 10.1016/j.scitotenv.2018.01.264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/25/2018] [Accepted: 01/25/2018] [Indexed: 04/15/2023]
Abstract
Concentrating cells from aqueous samples is a common requirement for the enumeration of biomass, investigations of microbial diversity and detection of relatively rare organisms in the environment. Accurately representing the initial sampled environments in the concentrated cells is of particular importance when the subsequent analyses have tangible environmental, economic and societal consequences, as is the case with environmental exposure and risk assessment of chemicals. This study investigated the potential use of four different cell concentration methods: centrifugation, membrane filtration, tangential flow filtration and column colonisation. These methods were assessed against a series of scientific and practical criteria, including: similarity of concentrated community to initial environmental sample; cell concentration achieved; biodegradation test outcome; sample throughput; and capital and maintenance costs. All methods increased cell concentration by as little as 10-fold to as much as 1000-fold. DGGE and 454 pyrosequencing analysis showed concentrated communities to have >60% similarity to each other, and the initial sample. There was a general trend for a more reliable assessment of 4-nitrophenol biodegradation in 96-well plate biodegradation assays, with increasing cell concentration. Based on the selection criteria, it is recommended that there is not one concentration method fit for all purposes, rather, the appropriate method should be selected on a case-by-case basis. Membrane filtration would be the most suitable method for low sample volumes; the increased throughput capacity of tangential flow filtration renders it most suitable for large volumes; and centrifugation is most suitable for samples with high initial biomass concentrations. The poor similarity in microbial community composition of the column colonised samples compared to the initial samples, suggested a concentration basis; this combined with its low sample throughput precluded this approach for future concentration studies of planktonic bacterial samples.
Collapse
Affiliation(s)
- Timothy J Martin
- School of Engineering, Cassie Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom.
| | - Andrew K Goodhead
- School of Engineering, Cassie Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| | - Jason R Snape
- School of Engineering, Cassie Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom; AstraZeneca Global Environment, Mereside, Alderley Park, Macclesfield, Cheshire SK10 4TG, United Kingdom; School of Life Sciences, Gibbet Hill Campus, The University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Russell J Davenport
- School of Engineering, Cassie Building, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
| |
Collapse
|
19
|
Brown DM, Hughes CB, Spence M, Bonte M, Whale G. Assessing the suitability of a manometric test system for determining the biodegradability of volatile hydrocarbons. CHEMOSPHERE 2018; 195:381-389. [PMID: 29274577 DOI: 10.1016/j.chemosphere.2017.11.169] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/22/2017] [Accepted: 11/29/2017] [Indexed: 06/07/2023]
Abstract
Manometric test systems, adapted from those used to measure biochemical oxygen demand (BOD), and the OxiTop® test system in particular, are being increasingly used to determine the biodegradability of chemicals in accordance to OECD 301F guidelines. In this study, the suitability of the OxiTop® test system for determining the biodegradability of volatile hydrophobic substances has been explored. Experiments in biotic and abiotic systems were conducted with readily biodegradable complex aliphatic hydrocarbons covering a range of volatilities. Results indicated that abiotic losses of test substances were occurring due to sorption of the test substance to plastic components used in the OxiTop® system. A further 'plastic-free' biodegradation test system was designed using PreSens optical dissolved oxygen (DO) sensors. This significantly improved the measured biodegradation due to reduced abiotic losses and better retention of the test substance. These results highlight the importance of considering the physico-chemical properties of test substances when selecting test methods and equipment. They also highlight the value of incorporating chemical analysis and abiotic controls to improve the interpretation of biodegradation studies.
Collapse
Affiliation(s)
- David M Brown
- Shell Global Solutions International BV, Lange Kleiweg 40, 2288 GK Rijswijk, The Netherlands.
| | - Christopher B Hughes
- Shell Health - Global Risk Sciences, Shell International Ltd., Manchester, M22 0RR, United Kingdom
| | - Michael Spence
- CONCAWE, Boulevard du Souverain 165, 1160 Bruxelles, Belgium
| | - Matthijs Bonte
- Shell Global Solutions International BV, Lange Kleiweg 40, 2288 GK Rijswijk, The Netherlands
| | - Graham Whale
- Shell Health - Global Risk Sciences, Shell International Ltd., Manchester, M22 0RR, United Kingdom
| |
Collapse
|
20
|
Birch H, Hammershøj R, Mayer P. Determining Biodegradation Kinetics of Hydrocarbons at Low Concentrations: Covering 5 and 9 Orders of Magnitude of K ow and K aw. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2143-2151. [PMID: 29376649 DOI: 10.1021/acs.est.7b05624] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A partitioning-based experimental platform was developed and applied to determine primary biodegradation kinetics of 53 hydrocarbons at ng/L to μg/L concentrations covering C8-C20, 11 structural classes, and several orders of magnitude in hydrophobicity and volatility: (1) Passive dosing from a loaded silicone donor was used to set the concentration of each hydrocarbon in mixture stock solutions; (2) these solutions were combined with environmental water samples in gastight auto sampler vials for 1-100 days incubation, and (3) automated solid phase microextraction (SPME) coupled to GC-MS was applied directly on these test systems for measuring primary biodegradation relative to abiotic controls. First order biodegradation kinetics were obtained for 40 hydrocarbons in activated sludge filtrate, 18 in seawater, and 21 in lake water. Water phase half-lives in seawater and lake water were poorly related to hydrophobicity and volatility but were, with a few exceptions, within a factor of 10 or shorter than BioHCwin predictions. The most persistent hydrocarbons, 1,1,4,4,6-pentamethyldecalin, perhydropyrene, 1,2,3,6,7,8-hexahydropyrene, and 2,2,4,4,6,8,8-heptamethylnonane, showed limited or inconsistent degradation in all three environmental media. This biodegradation approach can cover a large chemical space at low substrate concentrations, which makes it highly suited for optimizing predictive models for environmental biodegradation.
Collapse
Affiliation(s)
- Heidi Birch
- Department of Environmental Engineering, Technical University of Denmark , Bygningstorvet, Building 115, 2800 Kongens Lyngby, Denmark
| | - Rikke Hammershøj
- Department of Environmental Engineering, Technical University of Denmark , Bygningstorvet, Building 115, 2800 Kongens Lyngby, Denmark
| | - Philipp Mayer
- Department of Environmental Engineering, Technical University of Denmark , Bygningstorvet, Building 115, 2800 Kongens Lyngby, Denmark
| |
Collapse
|