1
|
Wang S, Li Q, Zhang R, Mahajan AS, Inamdar S, Benavent N, Zhang S, Xue R, Zhu J, Jin C, Zhang Y, Fu X, Badia A, Fernandez RP, Cuevas CA, Wang T, Zhou B, Saiz-Lopez A. Typhoon- and pollution-driven enhancement of reactive bromine in the mid-latitude marine boundary layer. Natl Sci Rev 2024; 11:nwae074. [PMID: 38623452 PMCID: PMC11018124 DOI: 10.1093/nsr/nwae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 04/17/2024] Open
Abstract
Tropospheric reactive bromine is important for atmospheric chemistry, regional air pollution, and global climate. Previous studies have reported measurements of atmospheric reactive bromine species in different environments, and proposed their main sources, e.g. sea-salt aerosol (SSA), oceanic biogenic activity, polar snow/ice, and volcanoes. Typhoons and other strong cyclonic activities (e.g. hurricanes) induce abrupt changes in different earth system processes, causing widespread destructive effects. However, the role of typhoons in regulating reactive bromine abundance and sources remains unexplored. Here, we report field observations of bromine oxide (BrO), a critical indicator of reactive bromine, on the Huaniao Island (HNI) in the East China Sea in July 2018. We observed high levels of BrO below 500 m with a daytime average of 9.7 ± 4.2 pptv and a peak value of ∼26 pptv under the influence of a typhoon. Our field measurements, supported by model simulations, suggest that the typhoon-induced drastic increase in wind speed amplifies the emission of SSA, significantly enhancing the activation of reactive bromine from SSA debromination. We also detected enhanced BrO mixing ratios under high NOx conditions (ppbv level) suggesting a potential pollution-induced mechanism of bromine release from SSA. Such elevated levels of atmospheric bromine noticeably increase ozone destruction by as much as ∼40% across the East China Sea. Considering the high frequency of cyclonic activity in the northern hemisphere, reactive bromine chemistry is expected to play a more important role than previously thought in affecting coastal air quality and atmospheric oxidation capacity. We suggest that models need to consider the hitherto overlooked typhoon- and pollution-mediated increase in reactive bromine levels when assessing the synergic effects of cyclonic activities on the earth system.
Collapse
Affiliation(s)
- Shanshan Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Institute of Eco-Chongming (IEC), Shanghai 202162, China
| | - Qinyi Li
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, CSIC, Madrid 28006, Spain
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Ruifeng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Anoop Sharad Mahajan
- Centre for Climate Change Research, Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune 411008, India
| | - Swaleha Inamdar
- Department of Chemistry, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Nuria Benavent
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, CSIC, Madrid 28006, Spain
| | - Sanbao Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Ruibin Xue
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Jian Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Chenji Jin
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Yan Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Institute of Eco-Chongming (IEC), Shanghai 202162, China
| | - Xiao Fu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Alba Badia
- Sostenipra Research Group, Institute of Environmental Science and Technology (ICTA), Universitat Autònoma de Barcelona (UAB), Barcelona 08193, Spain
| | - Rafael P Fernandez
- Institute for Interdisciplinary Science (ICB), National Research Council (CONICET), FCEN-UNCuyo, Mendoza M5502JMA, Argentina
| | - Carlos A Cuevas
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, CSIC, Madrid 28006, Spain
| | - Tao Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Bin Zhou
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
- Institute of Eco-Chongming (IEC), Shanghai 202162, China
| | - Alfonso Saiz-Lopez
- Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Blas Cabrera, CSIC, Madrid 28006, Spain
| |
Collapse
|
2
|
Jiao X, Zeng R, Lan G, Zuo S, He J, Wang C. Mechanistic study on photochemical generation of I •/I 2•- radicals in coastal atmospheric aqueous aerosol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154080. [PMID: 35218835 DOI: 10.1016/j.scitotenv.2022.154080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/27/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
The reactive iodine species may exhibit significant impacts on many global atmospheric issues and the I•/I2•- radicals play key roles for inducing the formation of these reactive iodine species. However, the current understanding on the formation of I•/I2•- radicals in atmospheric aqueous aerosol is still quite limited. The results reported herein suggest that I•/I2•- can be produced simultaneously in aqueous aerosol by several sunlight-driven photochemical pathways including direct photo-dissociation of soluble organic iodine (SOI) at rates of 0.10-1.34 × 10-9 M ns-1 and 0.99-5.68 × 10-7 M μs-1, •OH-mediated oxidation of I- at 0.03-1.41 × 10-8 M ns-1 and 0.05-4.10 × 10-6 M μs-1, and 3DOM⁎-induced oxidation of I- at 1.57-1.65 × 10-9 M ns-1 and 0.99-5.68 × 10-7 M μs-1 for generation of I• and I2•-, respectively. Meanwhile, the pathway of eaq--initiated stepwise reduction of IO3- to I2(aq) and further photolyzed into I• plays negligible role in formation of I•/I2•- due to the low reaction rates and severe quenching effect of eaq- by dissolved O2. Our work presented the new data on mechanism and kinetics for comprehensive elucidation of I•/I2•- formation in coastal atmospheric aqueous aerosol and would help to better understand the transformation mechanism of iodine species, pathways of iodine cycling and the associated environmental impacts involving atmospheric reactive iodine radicals.
Collapse
Affiliation(s)
- Xiaoyu Jiao
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Rui Zeng
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Guangcai Lan
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Siyu Zuo
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China
| | - Jun He
- Department of Chemical and Environmental Engineering, University of Nottingham-Ningbo China, Ningbo 315100, China; The Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, Ningbo 315100, China
| | - Chengjun Wang
- College of Resources and Environmental Science, South-Central University for Nationalities, Wuhan 430074, China.
| |
Collapse
|
3
|
Hoffmann EH, Tilgner A, Wolke R, Herrmann H. Enhanced Chlorine and Bromine Atom Activation by Hydrolysis of Halogen Nitrates from Marine Aerosols at Polluted Coastal Areas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:771-778. [PMID: 30557005 DOI: 10.1021/acs.est.8b05165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Detailed multiphase chemistry box model studies are carried out, investigating halogen radical activation at polluted coastal areas. Simulations are performed for a nonpermanent cloud and a cloud-free scenario and reveal that ClNO2 photolysis and ICl photolysis are crucial for gas-phase Cl atom activation. In the cloud scenario, the integrated ClNO2 and ICl photolysis rates are 3.7 × 107 and 3.1 × 107 molecules cm-3 s-1. In the cloud-free scenario, the integrated ClNO2 and ICl photolysis rates are 8.1 × 107 and 3.6 × 107 molecules cm-3 s-1. The simulations show larger contributions of ClNO2 photolysis in the morning and higher ones of ICl photolysis during afternoon. Throughout the simulation, average contributions to Cl atom activation in the cloud and cloud-free scenarios by ClNO2 photolysis are 42% and 62% and by ICl photolysis 35% and 28%, respectively. ICl is formed through an aqueous-phase reaction of HOI with chloride. Two thirds of the formed ICl is released into the gas phase. The residual third reacts with bromide, creating IBr. Overall, the simulations emphasize the crucial role of INO3 hydrolysis for Cl and Br atom activation in polluted coastal areas. Therefore, it needs to be considered in chemical transport models to improve air quality predictions.
Collapse
Affiliation(s)
- Erik H Hoffmann
- Leibniz Institute for Tropospheric Research (TROPOS) , Permoserstrasse 15 , D-04318 Leipzig , Germany
| | - Andreas Tilgner
- Leibniz Institute for Tropospheric Research (TROPOS) , Permoserstrasse 15 , D-04318 Leipzig , Germany
| | - Ralf Wolke
- Leibniz Institute for Tropospheric Research (TROPOS) , Permoserstrasse 15 , D-04318 Leipzig , Germany
| | - Hartmut Herrmann
- Leibniz Institute for Tropospheric Research (TROPOS) , Permoserstrasse 15 , D-04318 Leipzig , Germany
| |
Collapse
|
4
|
Khaled A, Rivaton A, Richard C, Jaber F, Sleiman M. Phototransformation of Plastic Containing Brominated Flame Retardants: Enhanced Fragmentation and Release of Photoproducts to Water and Air. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11123-11131. [PMID: 30169020 DOI: 10.1021/acs.est.8b03172] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Increasing attention is being paid to the environmental fate and impact of plastics and their additives under sunlight exposure. We evaluated the photodegradation of polystyrene (PS) films (∼100 μm) containing brominated flame retardants (BFRs): decabromodiphenylether (BDE-209), tetrabromobisphenol A (TBBPA), and tetrabromobisphenol A-bis (2.3-dibromopropylether) (TBBPA-DBPE). Irradiations were performed in a solar simulator and outdoors. Infrared (IR) analyses indicated an acceleration of the photooxidation rate of fire-retarded PS films compared to pure PS with an enhancement factor of 7 for TBBPA-DBPE and TBBPA, and 10 for BDE-209. The accelerating effect was found to be correlated with the quantum yield for BFR photodegradation and its absorbance in the PS films. The presence of BFRs also modified the PS photooxidation mechanism and resulted in the formation of 14 brominated photoproducts via bromination and oxidation of PS. Furthermore, a drastic increase in chain scissions and loss of molecular weight was revealed by size exclusion chromatography. This enhanced degradation of PS led to significant leaching (15%) of oxidation products from PS films after immersion in water, and to the gas-phase emission of several volatile brominated products. Our findings suggest that fire-retarded plastics may be a source of potentially hazardous contaminants when exposed to sunlight.
Collapse
Affiliation(s)
- Amina Khaled
- Université Clermont Auvergne, CNRS, SIGMA Clermont , Institut de Chimie de Clermont-Ferrand , F-63000 Clermont-Ferrand , France
| | - Agnès Rivaton
- Université Clermont Auvergne, CNRS, SIGMA Clermont , Institut de Chimie de Clermont-Ferrand , F-63000 Clermont-Ferrand , France
| | - Claire Richard
- Université Clermont Auvergne, CNRS, SIGMA Clermont , Institut de Chimie de Clermont-Ferrand , F-63000 Clermont-Ferrand , France
| | - Farouk Jaber
- Laboratory of Analysis of Organic Compounds (509), Faculty of Sciences I , Lebanese University , Hadath, Beirut , Lebanon
| | - Mohamad Sleiman
- Université Clermont Auvergne, CNRS, SIGMA Clermont , Institut de Chimie de Clermont-Ferrand , F-63000 Clermont-Ferrand , France
| |
Collapse
|