1
|
Xu G, He H, Tang D, Lu Q, Mai B, He Z, Adrian L, He J, Dolfing J, Wang S. High-Throughput Screening of Microbial Reductive Dechlorination of Polychlorinated Biphenyls: Patterns in Reactivity and Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7712-7721. [PMID: 40193699 DOI: 10.1021/acs.est.4c13917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Polychlorinated biphenyls (PCBs) are pervasive pollutants that pose risks to ecosystems and human health. Microbial reductive dehalogenation plays crucial roles in attenuating PCBs, but comprehensive insights into PCB dechlorination pathways, reactivity, and governing factors are limited by the vast number of congeners and costly experimental approaches. We address this challenge by establishing a high-throughput in vitro assay approach of reductive dehalogenation (HINVARD), which increases dechlorination test throughput by 30-fold and enhances reagents and cell utilization efficiency by over 10-fold compared to conventional assay methods. Using HINVARD, we screened 61 PCB congeners across 9 enrichment cultures and 3 Dehalococcoides isolates, identifying active dechlorination of 31-44 congeners. Results showed that PCB congener properties (chlorine substitution patterns, steric hindrance, and solubility) primarily determine the dechlorination potential, leading to consistent reactivity trends across cultures. In contrast, different organohalide-respiring bacteria catalyzed distinct dechlorination pathways, preferentially removing para- or meta-chlorines. Structural modeling of reductive dehalogenases revealed unique binding orientations governing substrate specificity, offering molecular insights into these pathways. This study provides a high-efficiency strategy for investigating microbial reductive dehalogenation, yielding the first comprehensive understanding of PCB dechlorination patterns and mechanisms. These findings guide the design of tailored microbial consortia for effective PCB bioremediation.
Collapse
Affiliation(s)
- Guofang Xu
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Haozheng He
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Daoyu Tang
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Qihong Lu
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, The People's Republic of China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, The People's Republic of China
| | - Zhili He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, The People's Republic of China
| | - Lorenz Adrian
- UFZ Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research, Permoserstraße 15, Leipzig 04318, Germany
- Chair of Geobiotechnology, Technische Universität Berlin, Ackerstraße 76, Berlin 13355, Germany
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Jan Dolfing
- Faculty of Energy and Environment, Northumbria University, Newcastle upon Tyne NE1 8QH, UK
| | - Shanquan Wang
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, The People's Republic of China
| |
Collapse
|
2
|
Hu J, Li R, Zhang J, Cao L, Lei H, Zhao R, Lin L, Li XY, Zhang W, Li B. Deciphering the N 1-substituent effects on biodegradation of sulfonamides: Novel insights revealed from molecular biology and computational chemistry approaches. WATER RESEARCH 2025; 274:123037. [PMID: 39740328 DOI: 10.1016/j.watres.2024.123037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/27/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025]
Abstract
Elucidating biodegradation mechanisms and predicting pollutant reactivities are essential for advancing the application of biodegradation engineering to address the challenge of thousands of emerging contaminants. Molecular biology and computational chemistry are powerful tools for this purpose, enabling the investigation of biochemical reactions at both the gene and atomic levels. This study employs the biodegradation of ten sulfonamide antibiotics as a case study to demonstrate the integration of genomics and quantum chemistry approaches in exploring the biodegradation behavior of emerging contaminants. The isolated functional strain, Paenarthrobacter sp., could completely degrade all ten model sulfonamides under aerobic conditions. These compounds share a 4-aminobenzenesulfonamide core but differ in N1-substituent rings. Despite structural variations, all sulfonamides follow a consistent degradation pathway, yielding aminated heterocycles as end products. This pathway involves key steps such as dehydrogenation activation, ipso-hydroxylation, and the cleavage of S-N and S-C bonds, with the latter being particularly influenced by the N1-substituents. Heterocyclic structures affect biodegradation rates by altering the electronic density at the C3 and N1 atoms of sulfonamides. Substituents with higher electron-donating potential and lower Gibbs free energy barriers for S-C and C-N bond cleavage significantly enhance biodegradation efficiency. This work not only deciphers the universal biodegradation mechanism of sulfonamides but also offers theoretical insights for predicting the biodegradation behavior and pattern of emerging contaminants. These findings contribute to the effective removal of emerging contaminants from aquatic environments, advancing the practical application of biotreatment technologies.
Collapse
Affiliation(s)
- Jiahui Hu
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China; Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, New Jersey, 07102-1982, USA
| | - Ruiyang Li
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jiayu Zhang
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Lijia Cao
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Huaxin Lei
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Renxin Zhao
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Lin Lin
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Xiao-Yan Li
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Wen Zhang
- Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, New Jersey, 07102-1982, USA
| | - Bing Li
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Liu G, Chen K, Wu Z, Ji Y, Lu L, Liu S, Li ZL, Ji R, Liu SJ, Jiang J, Qiao W. Genome-Centric Metatranscriptomic Characterization of a Humin-Facilitated Anaerobic Tetrabromobisphenol A-Dehalogenating Consortium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:1299-1311. [PMID: 38113523 DOI: 10.1021/acs.est.3c06118] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Tetrabromobisphenol A (TBBPA), a widely used brominated flame retardant in electronics manufacturing, has caused global contamination due to improper e-waste disposal. Its persistence, bioaccumulation, and potential carcinogenicity drive studies of its transformation and underlying (a)biotic interactions. This study achieved an anaerobic enrichment culture capable of reductively dehalogenating TBBPA to the more bioavailable bisphenol A. 16S rRNA gene amplicon sequencing and quantitative PCR confirmed that successive dehalogenation of four bromide ions from TBBPA was coupled with the growth of both Dehalobacter sp. and Dehalococcoides sp. with growth yields of 5.0 ± 0.4 × 108 and 8.6 ± 4.6 × 108 cells per μmol Br- released (N = 3), respectively. TBBPA dehalogenation was facilitated by solid humin and reduced humin, which possessed the highest organic radical signal intensity and reducing groups -NH2, and maintained the highest dehalogenation rate and dehalogenator copies. Genome-centric metatranscriptomic analyses revealed upregulated putative TBBPA-dehalogenating rdhA (reductive dehalogenase) genes with humin amendment, cprA-like Dhb_rdhA1 gene in Dehalobacter species, and Dhc_rdhA1/Dhc_rdhA2 genes in Dehalococcoides species. The upregulated genes of lactate fermentation, de novo corrinoid biosynthesis, and extracellular electron transport in the humin amended treatment also stimulated TBBPA dehalogenation. This study provided a comprehensive understanding of humin-facilitated organohalide respiration.
Collapse
Affiliation(s)
- Guiping Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Kai Chen
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Zhiming Wu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Yanhan Ji
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Lianghua Lu
- Jiangsu Provincial Academy of Environmental Science, Jiangsu Provincial Key Laboratory of Environmental Engineering, Nanjing 210036, China
| | - Songmeng Liu
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Zhi-Ling Li
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing 210023, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| | - Wenjing Qiao
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Nanjing 210095, China
| |
Collapse
|
4
|
Zhang S, Wen W, Xia X, Ouyang W, Mai BX, Adrian L, Schüürmann G. Insight into the Mechanism Underlying Dehalococcoides mccartyi Strain CBDB1-Mediated B 12-Dependent Aromatic Reductive Dehalogenation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37428517 DOI: 10.1021/acs.est.3c00364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Anaerobic bacteria transform aromatic halides through reductive dehalogenation. This dehalorespiration is catalyzed by the supernucleophilic coenzyme vitamin B12, cob(I)alamin, in reductive dehalogenases. So far, the underlying inner-sphere electron transfer (ET) mechanism has been discussed controversially. In the present study, all 36 chloro-, bromo-, and fluorobenzenes and full-size cobalamin are analyzed at the quantum chemical density functional theory level with respect to a wide range of theoretically possible inner-sphere ET mechanisms. The calculated reaction free energies within the framework of CoI···X (X = F, Cl, and Br) attack rule out most of the inner-sphere pathways. The only route with feasible energetics is a proton-coupled two-ET mechanism that involves a B12 side-chain tyrosine (modeled by phenol) as a proton donor. For 12 chlorobenzenes and 9 bromobenzenes with experimental data from Dehalococcoides mccartyi strain CBDB1, the newly proposed PC-TET mechanism successfully discriminates 16 of 17 active from 4 inactive substrates and correctly predicts the observed regiospecificity to 100%. Moreover, fluorobenzenes are predicted to be recalcitrant in agreement with experimental findings. Conceptually, based on the Bell-Evans-Polanyi principle, the computational approach provides novel mechanistic insights and may serve as a tool for predicting the energetic feasibility of reductive aromatic dehalogenation.
Collapse
Affiliation(s)
- Shangwei Zhang
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wu Wen
- Instrumentation and Service Center for Science and Technology, Beijing Normal University, Zhuhai 519087, China
| | - Xinghui Xia
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Bi-Xian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Lorenz Adrian
- UFZ Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research, Permoserstraße 15, Leipzig 04318, Germany
- Chair of Geobiotechnology, Technische Universität Berlin, Ackerstraße 76, Berlin 13355, Germany
| | - Gerrit Schüürmann
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstraße 15, Leipzig 04318, Germany
- Institute of Organic Chemistry, Technical University Bergakademie Freiberg, Leipziger Straße 29, Freiberg 09596, Germany
| |
Collapse
|
5
|
Zhang S, Li Y, Wang S. Microbial reductive dechlorination of polychlorinated dibenzo-p-dioxins: Pathways and features unravelled via electron density. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127673. [PMID: 34776298 DOI: 10.1016/j.jhazmat.2021.127673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/16/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Microbial reductive dechlorination provides a promising approach for remediating sites contaminated with polychlorinated dibenzo-p-dioxins (PCDDs). Nonetheless, the overall dechlorination pathways and features remain elusive. Herein, we address these issues by quantum chemical calculations, considering the calibrations of reductive dechlorination of 15 PCDDs mediated by three Dehalococcoides strains. Chlorine substituents with lower electron density are prone to be microbially abstracted, which differentiates 72 microbe-active PCDDs from 3 nonactive analogues with a success rate of 100%. For all 256 transformation routes of 75 PCDDs, electron density differences of chlorines pinpoint 105 viable and 125 unviable pathways, corresponding a success rate of 90%. The feasibility of 26 reductive dechlorination pathways are uncertain because of the limited available experimental data. 98% (251/256) of microbial chlorine abstraction follows an order of ClO,Cl>ClCl,Cl>ClH,O>ClH,Cl>ClH,H=0. PCDDs solely containing chlorines at C1, C4, C6, and/or C9 can be completely dechlorinated to non-chlorinated dioxin; while PCDDs housing chlorines at C2, C3, C7, and/or C8 can be dechlorinated to 2-MCDD or 2,7/8-DCDD as final products. These findings also support reductive dechlorination of PCDDs in mixed cultures and sediments (> 98% and 83%). These findings would promote the application of dechlorinating bacteria in targeted remediation and facilitate the respective studies on other POPs.
Collapse
Affiliation(s)
- Shangwei Zhang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Yiyang Li
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
6
|
Fu Y, Huang J, Wu Y, Liu X, Zhong F, Wang J. Biocatalytic Cross-Coupling of Aryl Halides with a Genetically Engineered Photosensitizer Artificial Dehalogenase. J Am Chem Soc 2021; 143:617-622. [PMID: 33410683 DOI: 10.1021/jacs.0c10882] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Devising artificial photoenzymes for abiological bond-forming reactions is of high synthetic value but also a tremendous challenge. Disclosed herein is the first photobiocatalytic cross-coupling of aryl halides enabled by a designer artificial dehalogenase, which features a genetically encoded benzophenone chromophore and site-specifically modified synthetic NiII(bpy) cofactor with tunable proximity to streamline the dual catalysis. Transient absorption studies suggest the likelihood of energy transfer activation in the elementary organometallic event. This design strategy is viable to significantly expand the catalytic repertoire of artificial photoenzymes for useful organic transformations.
Collapse
Affiliation(s)
- Yu Fu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology (HUST), 1037 Luoyu Road, Wuhan 430074, P.R. China.,Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Science, 15 Datun Road, Beijing 100020, P.R. China
| | - Jian Huang
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Science, 15 Datun Road, Beijing 100020, P.R. China
| | - Yuzhou Wu
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology (HUST), 1037 Luoyu Road, Wuhan 430074, P.R. China
| | - Xiaohong Liu
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Science, 15 Datun Road, Beijing 100020, P.R. China
| | - Fangrui Zhong
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology (HUST), 1037 Luoyu Road, Wuhan 430074, P.R. China
| | - Jiangyun Wang
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Science, 15 Datun Road, Beijing 100020, P.R. China
| |
Collapse
|
7
|
Keppler F, Barnes JD, Horst A, Bahlmann E, Luo J, Nadalig T, Greule M, Hartmann SC, Vuilleumier S. Chlorine Isotope Fractionation of the Major Chloromethane Degradation Processes in the Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1634-1645. [PMID: 31880153 DOI: 10.1021/acs.est.9b06139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chloromethane (CH3Cl) is an important source of chlorine in the stratosphere, but detailed knowledge of the magnitude of its sources and sinks is missing. Here, we measured the stable chlorine isotope fractionation (εCl) associated with the major abiotic and biotic CH3Cl sinks in the environment, namely, CH3Cl degradation by hydroxyl (·OH) and chlorine (·Cl) radicals in the troposphere and by reference bacteria Methylorubrum extorquens CM4 and Leisingera methylohalidivorans MB2 from terrestrial and marine environments, respectively. No chlorine isotope fractionation was detected for reaction of CH3Cl with ·OH and ·Cl radicals, whereas a large chlorine isotope fractionation (εCl) of -10.9 ± 0.7‰ (n = 3) and -9.4 ± 0.9 (n = 3) was found for CH3Cl degradation by M. extorquens CM4 and L. methylohalidivorans MB2, respectively. The large difference in chlorine isotope fractionation observed between tropospheric and bacterial degradation of CH3Cl provides an effective isotopic tool to characterize and distinguish between major abiotic and biotic processes contributing to the CH3Cl sink in the environment. Our findings demonstrate the potential of emerging triple-element isotopic approaches including chlorine to carbon and hydrogen analysis for the assessment of global cycling of organochlorines.
Collapse
Affiliation(s)
- Frank Keppler
- Institute of Earth Sciences , Heidelberg University , Im Neuenheimer Feld 236 , 69120 Heidelberg , Germany
| | - Jaime D Barnes
- Department of Geological Sciences , University of Texas , Austin , Texas 78712 , United States
| | - Axel Horst
- Department of Isotope Biogeochemistry , Helmholtz Centre for Environmental Research - UFZ , Permoserstr.15 , 04318 Leipzig , Germany
| | - Enno Bahlmann
- Leibniz Institute for Baltic Sea Research Warnemünde , Seestrasse 15 , 18119 Rostock , Germany
| | - Jing Luo
- UMR 7156 CNRS Génétique Moléculaire, Génomique, Microbiologie , Université de Strasbourg , 4 allée Konrad Roentgen , 67000 Strasbourg , France
| | - Thierry Nadalig
- UMR 7156 CNRS Génétique Moléculaire, Génomique, Microbiologie , Université de Strasbourg , 4 allée Konrad Roentgen , 67000 Strasbourg , France
| | - Markus Greule
- Institute of Earth Sciences , Heidelberg University , Im Neuenheimer Feld 236 , 69120 Heidelberg , Germany
| | - S Christoph Hartmann
- Institute of Earth Sciences , Heidelberg University , Im Neuenheimer Feld 236 , 69120 Heidelberg , Germany
- Max Planck Institute for Chemistry , Hahn-Meitner-Weg 1 , 55128 Mainz , Germany
| | - Stéphane Vuilleumier
- UMR 7156 CNRS Génétique Moléculaire, Génomique, Microbiologie , Université de Strasbourg , 4 allée Konrad Roentgen , 67000 Strasbourg , France
| |
Collapse
|
8
|
Zhao S, Rogers MJ, Ding C, He J. Reductive Debromination of Polybrominated Diphenyl Ethers - Microbes, Processes and Dehalogenases. Front Microbiol 2018; 9:1292. [PMID: 29971048 PMCID: PMC6018424 DOI: 10.3389/fmicb.2018.01292] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 05/28/2018] [Indexed: 02/03/2023] Open
Abstract
Extensive utilization of polybrominated diphenyl ethers (PBDEs) as flame retardants since the 1960s in a variety of commercial products has resulted in ubiquitous environmental distribution of commercial PBDE mixtures. Dangers posed to biological populations became apparent after the discovery of elevated levels of PBDEs in biota, most notably in human breast milk and tissues. Environmental persistence of PBDEs results in significant transboundary displacement, threatening fragile ecosystems globally. Despite efforts to curtail usage of PBDEs, public concern remains about the effects of legacy PBDEs contamination and continued discharge of PBDEs in regions lacking restrictions on usage and manufacture. Among available technologies for remediation of PBDEs such as ex-situ soil washing, electrokinetic degradation, and biodegradation, this review focuses on bioremediation by microbes under anaerobic conditions. Bioremediation is generally preferred as it is less disruptive to contaminated ecosystems, is cost-effective, and can be implemented at sites that may be inaccessible to more traditional ex-situ methods. The aims of this review are to (1) summarize current knowledge of anaerobic microbes that debrominate PBDEs and their associated synergistic partnerships with non-dehalogenating microbes; (2) explore current understandings of the metabolic reductive debromination of PBDE congeners; (3) discuss recent discoveries on dehalogenase genes involved in debromination of PBDEs.
Collapse
Affiliation(s)
- Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| | - Matthew J Rogers
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| | - Chang Ding
- Isotope Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|