1
|
Wang Y, Gu Z, Chen X. Modeling of heteroaggregation driven buoyant microplastic settling: Interaction with multiple clay particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178169. [PMID: 39709837 DOI: 10.1016/j.scitotenv.2024.178169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/13/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024]
Abstract
The ecological risk of microplastics (MPs) has received widespread attention, but understanding ecological risk starts with understanding environmental migration. Heteroaggregation is an important process that affects the vertical migration of MPs, and the mathematical model is a common tool used to project the migration behavior of MPs. However, the mathematical model based on the aggregation of MPs with one clay particle is not applicable to simulate the migration behavior of buoyant microplastic (BMP). Hence, this study developed a model for heteroaggregation of one BMP with multiple clay particles based on the Population Balance Equation, and the main factors affecting the sedimentation of BMP are clarified through parameter sensitivity analysis and scenario simulation. The results show that neglecting the interaction of one BMP with multiple clay particles in the mathematical model can underestimate the predicted settling concentration of BMP, especially in aqueous environments with higher clay concentration and salinity. The settling process of BMP is controlled by the heteroaggregation rate, which is sensitive to environmental conditions and insensitive to particle properties. This study emphasizes the importance of considering the interaction of one BMP with multiple clay particles in the future mathematical model, which will provide a more reliable prediction of the migration of MPs in aquatic environments.
Collapse
Affiliation(s)
- Yi Wang
- Key Laboratory of Humid Sub-tropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350117, China; School of Geographical Sciences, School of Carbon Neutrality Future Technology, Fujian Normal University, Fuzhou 350117, China
| | - Zipeng Gu
- Key Laboratory of Humid Sub-tropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350117, China; School of Geographical Sciences, School of Carbon Neutrality Future Technology, Fujian Normal University, Fuzhou 350117, China
| | - Xingwei Chen
- Key Laboratory of Humid Sub-tropical Eco-geographical Process of Ministry of Education, Fujian Normal University, Fuzhou 350117, China; School of Geographical Sciences, School of Carbon Neutrality Future Technology, Fujian Normal University, Fuzhou 350117, China.
| |
Collapse
|
2
|
Wang Y, Chen X. Aggregation behavior of polyethylene microplastics in the nearshore environment: The role of particle size, environmental condition and turbulent flow. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165941. [PMID: 37536586 DOI: 10.1016/j.scitotenv.2023.165941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/05/2023]
Abstract
Estuary and coastal waters are hotspot areas for microplastics (MPs) pollution. MPs of varying sizes converge in this complex nearshore environment. Aggregation is an important process that affects the transport and fate of MPs in the aqueous environment. Nevertheless, the influence of different factors on the aggregation behavior and the aggregates structure of MPs is unclear. In this study, the aggregation behavior and the aggregates structure of polyethylene microplastics (PEs) of different sizes under the impact of nearshore environmental conditions (i.e., salinity gradient, dissolved organic matter-DOM, turbulent flow) were investigated. The results show that particle size was the dominant factor affecting the stability of PEs in the aqueous environment, and the critical coagulation concentration (CCC) of PEs shifts to the right with increasing size. It was also found that the size of PEs stable aggregates is negatively correlated with the turbulent kinetic energy dissipation rate. The particle size of PEs can significantly affect the fractal dimension (FD) of stable aggregates, and the smaller the particle size, the more compact the aggregates formed. Moreover, salinity and DOM control the size and FD of PEs stable aggregates through different mechanisms. The findings of this study will be helpful for the prediction of the transport and fate of MPs in the aqueous environment.
Collapse
Affiliation(s)
- Yi Wang
- Fujian Provincial Engineering Research Center for Monitoring and Assessing Terrestrial Disasters, Fujian Normal University, Fuzhou 350117, China; School of Geographical Sciences, School of Carbon Neutrality Future Technology, Fujian Normal University, Fuzhou 350117, China; State Key Laboratory for Subtropical Mountain Ecology, Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou 350117, China
| | - Xingwei Chen
- Fujian Provincial Engineering Research Center for Monitoring and Assessing Terrestrial Disasters, Fujian Normal University, Fuzhou 350117, China; School of Geographical Sciences, School of Carbon Neutrality Future Technology, Fujian Normal University, Fuzhou 350117, China; State Key Laboratory for Subtropical Mountain Ecology, Ministry of Science and Technology and Fujian Province, Fujian Normal University, Fuzhou 350117, China.
| |
Collapse
|
3
|
Akintelu SA, Olugbeko SC, Folorunso AS. A review on synthesis, optimization, characterization and antibacterial application of gold nanoparticles synthesized from plants. INTERNATIONAL NANO LETTERS 2020. [DOI: 10.1007/s40089-020-00317-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Babakhani P, Bridge J, Phenrat T, Fagerlund F, Doong RA, Whittle KR. Comparison of a new mass-concentration, chain-reaction model with the population-balance model for early- and late-stage aggregation of shattered graphene oxide nanoparticles. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.123862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
5
|
Yu S, Shen M, Li S, Fu Y, Zhang D, Liu H, Liu J. Aggregation kinetics of different surface-modified polystyrene nanoparticles in monovalent and divalent electrolytes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113302. [PMID: 31597113 DOI: 10.1016/j.envpol.2019.113302] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
The intentional production and degradation of plastic debris may result in the formation of nanoplastics. Currently, the scarce information on the environmental behaviors of nanoplastics hinders accurate assessment of their potential risks. Herein, the aggregation kinetics of different surface-modified polystyrene nanoparticles in monovalent and divalent electrolytes was investigated to shed some light on the fate of nanoplastics in the aquatic environment. Three monodisperse nanoparticles including unmodified nanoparticles (PS-Bare), carboxylated nanoparticles (PS-COOH) and amino modified nanoparticles (PS-NH2), as well as one polydisperse nanoparticles that formed by laser ablation of polystyrene films (PS-Laser) were used as models to understand the effects of surface groups and morphology. Results showed that aggregation kinetics of negatively charged PS-Bare and PS-COOH obeyed the DLVO theory in NaCl and CaCl2 solutions. The presence of Suwannee river natural organic matters (SRNOM) suppressed the aggregation of PS-Bare and PS-COOH in monovalent electrolytes by steric hindrance. However, in divalent electrolytes, their stability was enhanced at low concentrations of SRNOM (below 5 mg C L-1), while became worse at high concentrations of SRNOM (above 5 mg C L-1) due to the interparticle bridging effect caused by Ca2+ and carboxyl groups of SRNOM. The cation bridging effect was also observed for PS-laser in the presence of high concentrations of divalent electrolytes and SRNOM. The adsorption of SRNOM could neutralize or even reverse surface charges of positively charged PS-NH2 at high concentrations, thus enhanced or inhibited the aggregation of PS-NH2. No synergistic effect of Ca2+ and SRNOM was observed on the aggregation of PS-NH2, probably due to the steric repulsion imparted by the surface modification. Our results highlight that surface charge and surface modification significantly influence aggregation behaviors of nanoplastics in aquatic systems.
Collapse
Affiliation(s)
- Sujuan Yu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing, 100085, China
| | - Mohai Shen
- School of Environment, Henan Normal University, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, Henan 453007, China
| | - Shasha Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing, 100085, China
| | - Yueju Fu
- Hebei Provincial Key Laboratory of Optoelectronic Information Materials, College of Physics Science and Technology, Hebei University, Hebei 071002, China
| | - Dan Zhang
- Hebei Provincial Key Laboratory of Optoelectronic Information Materials, College of Physics Science and Technology, Hebei University, Hebei 071002, China
| | - Huayi Liu
- Hebei Provincial Key Laboratory of Optoelectronic Information Materials, College of Physics Science and Technology, Hebei University, Hebei 071002, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. Box 2871, Beijing, 100085, China.
| |
Collapse
|
6
|
Babakhani P. The impact of nanoparticle aggregation on their size exclusion during transport in porous media: One- and three-dimensional modelling investigations. Sci Rep 2019; 9:14071. [PMID: 31575953 PMCID: PMC6773746 DOI: 10.1038/s41598-019-50493-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 09/09/2019] [Indexed: 12/26/2022] Open
Abstract
Greater particle mobility in subsurface environments due to larger size, known as size exclusion, has been responsible for colloid-facilitated transport of groundwater contaminants. Although size exclusion is not expected for primary engineered nanoparticles (NP), they can grow in size due to aggregation, thereby undergoing size exclusion. To investigate this hypothesis, an accurate population balance modelling approach and other colloid transport theories, have been incorporated into a three-dimensional transport model, MT3D-USGS. Results show that incorporating aggregation into the transport model improves the predictivity of current theoretical and empirical approaches to NP deposition in porous media. Considering an artificial size-variable acceleration factor in the model, NP breakthrough curves display an earlier arrival when aggregation is included than without. Disregarding the acceleration factor, aggregation enhances NP mobility at regions close to the injection point at a field scale and causes their retention at greater distances through alteration of their diffusivities, secondary interaction-energy minima, and settling behaviour. This results in a change of residual concentration profiles from exponential for non-aggregating dispersions to non-monotonic for aggregating dispersions. Overall, aggregation, hitherto believed to hinder the migration of NP in subsurface porous media, may under certain physicochemical conditions enhance their mobilities and deliver them to further distances.
Collapse
Affiliation(s)
- Peyman Babakhani
- School of Engineering, University of Liverpool, Liverpool, Merseyside, L69 3GH, UK.
| |
Collapse
|
7
|
Aggregation, Sedimentation, and Dissolution of Copper Oxide Nanoparticles: Influence of Low-Molecular-Weight Organic Acids from Root Exudates. NANOMATERIALS 2019; 9:nano9060841. [PMID: 31159452 PMCID: PMC6630225 DOI: 10.3390/nano9060841] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/24/2019] [Accepted: 05/29/2019] [Indexed: 11/17/2022]
Abstract
The rhizosphere is an essential pathway for the uptake of metal-based nanoparticles (MNPs) by plant roots. However, the interaction between root exudates and MNPs is still unclear. In this study, we initially identified the major low-molecular-weight organic acids (LMWOAs) in the rice root exudates using hydroponics. Then, the individual LMWOAs were added to CuO nanoparticle suspensions to investigate their effects on the environmental behavior of the MNPs. The results showed that both the variety and the concentration of LMWOAs impacted the aggregation, sedimentation, and dissolution of CuO nanoparticles (NPs). Almost all LMWOAs except succinic acid inhibited the aggregation of CuO NPs by enhancing the electrostatic repulsive force between NPs. The presence of citric and oxalic acids rather than lactic acid greatly improved the stability of CuO NP suspensions, but other acids showed a low promoting and high inhibiting effect on NP sedimentation. Moreover, all the LMWOAs from root exudates facilitated the dissolution of CuO NPs with a positive dose-dependent correlation, especially formic acid. Notably, citric acid, as the most abundant LMWOAs in rice root exudates, largely determined the aggregation, sedimentation, and dissolution of CuO NPs. This study provides a better understanding on NP-plant interactions in the rhizosphere.
Collapse
|