1
|
Wu L, Li Q, Ma C, Li M, Yu Y. A novel conductive carbon-based forward osmosis membrane for dye wastewater treatment. CHEMOSPHERE 2022; 308:136367. [PMID: 36088972 DOI: 10.1016/j.chemosphere.2022.136367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Forward osmosis (FO) membrane fouling is one of the main reasons that hinder the further application of FO technology in the treatment of dye wastewater. To alleviate membrane fouling, a conductive coal carbon-based substrate and polydopamine nanoparticles (PDA NPs) interlayer composite FO membrane (CPFO) was prepared by interfacial polymerization (IP). CPFO-10 membrane prepared by depositing 10 mL of PDA NPs solution exhibited an optimum performance with water flux of 7.56 L/(m2h) for FO mode and 10.75 L/(m2h) for pressure retarded osmosis (PRO) mode, respectively. For rhodamine B and chrome black T dye wastewater treatment, the water flux losses were reduced by 21.6%, and 14.5% under the voltages of +1.5 V, and -1.5 V, respectively, compared with no voltage applied after the device was operated for 8 h. The applied voltage had little effect on the fouling mitigation performance of the CPFO membrane for neutral charged cresol red. After the device was operated for 4 cycles, the rejection rates of dyes wastewater treated by the CPFO membranes with applied voltage were close to 100%. The flux decline rate and flux recovery rate of CPFO membrane for rhodamine B and chrome black T wastewater treatment under application of +1.5 V and -1.5 V voltage after 4 cycles were 11.6%, 99.2%, and 16.7%, 98.9%, respectively. Therefore, the voltage-applied CPFO membrane still maintained good rejection and antifouling performance in long-term operation. This study provides a new insight into the preparation of conductive FO membranes for dye wastewater treatment and membrane fouling control.
Collapse
Affiliation(s)
- Lei Wu
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130000, China
| | - Qianqian Li
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Cong Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China; Tianjin Haiyuanhui Technology Co., Ltd., Tianjin, 300457, China.
| | - Ming Li
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130000, China
| | - Yujuan Yu
- Center of Environmental Emergency and Accident Investigation of Changchun, Changchun, 130000, China
| |
Collapse
|
2
|
Tian M, Ma T, Goh K, Pei Z, Chong JY, Wang YN. Forward Osmosis Membranes: The Significant Roles of Selective Layer. MEMBRANES 2022; 12:membranes12100955. [PMID: 36295714 PMCID: PMC9607867 DOI: 10.3390/membranes12100955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 06/02/2023]
Abstract
Forward osmosis (FO) is a promising separation technology to overcome the challenges of pressure-driven membrane processes. The FO process has demonstrated profound advantages in treating feeds with high salinity and viscosity in applications such as brine treatment and food processing. This review discusses the advancement of FO membranes and the key membrane properties that are important in real applications. The membrane substrates have been the focus of the majority of FO membrane studies to reduce internal concentration polarization. However, the separation layer is critical in selecting the suitable FO membranes as the feed solute rejection and draw solute back diffusion are important considerations in designing large-scale FO processes. In this review, emphasis is placed on developing FO membrane selective layers with a high selectivity. The effects of porous FO substrates in synthesizing high-performance polyamide selective layer and strategies to overcome the substrate constraints are discussed. The role of interlayer in selective layer synthesis and the benefits of nanomaterial incorporation will also be reviewed.
Collapse
Affiliation(s)
- Miao Tian
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Tao Ma
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Kunli Goh
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Zhiqiang Pei
- Beijing Origin Water Membrane Technology Co., Ltd., Beijing 101417, China
| | - Jeng Yi Chong
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yi-Ning Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| |
Collapse
|
3
|
Song J, Yan M, Ye J, Zheng S, Ee LY, Wang Z, Li J, Huang M. Research progress in external field intensification of forward osmosis process for water treatment: A critical review. WATER RESEARCH 2022; 222:118943. [PMID: 35952439 DOI: 10.1016/j.watres.2022.118943] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Forward osmosis (FO) is an emerging permeation-driven membrane technology that manifests advantages of low energy consumption, low operating pressure, and uncomplicated engineering compared to conventional membrane processes. The key issues that need to be addressed in FO are membrane fouling, concentration polarization (CP) and reverse solute diffusion (RSD). They can lead to problems about loss of draw solutes and reduced membrane lifetime, which not only affect the water treatment effectiveness of FO membranes, but also increase the economic cost. Current research has focused on FO membrane preparation and modification strategies, as well as on the selection of draw solutions. Unfortunately, these intrinsic solutions had limited success in unraveling these phenomena. In this paper, we provide a brief review of the current state of research on existing external field-assisted FO systems (including electric-, pressure-, magnetic-, ultrasonic-, light- and flow-assisted FO system), analyze their mitigation mechanisms for the above key problems, and explore potential research directions to aid in the further development of FO systems. This review aims to reveal the feasibility of the development of external field-assisted FO technology to achieve a more economical and efficient FO treatment process.
Collapse
Affiliation(s)
- Jialing Song
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Mengying Yan
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Jingling Ye
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Shengyang Zheng
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Liang Ying Ee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhiwei Wang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jun Li
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Manhong Huang
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China.
| |
Collapse
|
4
|
Freeze-casting multicomponent aerogel membrane with controllable asymmetric multilayer configuration for high flux gravity-driven separation of oil-water emulsion. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Lau HS, Lau SK, Soh LS, Hong SU, Gok XY, Yi S, Yong WF. State-of-the-Art Organic- and Inorganic-Based Hollow Fiber Membranes in Liquid and Gas Applications: Looking Back and Beyond. MEMBRANES 2022; 12:539. [PMID: 35629866 PMCID: PMC9144028 DOI: 10.3390/membranes12050539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
The aggravation of environmental problems such as water scarcity and air pollution has called upon the need for a sustainable solution globally. Membrane technology, owing to its simplicity, sustainability, and cost-effectiveness, has emerged as one of the favorable technologies for water and air purification. Among all of the membrane configurations, hollow fiber membranes hold promise due to their outstanding packing density and ease of module assembly. Herein, this review systematically outlines the fundamentals of hollow fiber membranes, which comprise the structural analyses and phase inversion mechanism. Furthermore, illustrations of the latest advances in the fabrication of organic, inorganic, and composite hollow fiber membranes are presented. Key findings on the utilization of hollow fiber membranes in microfiltration (MF), nanofiltration (NF), reverse osmosis (RO), forward osmosis (FO), pervaporation, gas and vapor separation, membrane distillation, and membrane contactor are also reported. Moreover, the applications in nuclear waste treatment and biomedical fields such as hemodialysis and drug delivery are emphasized. Subsequently, the emerging R&D areas, precisely on green fabrication and modification techniques as well as sustainable materials for hollow fiber membranes, are highlighted. Last but not least, this review offers invigorating perspectives on the future directions for the design of next-generation hollow fiber membranes for various applications. As such, the comprehensive and critical insights gained in this review are anticipated to provide a new research doorway to stimulate the future development and optimization of hollow fiber membranes.
Collapse
Affiliation(s)
- Hui Shen Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Siew Kei Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Leong Sing Soh
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Seang Uyin Hong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Xie Yuen Gok
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Shouliang Yi
- U.S. Department of Energy, National Energy Technology Laboratory, 626 Cochrans Mill Rd, Pittsburgh, PA 15236, USA;
| | - Wai Fen Yong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
6
|
Almoalimi K, Liu YQ. Fouling and cleaning of thin film composite forward osmosis membrane treating municipal wastewater for resource recovery. CHEMOSPHERE 2022; 288:132507. [PMID: 34627812 DOI: 10.1016/j.chemosphere.2021.132507] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Concentrating municipal wastewater by forward osmosis (FO) membrane to a high level of water recovery rate to facilitate downstream resource recovery might cause more serious membrane fouling. This study investigated the concentration of synthetic and real municipal wastewater to 90% water recovery rate by hollow fiber and flat-sheet thin film composite (TFC) FO membranes and their associated membrane fouling and cleaning. Results show that the FO membrane had high rejection rates of COD, phosphate, Ca2+ and Mg2+ with concentration factors at around 8 when achieving a 90% water recovery rate, which facilitated downstream phosphate recovery by precipitation and energy recovery by anaerobic digestion. Ca2+ concentration in municipal wastewater at 61 mg/L was found to be the main factor to cause inorganic scaling, and the fouling caused by calcium precipitates was harder to be cleaned by physical cleaning compared with suspended solids (SS) such as cellulose particles. In addition, the TFC FO membrane for treating real sewage with SS is not applicable for the hollow fiber configuration used in this study due to lumen clogging, while the TFC flat sheet configuration was able to achieve a 90% water recovery rate. The use of a spacer in the flat sheet configuration improved the efficiency of the following physical cleaning by around 15% although it did not alleviate membrane fouling during the membrane filtration process. This study highlighted the importance of the chemistry of FS and DS and FO membrane configuration on membrane fouling particularly at high water recovery rates and the necessity of pre-treatment of municipal wastewater by removing suspended solids.
Collapse
Affiliation(s)
- Khaled Almoalimi
- Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, United Kingdom
| | - Yong-Qiang Liu
- Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, United Kingdom.
| |
Collapse
|
7
|
Shen Y, Badireddy AR. A Critical Review on Electric Field-Assisted Membrane Processes: Implications for Fouling Control, Water Recovery, and Future Prospects. MEMBRANES 2021; 11:membranes11110820. [PMID: 34832048 PMCID: PMC8618152 DOI: 10.3390/membranes11110820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022]
Abstract
Electrofiltration, an electric field-assisted membrane process, has been a research topic of growing popularity due to its ability to improve membrane performance by providing in situ antifouling conditions in a membrane system. The number of reports on electrofiltration have increased exponentially over the past two decades. These reports explored many innovations, such as novel configurations of an electric field, engineered membrane materials, and interesting designs of foulant compositions and membrane modules. Recent electrofiltration literature focused mainly on compiling results without a comprehensive comparative analysis across different works. The main objective of this critical review is to, first, organize, compare and contrast the results across various electrofiltration studies; second, discuss various types of mechanisms that could be incorporated into electrofiltration and their effect on membrane system performance; third, characterize electrofiltration phenomenon; fourth, interpret the effects of various operational conditions on the performance of electrofiltration; fifth, evaluate the state-of-the-art knowledge associated with modeling efforts in electrofiltration; sixth, discuss the energy costs related to the implementation of electrofiltration; and finally, identify the current knowledge gaps that hinder the transition of the lab-scale observations to industry-scale electrofiltration as well as the future prospects of electrofiltration.
Collapse
|
8
|
Shi Y, Zhang M, Zhang H, Yang F, Tang CY, Dong Y. Recent development of pressure retarded osmosis membranes for water and energy sustainability: A critical review. WATER RESEARCH 2021; 189:116666. [PMID: 33302146 DOI: 10.1016/j.watres.2020.116666] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/21/2020] [Accepted: 11/21/2020] [Indexed: 06/12/2023]
Abstract
With the goal of zero-liquid discharge and green energy harvest, extraction of abundant green energy from saline water via pressure retarded osmosis (PRO) technology is a promising but challenging issue for water treatment technologies to achieve water and energy sustainability. Development of high performance PRO membranes has received increased concerns yet still under controversy in practical applications. In this review, a comprehensive and up-to-date discussion of some key historical developments is first introduced covering the major advances of PRO engineering applications and novel membranes especially made in recent years. Then the critical performance indicators of PRO membranes including water flux and power density are briefly discussed. Subsequently, sufficient discussion on four performance limiting factors in PRO membrane and process is presented including concentration polarization, reverse solute diffusion, membrane fouling and mechanical stability. To fully address these issues, an updated insight is provided into recent major progresses on advanced fabrication and modification techniques of novel PRO membranes featuring enhanced performance with different configurations and materials, which are also reviewed in detail based on the viewpoint of design rationales. Afterwards, antifouling strategies and engineering applications are critically introduced. Finally, conclusions and future perspective of PRO membrane for practical operation are briefly discussed.
Collapse
Affiliation(s)
- Yongxuan Shi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Mingming Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China.
| | - Yingchao Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
9
|
Kallem P, Banat F, Yejin L, Choi H. High performance nanofiber-supported thin film composite forward osmosis membranes based on continuous thermal-rolling pretreated electrospun PES/PAN blend substrates. CHEMOSPHERE 2020; 261:127687. [PMID: 32750620 DOI: 10.1016/j.chemosphere.2020.127687] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 05/28/2023]
Abstract
One of the major challenges facing the practical application of forward osmosis (FO) membranes is the need for high performance. Thus, the fabrication of highly permselective FO membranes is of great importance. The objective of this study was to improve the wettability/hydrophilicity of electrospun nanofiber (ESNF)-based substrates for the fabrication of nanofiber-supported thin film composite (NTFC) membranes for FO application. This study explored the impact of electrospun polyethersulfone/polyacrylonitrile (PES/PAN) nanofibers as the blend support to produce NTFC membranes. The blending of PES/PAN in the spinning dope was optimized. The blending of hydrophilic PAN (0-10 wt%) in PES affects the fiber diameter, hydrophilicity, water uptake, and roughness of the ESNF membrane substrates. Continuous thermal-rolling pretreatment was performed on the ESNF substrates prior to interfacial polymerization for polyamide active layer deposition. The results indicated that the fabricated NTFC membrane achieved significantly greater water flux (L/m2 h) while retaining a low specific salt flux (g/L) compared to traditional TFC membranes. The NTFC membrane flux increased with an increase in PAN content in the ESNF substrate. According to the FO performance results, the NTFC-10 (PES/PAN blend ratio of 90:10) exhibited optimal performance: a high water flux of 42.1 and 52.2 L/m2 h for the FO and PRO modes, respectively, and low specific salt flux of 0.27 and 0.24 g/L for the FO and PRO modes, respectively, using 1 M NaCl as the draw solution. This demonstrated the higher selectivity and water flux achieved by the developed NTFC membranes compared to the traditional TFC membranes.
Collapse
Affiliation(s)
- Parashuram Kallem
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Fawzi Banat
- Center for Membranes and Advanced Water Technology (CMAT), Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Liang Yejin
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 261, Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea
| | - Heechul Choi
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 261, Cheomdangwagi-ro, Buk-gu, Gwangju, 61005, Republic of Korea; Center for Membranes, Advanced Materials Division, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Republic of Korea.
| |
Collapse
|
10
|
Yang Y, Xu Y, Liu Z, Huang H, Fan X, Wang Y, Song Y, Song C. Preparation and characterization of high-performance electrospun forward osmosis membrane by introducing a carbon nanotube interlayer. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118563] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
11
|
Size-controlled graphene oxide for highly permeable and fouling-resistant outer-selective hollow fiber thin-film composite membranes for forward osmosis. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118171] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Recent Advances in Applications of Carbon Nanotubes for Desalination: A Review. NANOMATERIALS 2020; 10:nano10061203. [PMID: 32575642 PMCID: PMC7353087 DOI: 10.3390/nano10061203] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 11/17/2022]
Abstract
As a sustainable, cost-effective and energy-efficient method, membranes are becoming a progressively vital technique to solve the problem of the scarcity of freshwater resources. With these critical advantages, carbon nanotubes (CNTs) have great potential for membrane desalination given their high aspect ratio, large surface area, high mechanical strength and chemical robustness. In recent years, the CNT membrane field has progressed enormously with applications in water desalination. The latest theoretical and experimental developments on the desalination of CNT membranes, including vertically aligned CNT (VACNT) membranes, composited CNT membranes, and their applications are timely and comprehensively reviewed in this manuscript. The mechanisms and effects of CNT membranes used in water desalination where they offer the advantages are also examined. Finally, a summary and outlook are further put forward on the scientific opportunities and major technological challenges in this field.
Collapse
|
13
|
Zhang M, Jin W, Yang F, Duke M, Dong Y, Tang CY. Engineering a Nanocomposite Interlayer for a Novel Ceramic-Based Forward Osmosis Membrane with Enhanced Performance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7715-7724. [PMID: 32401501 DOI: 10.1021/acs.est.0c02809] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Rational design of a high-performance defect-free polyamide (PA) layer on a robust ceramic substrate is challenging for forward osmosis (FO) water treatment applications. In this study, we first demonstrated a robust ceramic-based thin-film composite (TFC) FO membrane by engineering a novel nanocomposite interlayer of titanium dioxide and carbon nanotube (TiO2/CNT). The structural morphologies and properties were systematically characterized for different substrates (without interlayer, with TiO2 interlayer, or with TiO2/CNT interlayer) and the corresponding ceramic-based TFC-FO membranes. Introduction of low roughness nanocomposite interlayers with decreased pore size created an interface with improved surface characteristics, favoring the formation of a defect-free nanovoid-containing PA layer with high cross-linking degree. The resulting ceramic-based FO membrane had a water permeability of approximately 2 L/(m2 h bar) and a NaCl rejection of 98%, showing simultaneous enhancements in both compared to the control membrane without an interlayer. Mechanism analysis indicates that such a special nanocomposite interlayer not only provided more active sites for the formation of a thinner defect-free nanovoid-containing PA layer without penetration into substrate but also acted as a highly porous three-dimensional network structure for rapid water transport. This work provides a novel protocol for rational design and fabrication of a high-performance multilayered inorganic FO membrane as well as extended applications in water treatment with enhanced performance.
Collapse
Affiliation(s)
- Mingming Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Wenbiao Jin
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Mikel Duke
- Institute for Sustainable Industries & Liveable Cities, Victoria University, PO Box 14428, Melbourne, Australia
| | - Yingchao Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
14
|
Aziz SNSA, Seman MNA, Saufi SM. A Review on Surface Characterization Techniques of Polymeric Membrane in Forward Osmosis. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/1757-899x/736/5/052026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
15
|
Gao H, Chen W, Xu C, Liu S, Tong X, Chen Y. Two-Dimensional Ti 3C 2T x MXene/GO Hybrid Membranes for Highly Efficient Osmotic Power Generation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2931-2940. [PMID: 32048835 DOI: 10.1021/acs.est.9b05100] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Osmotic power has emerged as one of the promising candidates for clean and renewable energy. However, the advancement of present osmotic power-harvesting technologies, specifically pressure-retarded osmosis (PRO) in this work, is hindered by the unsatisfactory membrane transport properties. Herein, we demonstrate the freestanding transition-metal carbides and graphene oxide hybrid membranes as high-performance PRO membranes. Due to the elimination of internal concentration polarization, the freestanding hybrid membrane can achieve a record-high power density up to approximately 56.4 W m-2 with 2.0 M NaCl as the draw solution and river water (0.017 M) as the feed water at an applied hydraulic pressure difference of 9.66 bar. In addition, the hybrid membranes exhibit enhanced antifouling potential and antibacterial activity. The facile fabrication of the hybrid membranes shed light on a new membrane development platform for the highly anticipated osmotic power-harvesting technologies.
Collapse
Affiliation(s)
- Haiping Gao
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Wensi Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chunyan Xu
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Su Liu
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Xin Tong
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yongsheng Chen
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
16
|
Karkooti A, Rastgar M, Nazemifard N, Sadrzadeh M. Graphene-based electro-conductive anti-fouling membranes for the treatment of oil sands produced water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135365. [PMID: 31796283 DOI: 10.1016/j.scitotenv.2019.135365] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 10/30/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
In this study, a thin layer of polyaniline (PANI)-reduced graphene oxide (rGO) was laminated on polyethersulfone (PES) support by pressure-assisted technique. Organic fouling on the resulting robust and electro-conductive membranes reduced significantly by applying an external electric field. The electrical conductivity of pristine PANI film was 0.46 S/m while it was increased up to 84.53 S/m by adding appropriate amount of rGO. Both anodic and cathodic potentials in a wide range were applied to the prepared membranes using synthetic sodium alginate and real oil sands boiler feed water (BFW) waste of Alberta, Canada. Filtration tests showed that fouling resistance of electro-oxidative membranes towards sodium alginate improved, and 31.9% flux decline recovered when 2 V anodic cell potential was applied. By increasing the applied voltage from 3 V to 9 V, the antifouling property of membrane, as well as flux recovery ratio (FRR), improved dramatically and reached to 97.47% in the anodic setting. Such a significant improvement was attributed to electrostatic repulsive force between foulant and membrane surface, massive gas bubble generation, and electro-oxidation reactions. The cathodic electro-reduction configuration was also tested for BFW, where water flux decline and rejection performance were both improved by elevating electric potential.
Collapse
Affiliation(s)
- Amin Karkooti
- Department of Chemical & Materials Engineering, 12-237 Donadeo Innovation Centre for Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Masoud Rastgar
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Neda Nazemifard
- Department of Chemical & Materials Engineering, 12-237 Donadeo Innovation Centre for Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Mohtada Sadrzadeh
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
17
|
Du L, Quan X, Fan X, Wei G, Chen S. Conductive CNT/nanofiber composite hollow fiber membranes with electrospun support layer for water purification. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117613] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Xu X, Zhang H, Yu M, Wang Y, Gao T, Yang F. Conductive thin film nanocomposite forward osmosis membrane (TFN-FO) blended with carbon nanoparticles for membrane fouling control. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134050. [PMID: 32380598 DOI: 10.1016/j.scitotenv.2019.134050] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/23/2019] [Accepted: 08/21/2019] [Indexed: 05/28/2023]
Abstract
Membrane fouling in forward osmosis (FO) significantly affects water flux and membrane life, which restricts the further development of FO. In this work, carbon nanoparticles were blended in polyethersulfone (PES) to prepare a conductive thin film nanocomposite (TFN) FO membrane to control the membrane fouling in FO processes. The membrane containing 4 wt% carbon exhibited an optimum performance with water flux of 14.0 and 17.2 LMH for FO (active layer for FS) and PRO (active layer for DS) modes, respectively, using DI water as feed solution and 1 M NaCl as draw solution and electrical conductivity of 170.1 mS/m. Dynamic antifouling experiments showed that, compared with no voltage applied, the water flux decline of surface charged TFN-FO membrane was significantly retarded. For CaSO4, BSA and LYS as model contaminants, the water fluxes were improved by 31%, 13% and 7% under the voltages of +1.7 V, -1.7 V and +1.7 V, respectively. Moreover, the charged membrane is more effective in relieving the initial membrane fouling, and contaminant-contaminant interactions mechanism dominates the formation of further membrane fouling processes. Therefore, for contaminants with different charge conditions, customizing membrane surface charges is a feasible and promising approach for controlling membrane fouling in situ method.
Collapse
Affiliation(s)
- Xiaotong Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Hanmin Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China.
| | - Mingchuan Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Yuezhu Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Tianyu Gao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| | - Fenglin Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, No.2 Linggong Road, Dalian 116024, China
| |
Collapse
|
19
|
Bao X, Wu Q, Shi W, Wang W, Zhu Z, Zhang Z, Zhang R, Zhang B, Guo Y, Cui F. Dendritic amine sheltered membrane for simultaneous ammonia selection and fouling mitigation in forward osmosis. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.063] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Yang Y, Qiao S, Zheng M, Zhou J, Quan X. Enhanced permeability, contaminants removal and antifouling ability of CNTs-based hollow fiber membranes under electrochemical assistance. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.04.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Zhang X, Xie M, Yang Z, Wu HC, Fang C, Bai L, Fang LF, Yoshioka T, Matsuyama H. Antifouling Double-Skinned Forward Osmosis Membranes by Constructing Zwitterionic Brush-Decorated MWCNT Ultrathin Films. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19462-19471. [PMID: 31071260 DOI: 10.1021/acsami.9b03259] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Pressure retarded osmosis (PRO) process is hindered by severe fouling occurring within the porous support of the forward osmosis (FO) membranes. We designed a novel double-skinned FO membrane containing a polyamide salt-rejecting layer and a zwitterionic brush-decorated, multiwalled carbon nanotube (MWCNT/PSBMA) foulant-resisting layer on the back side. Our results demonstrated that the coating of the MWCNT/PSBMA layer on the porous polyketone (PK) support imparted enhanced hydrophilicity and smaller membrane pore size, thereby providing excellent resistance toward both protein adhesion and bacterial adsorption. We also further evaluated this resultant double-skinned membrane (i.e., TFC-MWCNT/PSBMA) in dynamic PRO fouling experiments using protein and alginate as model organic foulants. Compared to the pristine TFC-PK and hydrophobic TFC-MWCNT membranes, the TFC-MWCNT/PSBMA membrane exhibited not only the lowest water flux decline but also the highest water flux recovery after simple physical flushing. These results shed light on fabrication of antifouling PRO membranes for water purification purposes.
Collapse
Affiliation(s)
- Xinyu Zhang
- Center for Membrane and Film Technology, Department of Chemical Science and Engineering , Kobe University , Kobe 6578501 , Japan
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Ming Xie
- Department of Chemical Engineering , University of Bath , Bath BA27AY , U.K
| | - Zhe Yang
- Center for Membrane and Film Technology, Department of Chemical Science and Engineering , Kobe University , Kobe 6578501 , Japan
| | - Hao-Chen Wu
- Center for Membrane and Film Technology, Department of Chemical Science and Engineering , Kobe University , Kobe 6578501 , Japan
| | - Chuanjie Fang
- Center for Membrane and Film Technology, Department of Chemical Science and Engineering , Kobe University , Kobe 6578501 , Japan
| | - Langming Bai
- State Key Laboratory of Urban Water Resource and Environment , Harbin Institute of Technology , Harbin 150090 , P. R. China
| | - Li-Feng Fang
- Department of Polymer Science and Engineering , Zhejiang University , Hangzhou 310027 , P. R. China
| | - Tomohisa Yoshioka
- Center for Membrane and Film Technology, Department of Chemical Science and Engineering , Kobe University , Kobe 6578501 , Japan
| | - Hideto Matsuyama
- Center for Membrane and Film Technology, Department of Chemical Science and Engineering , Kobe University , Kobe 6578501 , Japan
| |
Collapse
|
22
|
Bao X, Wu Q, Shi W, Wang W, Yu H, Zhu Z, Zhang X, Zhang Z, Zhang R, Cui F. Polyamidoamine dendrimer grafted forward osmosis membrane with superior ammonia selectivity and robust antifouling capacity for domestic wastewater concentration. WATER RESEARCH 2019; 153:1-10. [PMID: 30684821 DOI: 10.1016/j.watres.2018.12.067] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 12/22/2018] [Accepted: 12/25/2018] [Indexed: 06/09/2023]
Abstract
Developing a forward osmosis (FO) membrane with superior ammonia selectivity and robust antifouling performance is important for treating domestic wastewater (DW) but challenging due to the similar polarities and hydraulic radii of NH4+ and water molecules. Herein, we investigated the feasibility of using polyamidoamine (PAMAM) dendrimer to simultaneously enhance the ammonia rejection rate and antifouling capacity of the thin-film composite (TFC) FO membrane. PAMAM dendrimer with abundant, easily-protonated, terminal amine groups was grafted on TFC-FO membrane surface via covalent bonds, which inspired the TFC-FO membrane surface with appreciable Zeta potential (isoelectric point: pH = 5.5) and outstanding hydrophilicity (water contact angle: 39.83 ± 0.57°). Benefiting from the electrostatic repulsion between the protonated amine layer and NH4+-N as well as the concentration-induced diffusion resistance, the introduction of PAMAM dendrimer endowed the grafted membrane with a superior NH4+-N rejection rate of 98.23% and a significantly reduced the reverse solute flux when using NH4Cl solutions as feed solution. Meanwhile, the perfect balance between the electrostatic repulsion to positively-charged micromoleculer ions (metal ions and NH4+-N) and the electrostatic attraction to negatively-charged macromolecular organic foulants together with the hydrophilic nature of amine groups facilitated the enhancement of the grafted membranes in antifouling capacity and hence the NH4+-N selectivity (rejection rate of 91.81%) during the concentration of raw DW. The overall approach of this work opens up a frontier for preparation of ammonia-selective and antifouling TFC-FO membrane.
Collapse
Affiliation(s)
- Xian Bao
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Qinglian Wu
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Wenxin Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China; College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing, 400044, PR China.
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Huarong Yu
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Zhigao Zhu
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xinyu Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Zhiqiang Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Ruijun Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Fuyi Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environmental Engineering, Harbin Institute of Technology, Harbin, 150090, PR China; College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
23
|
Insights into simultaneous ammonia-selective and anti-fouling mechanism over forward osmosis membrane for resource recovery from domestic wastewater. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.11.072] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
24
|
Bai L, Liu Y, Bossa N, Ding A, Ren N, Li G, Liang H, Wiesner MR. Incorporation of Cellulose Nanocrystals (CNCs) into the Polyamide Layer of Thin-Film Composite (TFC) Nanofiltration Membranes for Enhanced Separation Performance and Antifouling Properties. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:11178-11187. [PMID: 30175584 DOI: 10.1021/acs.est.8b04102] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
To achieve greater separation performance and antifouling properties in a thin-film composite (TFC) nanofiltration membrane, cellulose nanocrystals (CNCs) were incorporated into the polyamide layer of a TFC membrane for the first time. The results of Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed the successful formation of the CNC-polyamide composite layer. Surface characterization results revealed differences in the morphologies of the CNC-TFC membranes compared with a control membrane (CNC-TFC-0). Streaming potential measurements and molecular weight cutoff (MWCO) characterizations showed that the CNC-TFC membranes exhibited a greater negative surface charge and a smaller MWCO as the CNC content increased. The CNC-TFC membranes showed enhanced hydrophilicity and increased permeability. With the incorporation of only 0.020 wt % CNCs, the permeability of the CNC-TFC membrane increased by 60.0% over that of the polyamide TFC without CNC. Rejection of Na2SO4 and MgSO4 by the CNC-TFC membranes was similar to that observed for the CNC-TFC-0 membrane, at values of approximately 98.7% and 98.8%, respectively, indicating that divalent salt rejection was not sacrificed. The monovalent ion rejection tended to increase as the CNC content increased. In addition, the CNC-TFC membranes exhibited enhanced antifouling properties due to their increased hydrophilicity and more negatively charged surfaces.
Collapse
Affiliation(s)
- Langming Bai
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE) , Harbin Institute of Technology , 73 Huanghe Road, Nangang District , Harbin , 150090 , P.R. China
| | - Yatao Liu
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE) , Harbin Institute of Technology , 73 Huanghe Road, Nangang District , Harbin , 150090 , P.R. China
| | - Nathan Bossa
- Department of Civil and Environmental Engineering , Duke University , Durham , North Carolina 27708 , United States
- Center for the Environmental Implications of NanoTechnology (CEINT) , Duke University , Durham , North Carolina 27708 , United States
| | - An Ding
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE) , Harbin Institute of Technology , 73 Huanghe Road, Nangang District , Harbin , 150090 , P.R. China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE) , Harbin Institute of Technology , 73 Huanghe Road, Nangang District , Harbin , 150090 , P.R. China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE) , Harbin Institute of Technology , 73 Huanghe Road, Nangang District , Harbin , 150090 , P.R. China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE) , Harbin Institute of Technology , 73 Huanghe Road, Nangang District , Harbin , 150090 , P.R. China
| | - Mark R Wiesner
- Department of Civil and Environmental Engineering , Duke University , Durham , North Carolina 27708 , United States
- Center for the Environmental Implications of NanoTechnology (CEINT) , Duke University , Durham , North Carolina 27708 , United States
| |
Collapse
|
25
|
Li C, Guo X, Wang X, Fan S, Zhou Q, Shao H, Hu W, Li C, Tong L, Kumar RR, Huang J. Membrane fouling mitigation by coupling applied electric field in membrane system: Configuration, mechanism and performance. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.06.150] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Liu TY, Yuan HG, Liu YY, Ren D, Su YC, Wang X. Metal-Organic Framework Nanocomposite Thin Films with Interfacial Bindings and Self-Standing Robustness for High Water Flux and Enhanced Ion Selectivity. ACS NANO 2018; 12:9253-9265. [PMID: 30153418 DOI: 10.1021/acsnano.8b03994] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Metal-organic framework (MOF)-based materials are promising candidates for a range of separation applications. However, the fabrication of self-standing MOF-based thin films remains challenging. Herein, a facile solution casting strategy is developed for fabricating UiO-66 nanocomposite thin films (UiO66TFs) with thicknesses down to ∼400 nm. Nanosizing UiO-66 and incorporating sulfonated polysulfone additives render high dispersity and interfacial bindings between MOFs and polymer matrices, so UiO66TFs are more mechanically robust and thermally stable than their pure-polymer counterparts. Enhanced microporosity with sub-nanometer pore sizes of the self-standing membranes enables the direct translation of UiO-66-based sorption and ion-sieving properties, thus increasing water flux and separation performance (Na2SO4 rejection of 94-96%) under hydraulic pressure-driven processes and eliminating internal concentration polarization in osmotic pressure-driven processes. Enhanced separation performances are achieved with water/Na2SO4 permselectivity of 13.5 L g-1 and high osmotic water permeability up to 1.41 L m-2 h-1 bar-1, providing 3-fold higher water/Na2SO4 permselectivity and 56-fold-higher water flux than polymer membranes for forward osmosis.
Collapse
Affiliation(s)
- Tian-Yin Liu
- Beijing Key Laboratory of Membrane Materials and Engineering, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , P. R. China
- Department of Chemical Engineering , Imperial College London , South Kensington Campus , London SW7 2AZ , U.K
| | - Hao-Ge Yuan
- Beijing Key Laboratory of Membrane Materials and Engineering, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , P. R. China
| | - Yuan-Yuan Liu
- Beijing Key Laboratory of Membrane Materials and Engineering, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , P. R. China
- Aerospace Research Institute of Special Material and Processing Technology , Aerospace Science and Industry Corp , Beijing 100074 , P. R. China
| | - Dan Ren
- Beijing Key Laboratory of Membrane Materials and Engineering, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , P. R. China
| | - Yi-Cheng Su
- Beijing Key Laboratory of Membrane Materials and Engineering, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , P. R. China
| | - Xiaolin Wang
- Beijing Key Laboratory of Membrane Materials and Engineering, Department of Chemical Engineering , Tsinghua University , Beijing 100084 , P. R. China
| |
Collapse
|