1
|
Song X, Xu L, Li L, Meng X, Wang Y, Qiu L, Hu Y, Zhang M, Xiang L, Xi G, Wu A, Wang X, Lin J. Amorphous/Crystalline Urchin-Like TiO 2 SERS Platform for Selective Recognition and Efficient Identification of Glutathione. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409400. [PMID: 39797480 DOI: 10.1002/smll.202409400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/30/2024] [Indexed: 01/13/2025]
Abstract
Glutathione serves as a common biomarkers in tumor diagnosis and treatment. The levels of its intracellular concentration permit detailed investigation of the tumor microenvironment. However, low polarization and weak Raman scattering cross-section make direct and indirect Raman detection challenging. This study designs an amorphous-crystalline urchin-like TiO2 (AC-UL-TiO2) for the accurate identification of GSH and GSSG. By synergistically regulating the crystalline core and amorphous shell, the bandgap structure is optimized, thereby enhancing charge transfer efficiency. AC-UL-TiO2 demonstrates excellent SERS performance in detecting dye molecules with good selectivity for mixed analytes. The enhancement factor (EF) for R6G is 6.89 × 106, and the limit of detection (LOD) is 10-10 M. A SERS-colorimetric dual-modality platform is developed based on the AC-UL-TiO2@DTNB system to accurately monitor GSH concentrations from 0 to 1000 µM, providing a robust dual-confirmation result. Importantly, combined with the principal component analysis method, the AC-UL-TiO2 SERS platform can directly distinguish GSH and GSSG molecules. Besides, direct SERS detection LOD for GSH and GSSG are 10-8 M, which is 100 times higher than that of indirect detection. These findings indicate that AC-UL-TiO2 holds potential for biomarkers trace detection in tumor microenvironments.
Collapse
Affiliation(s)
- Xiaoyu Song
- School of Chemistry, Beihang University, Beijing, 100191, China
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Lei Xu
- Ningbo Institute of Materials Technology and Engineering, CAS, Chinese Academy of Science, Ningbo, 315201, China
| | - Longsong Li
- Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Xiangyu Meng
- School of Chemistry, Beihang University, Beijing, 100191, China
| | - Yuening Wang
- School of Chemistry, Beihang University, Beijing, 100191, China
| | - Lin Qiu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yue Hu
- Ningbo Institute of Materials Technology and Engineering, CAS, Chinese Academy of Science, Ningbo, 315201, China
| | - Mingjian Zhang
- School of Chemistry, Beihang University, Beijing, 100191, China
| | - Lingchao Xiang
- Ningbo Institute of Materials Technology and Engineering, CAS, Chinese Academy of Science, Ningbo, 315201, China
| | - Guangcheng Xi
- Key Laboratory of Consumer Product Quality Safety Inspection and Risk Assessment for State Market Regulation, Chinese Academy of Inspection and Quarantine, Beijing, 100176, China
| | - Aiguo Wu
- Ningbo Institute of Materials Technology and Engineering, CAS, Chinese Academy of Science, Ningbo, 315201, China
| | - Xiaotian Wang
- School of Chemistry, Beihang University, Beijing, 100191, China
| | - Jie Lin
- Ningbo Institute of Materials Technology and Engineering, CAS, Chinese Academy of Science, Ningbo, 315201, China
| |
Collapse
|
2
|
Cheng Q, Tang W, Liu Z, Wu Y, Zheng M, Ma D. In vivo oxidative stress responses and mechanism to chlorinated and methylated p-benzoquinone oxidation byproducts: A comparison study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117914. [PMID: 39970498 DOI: 10.1016/j.ecoenv.2025.117914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/15/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Halogen-substituted para-benzoquinones (p-BQs) are emerging disinfection byproducts known to induce oxidative damage both in vitro and in vivo. However, as ubiquitous oxidation byproducts, the in vivo toxicity and transport mechanism of non-halogenated p-BQs with similar structure of α, β-unsaturated ketones to halogenated p-BQs have not been thoroughly investigated. In this study, the effect of substituents on toxicity and transportation of 2-chloro-1,4-benzoquinone (CBQ) and 2-methyl-1,4-benzoquinone (MBQ) was systematically investigated. The results show that MBQ exhibits slightly lower acute toxicity to zebrafish embryos compared to CBQ. Exposure to both CBQ and MBQ at concentration of 10 μg/L and 100 μg/L significantly increased the levels of reactive oxygen species, and enhanced the activities of total superoxide dismutase, catalase, and glutathione peroxidase, while malformations were primarily observed in the 100 μg/L exposure groups. The varying developmental toxicity was associated with significant upregulation of 10 genes by CBQ compared to only 6 by MBQ. Using the high-resolution mass spectrometry and electron paramagnetic resonance spectroscopy, the hydroxylation of both CBQ and MBQ, and the production of semiquinone radicals and hydroxyl radicals in aqueous environments have been revealed. This study has demonstrated that the toxicity of non-halogenated p-BQs should not be overlooked and contributes to the understanding of the generated radicals, leading to excessive oxidative-stress in vivo.
Collapse
Affiliation(s)
- Qiang Cheng
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China
| | - Weixu Tang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China
| | - Zirui Liu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China
| | - Yasen Wu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China
| | - Min Zheng
- Water Research Centre, School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Dehua Ma
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu Province 210094, China.
| |
Collapse
|
3
|
Liu Y, Zhang Z, Wu Y, Yang H, Qu J, Zhu X. A Low-Cost Electrochemical Cell Sensor Based on MWCNT-COOH/α-Fe 2O 3 for Toxicity Detection of Drinking Water Disinfection Byproducts. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:146. [PMID: 39852761 PMCID: PMC11767749 DOI: 10.3390/nano15020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 01/26/2025]
Abstract
The disinfection of drinking water is essential for eliminating pathogens and preventing waterborne diseases. However, this process generates various disinfection byproducts (DBPs), which toxicological research indicates can have detrimental effects on living organisms. Moreover, the safety of these DBPs has not been sufficiently assessed, underscoring the need for a comprehensive evaluation of their toxic effects and associated health risks. Compared to traditional methods for studying the toxicity of pollutants, emerging electrochemical sensing technologies offer advantages such as simplicity, speed, and sensitivity, presenting an effective means for toxicity research on pollutants. However, challenges remain in this field, including the need to improve electrode sensitivity and reduce electrode costs. In this study, a pencil graphite electrode (PGE) was modified with carboxylated multi-walled carbon nanotubes (MWCNT-COOH) and nano-iron (III) oxide (α-Fe2O3) to fabricate a low-cost electrode with excellent electrocatalytic performance for cell-active substances. Subsequently, a novel cellular electrochemical sensor was constructed for the sensitive detection of the toxicity of three drinking water DBPs. The half inhibitory concentration (IC50) values of 2-chlorophenylacetonitrile (2-CPAN), 3-chlorophenylacetonitrile (3-CPAN), and 4-chlorophenylacetonitrile (4-CPAN) for HepG2 cells were 660.69, 831.76, and 812.83 µM, respectively. This study provides technical support and scientific evidence for the toxicity detection and safety assessment of emerging contaminants.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaolin Zhu
- School of Environment, Northeast Normal University, Changchun 130117, China
| |
Collapse
|
4
|
Zhong Q, Huang Y, Sha Y, Wei Q, Long K, Xiao J, Liu Z, Wei X. Halobenzoquinone-induced potential carcinogenicity associated with p53-mediated cell cycle pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125230. [PMID: 39489323 DOI: 10.1016/j.envpol.2024.125230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/13/2024] [Accepted: 10/30/2024] [Indexed: 11/05/2024]
Abstract
2,6-Dibromo-1,4-benzoquinone (2,6-DBBQ) and 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ), two emerging halobenzoquinones (HBQs), have the highest detection frequencies and levels in drinking water among all HBQs. They are more toxic than the regulated disinfection byproducts. Quantitative structure toxicity relationship analysis predicted that HBQs are a class of potential bladder carcinogens. However, direct experimental evidence for the carcinogenicity of 2,6-DBBQ and 2,6-DCBQ is lacking and the associated toxicity mechanisms remain unclear. In this study, we confirmed the potential carcinogenicity of 2,6-DBBQ and 2,6-DCBQ using an in vitro malignant transformation assay, evaluated their cytotoxicity and genotoxicity, and investigated their toxicity mechanisms. The results showed that 2,6-DBBQ and 2,6-DCBQ significantly decreased the viability of human uroepithelial SV-HUC-1 cells and induced DNA damage in SV-HUC-1 cells, and chromosomal damage in HepG2 cells, and malignant transformation of SV-HUC-1 cells. Moreover, transcriptome sequencing revealed that 2,6-DBBQ and 2,6-DCBQ activated the p53-mediated cell cycle pathway in bladder cancer. In the p53-mediated cell cycle pathway, 2,6-DBBQ and 2,6-DCBQ induced cell cycle arrest at the S phase by downregulating p53 and upregulating p21. Additionally, 2,6-DBBQ and 2,6-DCBQ may have produced excessive reactive oxygen species, damaging DNA and chromosomes. These results not only first confirm the potential carcinogenicity of 2,6-DBBQ and 2,6-DCBQ but also provide an important reference for exploring the cytotoxicity and genotoxicity mechanisms of these HBQs.
Collapse
Affiliation(s)
- Qing Zhong
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yuwen Huang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Yujie Sha
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Qiuyan Wei
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Kunling Long
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Jingyi Xiao
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Zhanmou Liu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiao Wei
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| |
Collapse
|
5
|
Zhou M, Qian Y, Du M, Wang J, Li J, Wang W. Metabolite identification of emerging disinfection byproduct dibromo-benzoquinone in vivo and in vitro: Multi-strategy mass-spectrometry annotation and toxicity characterization. ENVIRONMENT INTERNATIONAL 2024; 193:109134. [PMID: 39522490 DOI: 10.1016/j.envint.2024.109134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Halobenzoquinones (HBQs) are emerging disinfection byproducts (DBPs) of high toxicity and also are shared active toxic intermediates of multiple halogenated organic pollutants. Due to the strong oxidizing property and electrophilicity, HBQs exhibit extremely diverse metabolism pathways in organisms. The identification of toxic-decisive metabolites is pivotal, albeit challenging, for understanding the toxicity mechanisms of HBQs. We employed dibromo-benzoquinone (DBBQ) as a representative HBQ, and established a systematic analytical strategy using high-resolution mass spectrometry, which collectively coupled suspect screening (SS), mass defect filtering (MDF), product ion filtering (PIF), isotopic signature filtering (ISF), and molecular networking (MN). As a result, 20 biotransformation products of DBBQ were identified in vivo and in vitro, involving metabolism reactions such as hydroxylation, methylation, methoxylation, acetylation, sulfonation, glucuronidation, glutathionylation, dimerization, and conjugation with amino acids or fatty acids. Quantitative structure-activity relationship (QSAR) analysis and cytotoxicity experiments consistently demonstrated the significantly high toxicity of the fatty acid conjugate compared to the parent compound DBBQ and other metabolites, pinpointing the important role of the fatty acid conjugation in determining the metabolism and toxicity of HBQs. The research conducted a comprehensive evaluation of the metabolism of a typical HBQ with the combination of multiple analytical and toxicity characterization methods, therefore screen out the most important metabolism pathway of HBQs.
Collapse
Affiliation(s)
- Meijiao Zhou
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Yichao Qian
- Hangzhou Huihong Environmental Technology Co., Ltd., Hangzhou, Zhejiang 310058, China
| | - Mine Du
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China
| | - Jun Wang
- Department of Health Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Jinhua Li
- Department of Health Toxicology, School of Public Health, Jilin University, Changchun, Jilin 130021, China
| | - Wei Wang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
6
|
Liu M, Ning Z, Cheng Y, Zheng Z, Yang X, Zheng T, Li N, Wu JL. The key to 2,6-dichloro-1,4-benzoquinone reproductive toxicity and green tea detoxification: Covalent binding and competitive binding. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117239. [PMID: 39454356 DOI: 10.1016/j.ecoenv.2024.117239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 09/24/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024]
Abstract
Halobenzoquinones (HBQs) are ubiquitous disinfection by-products (DBPs) in chlorinated drinking water with various health risks including reproductive toxicity, while the potential mechanisms are still unclear. Although green tea exhibits common detoxifying properties, its ability to mitigate the toxicity of HBQs still needs to be further deepened and explored. This study attempted to investigate the possible mechanism of the most common HBQ, 2,6-dichloro-1,4-benzoquinone (2,6-DCBQ) induced reproductive toxicity and elucidate the protective effect of green tea using a series of liquid chromatography-tandem mass spectrometry (LC-MS) approaches. Firstly, in vivo experiments showed that 2,6-DCBQ could induce testicular damage in male rats via significantly decreasing sperm-associated Leydig cells and seminiferous tubules. Then, in vitro incubation of 2,6-DCBQ with amino acids suggested that 2,6-DCBQ could bind to proteins via residues of cysteine or lysine and provided five additional modification patterns. Following, proteomics analysis revealed that at least 42 proteins were modified by 2,6-DCBQ, which were mainly enriched in the reproductive system. These results highlighted the significance of covalent protein modification in 2,6-DCBQ reproductive toxicity. Fortunately, we found that catechins (a class of major components of green tea) could competitively bind to 2,6-DCBQ in vivo and in vitro, reducing the amount and type of 2,6-DCBQ-protein adducts, thereby attenuating the reproductive system damage caused by 2,6-DCBQ. This study provides new insights into 2,6-DCBQ-induced reproductive system damage and reveals a new mechanism of green tea detoxification. Moreover, these findings offer potential strategies for alleviating the harmful impacts of environmental toxicants on human health.
Collapse
Affiliation(s)
- Meixian Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macao, China; BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Zhiyuan Ning
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macao, China
| | - Yong Cheng
- Zhejiang Skyherb Biotechnology Inc., Huzhou 313300, China
| | - Zhiyuan Zheng
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology, Shenzhen 518107, China; Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaoxue Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macao, China
| | - Ting Zheng
- Multi-omics Mass Spectrometry Core, Biomedical Research Core Facilities, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macao, China.
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, 999078, Macao, China.
| |
Collapse
|
7
|
Wang ZH, Huang CH, Liu ZS, Mao L, Zhu BZ. Molecular mechanism for the unusual enhancement of the second-step chemiluminescence production from the carcinogenic tetrabromohydroquinone and H 2O 2. J Environ Sci (China) 2024; 141:330-342. [PMID: 38408832 DOI: 10.1016/j.jes.2023.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/26/2023] [Accepted: 05/28/2023] [Indexed: 02/28/2024]
Abstract
We have found recently that two-step intrinsic hydroxyl radical (·OH)-dependent chemiluminescence (CL) could be produced by carcinogenic tetrahaloquinone and H2O2. However, the first-step CL was too fast to clearly detect the stepwise generation of ·OH and CL, and to distinguish the exact dividing point between the first-step and second-step CL. Here we found that, extremely clear two-step intrinsic CL could be produced by the relative slow reaction of tetrabromohydroquinone (TBHQ) with H2O2, which was directly dependent on the two-step ·OH generation. Interestingly, the second-step, but not the first-step CL production of TBHQ/H2O2 (CRET donor) was markedly enhanced by fluorescein (a typical xanthene dye, CRET acceptor) through a unique chemiluminescence resonance energy transfer (CRET) process. The novel CRET system of TBHQ/H2O2/fluorescein was successfully applied for the sensitive detection of TBHQ with the detection limit as low as 2.5 µmol/L. These findings will help to develop more sensitive and highly efficient CL or CRET systems and specific CL sensor to detect the carcinogenic haloquinones, which may have broad environmental applications.
Collapse
Affiliation(s)
- Zi-Han Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chun-Hua Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Sheng Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Mao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ben-Zhan Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Environment and Resources, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Yeung K, Moore N, Sun J, Taylor-Edmonds L, Andrews S, Hofmann R, Peng H. Thiol Reactome: A Nontargeted Strategy to Precisely Identify Thiol Reactive Drinking Water Disinfection Byproducts. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18722-18734. [PMID: 37022973 DOI: 10.1021/acs.est.2c05486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The precise identification of predominant toxic disinfection byproducts (DBPs) from disinfected water is a longstanding challenge. We propose a new acellular analytical strategy, the 'Thiol Reactome', to identify thiol-reactive DBPs by employing a thiol probe and nontargeted mass spectrometry (MS) analysis. Disinfected/oxidized water samples had reduced cellular oxidative stress responses of 46 ± 23% in Nrf2 reporter cells when preincubated with glutathione (GSH). This supports thiol-reactive DBPs as the predominant drivers of oxidative stress. This method was benchmarked using seven classes of DBPs including haloacetonitriles, which preferentially reacted with GSH via substitution or addition depending on the number of halogens present. The method was then applied to chemically disinfected/oxidized waters, and 181 tentative DBP-GSH reaction products were detected. The formulas of 24 high abundance DBP-GSH adducts were predicted, among which nitrogenous-DBPs (11) and unsaturated carbonyls (4) were the predominant compound classes. Two major unsaturated carbonyl-GSH adducts, GSH-acrolein and GSH-acrylic acid, were confirmed by their authentic standards. These two adducts were unexpectedly formed from larger native DBPs when reacting with GSH. This study demonstrated the "Thiol Reactome" as an effective acellular assay to precisely identify and broadly capture toxic DBPs from water mixtures.
Collapse
Affiliation(s)
- Kirsten Yeung
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- School of the Environment, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Nathan Moore
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Jianxian Sun
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | - Lizbeth Taylor-Edmonds
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Susan Andrews
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Ronald Hofmann
- Department of Civil and Mineral Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
- School of the Environment, University of Toronto, Toronto, ON M5S 3H6, Canada
| |
Collapse
|
9
|
Zhou M, Li J, Du M, Wang J, Kaw HY, Zhu L, Wang W. Methoxylated Modification of Glutathione-Mediated Metabolism of Halobenzoquinones In Vivo and In Vitro. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3581-3589. [PMID: 36802564 DOI: 10.1021/acs.est.2c06765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Xenobiotics were generally detoxified in organisms through interaction with endogenous molecules, which may also generate metabolites of increased toxicity. Halobenzoquinones (HBQs), a group of highly toxic emerging disinfection byproducts (DBPs), can be metabolized by reacting with glutathione (GSH) to form various glutathionylated conjugates (SG-HBQs). In this study, the cytotoxicity of HBQs in CHO-K1 cells showed a wavy curve as a function of increased GSH dosage, which was inconsistent with the commonly recognized progressive detoxification curve. We hypothesized that the formation and cytotoxicity of GSH-mediated HBQ metabolites contribute to the unusual wave-shaped cytotoxicity curve. Results showed that glutathionyl-methoxyl HBQs (SG-MeO-HBQs) were identified to be the primary metabolites significantly correlated with the unusual cytotoxicity variation of HBQs. The formation pathway was initiated by stepwise metabolism via hydroxylation and glutathionylation to produce detoxified hydroxyl HBQs (OH-HBQs) and SG-HBQs, followed by methylation to generate SG-MeO-HBQs of potentiated toxicity. To further verify the occurrence of the aforementioned metabolism in vivo, SG-HBQs and SG-MeO-HBQs were detected in the liver, kidney, spleen, testis, bladder, and feces of HBQ-exposed mice, with the highest concentration quantified in the liver. The present study supported that the co-occurrence of metabolism can be antagonistic, which enhanced our understanding of the toxicity and metabolic mechanism of HBQs.
Collapse
Affiliation(s)
- Meijiao Zhou
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Jinhua Li
- Department of Health Toxicology, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Mine Du
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Jun Wang
- Department of Health Toxicology, School of Public Health, Jilin University, Changchun, Jilin, 130021, China
| | - Han Yeong Kaw
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Wei Wang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| |
Collapse
|
10
|
Hong H, Lu Y, Zhu X, Wu Q, Jin L, Jin Z, Wei X, Ma G, Yu H. Cytotoxicity of nitrogenous disinfection byproducts: A combined experimental and computational study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159273. [PMID: 36209887 DOI: 10.1016/j.scitotenv.2022.159273] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/02/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Nitrogenous disinfection byproducts (N-DBPs), such as halocetamides (HAcAms), haloacetonitriles (HANs) and halonitromethanes (HNMs), are emerging DBPs in drinking water. They are more toxic than currently regulated DBPs, attracting more attention to their toxic effects and mechanism. In this study, human embryonic kidney (HEK) 293T cells were employed to explore the cytotoxicity of 29 N-DBPs. The influence of molecular structures and different halogenations on cytotoxicity has been comparatively analyzed. As toxicity is the downstream of chemico-biological interactions, the thiol reactivity of 29 N-DBPs has thus been evaluated by using glutathione (GSH) as a model nucleophile, which is the most prevalent cellular thiol and acts as an antioxidant to protect cells by detoxifying electrophilic compounds. Results show that the cytotoxicity of N-DBPs follows by the order of HAcAms > HANs > HNMs, which is different from their reactivity with GSH (the median of kGSH ranks as HNMs > HAcAms > HANs). However, a significant correlation (p < 0.001) between log kGSH and log IC50 (concentration causing 50% inhibition) has been respectively observed for HAcAms and HANs subset and HNMs subset, indicating such chemical reaction is a probable trigger for these DBPs to result in cytotoxicity. Finally, two separate quantitative structure - activity relationship (QSAR) models based on HANs & HAcAms subset and HNMs subset have been developed for estimating IC50 values. The good statistical performance makes the models possible to quickly and accurately predict IC50 values of other N-DBPs, providing basic data for their health risk assessment and greatly reducing in vivo and in vitro experiments.
Collapse
Affiliation(s)
- Huachang Hong
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004 Jinhua, China
| | - Yuchen Lu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004 Jinhua, China
| | - Xiaoyan Zhu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004 Jinhua, China
| | - Qiang Wu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004 Jinhua, China
| | - Lingmin Jin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004 Jinhua, China
| | - Zhigang Jin
- College of Chemistry and Life Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004 Jinhua, China
| | - Xiaoxuan Wei
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004 Jinhua, China
| | - Guangcai Ma
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004 Jinhua, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Yingbin Avenue 688, 321004 Jinhua, China.
| |
Collapse
|
11
|
Yang X, Wang C, Zheng Q, Liu Q, Wawryk NJP, Li XF. Emerging Disinfection Byproduct 2,6-Dichlorobenzoquinone-Induced Cardiovascular Developmental Toxicity of Embryonic Zebrafish and Larvae: Imaging and Transcriptome Analysis. ACS OMEGA 2022; 7:45642-45653. [PMID: 36530307 PMCID: PMC9753109 DOI: 10.1021/acsomega.2c06296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Epidemiological studies have observed the potential association of water disinfection byproduct (DBP) exposure with cardiac defects. Aromatic DBPs represent a significant portion of total DBPs, but their effects on cardiovascular development are unclear. In this study, we examined the effects of an aromatic DBP, 2,6-dichlorobenzoquinone (DCBQ), on the cardiovascular development of zebrafish embryos. After exposure to 2, 4, and 8 μM DCBQ, morphological images of growing zebrafish embryos clearly showed cardiovascular malformation. Fluorescent images of transgenic zebrafish strains with fluorescently labeled heart and blood vessels show that DCBQ exposure resulted in deformed atrium-ventricle looping, degenerated abdomen and trunk vessels, pericardial edema, and decreased blood flow. Furthermore, the expression of the marker gene myl7 (essential for the differentiation and motility of cardiomyocytes) was inhibited in a dose-dependent manner by DCBQ exposure. Finally, transcriptome analysis found that in the 4 μM DCBQ exposure group, the numbers of differentially expressed genes (DEGs) were 113 (50 upregulated and 63 downregulated) at 24 hpf, 2123 (762 upregulated and 1361 downregulated) at 48 hpf, and 61 (11 upregulated and 50 downregulated) at 120 hpf; in the 8 μM DCBQ exposure group, the number of DEGs was 1407 (647 upregulated and 760 downregulated) at 120 hpf. The FoxO signaling pathway was significantly altered. The in vivo results demonstrate the effects of 2,6-DCBQ (0-8 μM) on cardiovascular development, contributing to the understanding of the developmental toxicity of aromatic DBP halobenzoquinones (HBQs).
Collapse
Affiliation(s)
- Xue Yang
- Hubei
Key Laboratory of Environmental and Health Effects of Persistent Toxic
Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Chang Wang
- Hubei
Key Laboratory of Environmental and Health Effects of Persistent Toxic
Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Qi Zheng
- Hubei
Key Laboratory of Environmental and Health Effects of Persistent Toxic
Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Qiongyu Liu
- Hubei
Key Laboratory of Environmental and Health Effects of Persistent Toxic
Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Nicholas J. P. Wawryk
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| | - Xing-Fang Li
- Division
of Analytical and Environmental Toxicology, Department of Laboratory
Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta T6G 2G3, Canada
| |
Collapse
|
12
|
Meintani DG, Chatzimitakos TG, Kasouni AI, Stalikas CD. Untargeted metabolomics of human keratinocytes reveals the impact of exposure to 2,6-dichloro-1,4-benzoquinone and 2,6-dichloro-3-hydroxy-1,4-benzoquinone as emerging disinfection by-products. Metabolomics 2022; 18:89. [PMID: 36342571 PMCID: PMC9640400 DOI: 10.1007/s11306-022-01935-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022]
Abstract
INTRODUCTION The 2,6-dichloro-1,4-benzoquinone (DCBQ) and its derivative 2,6-dichloro-3-hydroxy-1,4-benzoquinone (DCBQ-OH) are disinfection by-products (DBPs) and emerging pollutants in the environment. They are considered to be of particular importance as they have a high potential of toxicity and they are likely to be carcinogenic. OBJECTIVES In this study, human epidermal keratinocyte cells (HaCaT) were exposed to the DCBQ and its derivative DCBQ-OH, at concentrations equivalent to their IC20 and IC50, and a study of the metabolic phenotype of cells was performed. METHODS The perturbations induced in cellular metabolites and their relative content were screened and evaluated through a metabolomic study, using 1H-NMR and MS spectroscopy. RESULTS Changes in the metabolic pathways of HaCaT at concentrations corresponding to IC20 and IC50 of DCBQ-OH involved the activation of cell membrane α-linolenic acid, biotin, and glutathione and deactivation of glycolysis/gluconeogenesis at IC50. The changes in metabolic pathways at IC20 and IC50 of DCBQ were associated with the activation of inositol phosphate, pertaining to the transfer of messages from the receptors of the membrane to the interior as well as with riboflavin. Deactivation of biotin metabolism was recorded, among others. The cells exposed to DCBQ exhibited a concentration-dependent decrease in saccharide concentrations. The concentration of steroids increased when cells were exposed to IC20 and decreased at IC50. Although both chemical factors stressed the cells, DCBQ led to the activation of transporting messages through phosphorylated derivatives of inositol. CONCLUSION Our findings provided insights into the impact of the two DBPs on human keratinocytes. Both chemical factors induced energy production perturbations, oxidative stress, and membrane damage.
Collapse
Affiliation(s)
- Dimitra G Meintani
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - Theodoros G Chatzimitakos
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece
| | - Athanasia I Kasouni
- Laboratory of Biophysical Chemistry, Department of Biological Applications and Technologies, University of Ioannina, 45110, Ioannina, Greece
| | - Constantine D Stalikas
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Ioannina, 45110, Ioannina, Greece.
| |
Collapse
|
13
|
Miao T, Li M, Shao T, Jiang X, Jiang L, Zhou Q, Pan Y, Wang Y, Qiu J. The involvement of branched-chain amino acids (BCAAs) in aromatic trihalogenated DBP exposure-induced kidney damage in mice. CHEMOSPHERE 2022; 305:135351. [PMID: 35718037 DOI: 10.1016/j.chemosphere.2022.135351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/10/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Disinfection by-products (DBPs) are inevitably generated in the process of disinfection. Among them, aromatic halogenated DBPs, such as 2,4,6-trichlorophenol (TCP), 2,4,6-tribromophenol (TBP) and 2,4,6-triiodophenol (TIP), have attracted considerable interest for their high toxicity. A systematic nephrotoxicity evaluation of 2,4,6-trihalophenols is still lacking. In this study, mice were exposed to TCP, TBP and TIP ranging from environmental-related low concentration to high concentration that commonly used in animal study (0.5-200 μg/L). Kidney histopathology, urine protein detection and urine metabolomics were performed. Remarkable changes including kidney damage, proteinuria and glomerular mesangial cell proliferation were observed after three 2,4,6-trihalophenol exposure, even at low concentration of 0.5 μg/L. The nephrotoxicity rank order was TIP > TBP > TCP. Additionally, in vivo exposure to 2,4,6-trihalophenols also led to apparent changes in urinary metabolic profiles. Biosynthesis pathways of branched-chain amino acids (BCAAs, containing valine, leucine and isoleucine) were disturbed even at the early stage of exposure (4 weeks). Intriguingly, it has been reported that BCAAs could promote the proliferation of glomerular mesangial cells. Thus, in vitro cell experiments were further performed on mouse glomerular mesangial cell line MES-13. Consistently with in vivo results, cell proliferation was observed in MES-13 cells after exposure to 2,4,6-trihalophenols, especially to TBP and TIP. Meanwhile, TCP at high concentration, TBP and TIP at not only high concentration but also low concentration, induced BCAAs accumulation in glomerular mesangial cells, which was completely commensurate to that observed in cell proliferation assay. Then the proliferation of MES-13 cells induced by 2,4,6-trihalophenols was remarkably inhibited after BCAAs interference. Here we provide direct link between disturbed BCAAs and the nephrotoxicity of 2,4,6-trihalophenols. 2,4,6-trihalophenols could induce excess BCAAs, which further led to proliferation of glomerular mesangial cells and renal injury. This study revealed the nephrotoxicity of aromatic trihalogenated DBPs and provided new insights into the potential toxic mechanisms.
Collapse
Affiliation(s)
- Tingting Miao
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Mingzhi Li
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Tianye Shao
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, China
| | - Xiaoqin Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Liujing Jiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China
| | - Yong Wang
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, China.
| | - Jingfan Qiu
- Key Laboratory of Pathogen Biology of Jiangsu Province, Department of Pathogen Biology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
14
|
Hu S, Chen X, Zhang B, Liu L, Gong T, Xian Q. Occurrence and transformation of newly discovered 2-bromo-6-chloro-1,4-benzoquinone in chlorinated drinking water. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129189. [PMID: 35739719 DOI: 10.1016/j.jhazmat.2022.129189] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/21/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Halobenzoquinones (HBQs) have been reported as an emerging category of disinfection byproducts (DBPs) in drinking water with relatively high toxicity, and the previously reported HBQs include 2,6-dichloro-1,4-benzoquinone, 2,3,6-trichloro-1,4-benzoquinone, 2,6-dichloro-3-methyl-1,4-benzoquinone, 2,6-dibromo-1,4-benzoquinone, 2,6-diiodo-1,4-benzoquinone, 2-chloro-6-iodo-1,4-benzoquinone, and 2-bromo-6-iodo-1,4-benzoquinone. In this study, another HBQ species, 2-bromo-6-chloro-1,4-benzoquinone (2,6-BCBQ), was newly detected and identified in drinking water. The occurrence frequency and levels of 2,6-BCBQ were investigated, and its cytotoxicity was evaluated. Since the formed 2,6-BCBQ was found to be not stable in chlorination, its transformation kinetics and mechanisms in chlorination were further studied. The results reveal that 2,6-BCBQ was generated from Suwannee River humic acid with concentrations in the range of 4.4-47.9 ng/L during chlorination within 120 h, and it was present in all the tap water samples with concentrations ranging from 1.5 to 15.7 ng/L. Among all the tested bromochloro-DBPs, 2,6-BCBQ showed the highest cytotoxicity on the human hepatoma cells. The transformation of 2,6-BCBQ in chlorination followed a pseudo-first-order decay, which was significantly affected by the chlorine dose, pH, and temperature. Seven polar chlorinated and brominated intermediates (including HBQs, halohydroxybenzoquinones, and halohydroxycyclopentenediones) were detected in chlorinated 2,6-BCBQ samples, according to which the transformation pathways of 2,6-BCBQ in chlorination were proposed. Besides, four trihalomethanes and four haloacetic acids were also generated during chlorination of 2,6-BCBQ with molar transformation percentages of 1.6-13.7%.
Collapse
Affiliation(s)
- Shaoyang Hu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiao Chen
- Lower Changjiang River Bureau of Hydrological and Water Resources Survey, Nanjing 210011, China
| | - Beibei Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Lanyao Liu
- Water Resources Department of Linyi, Linyi 276037, China
| | - Tingting Gong
- School of Energy and Environment, Southeast University, Nanjing 210096, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Qiming Xian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
15
|
Lou J, Lu H, Wang W, Zhu L. Molecular composition of halobenzoquinone precursors in natural organic matter in source water. WATER RESEARCH 2022; 209:117901. [PMID: 34872027 DOI: 10.1016/j.watres.2021.117901] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/22/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Halobenzoquinones (HBQs) are emerging disinfection byproducts generated during the reaction of chlorine disinfectant with natural organic matter (NOM) in source water. In this study, the correlations between molecular weight and HBQs generation of river NOM was evaluated. The compositional and functional characteristics of primary HBQs precursors were revealed by using Orbitrap mass spectrometry combined with molecular tagging. The NOM fraction larger than 50 kDa resulted in approximately 9 times more HBQs (50.9 ± 2.7 ng/mgC) than low molecular weight fractions. Significant correlations were found between the yields of HBQs and lignin-like and highly oxygen compounds in NOM, suggesting their critical roles in HBQs formation. Derivatizating the aldehydes, ketones, hydroxyl and carboxyl groups in NOM could reduce HBQs yields by 90.7%-100%. Unraveling the molecular characteristics of HBQs precursors in NOM would greatly benefit the prediction of HBQs yields of different source water, and develop more efficient disinfection byproduct control strategies.
Collapse
Affiliation(s)
- Jinxiu Lou
- College of Environmental and Resource Sciences and key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Huijie Lu
- College of Environmental Resource Sciences and Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, Zhejiang University, Hangzhou 310058, China
| | - Wei Wang
- College of Environmental and Resource Sciences and key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences and key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
16
|
Craven CB, Blackstock LKJ, Xie J, Li J, Yuan CG, Li XF. Analytical discovery of water disinfection byproducts of toxicological relevance: highlighting halobenzoquinones. CAN J CHEM 2021. [DOI: 10.1139/cjc-2021-0036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Analytical advancement enables discoveries in water research, and challenges in the identification and determination of a wide range of trace level toxic compounds in water drives the development of new analytical platforms and tools. The identification of toxic disinfection byproducts (DBPs) in disinfected drinking water is an excellent example. Water disinfection is necessary to protect the public from waterborne disease. However, an unintentional consequence is the formation of DBPs resulting from reactions of disinfectants with natural organic matter in source water. To date, regulated DBPs do not account for the increased bladder cancer risk estimated in epidemiological studies. The majority of halogenated DBPs remain unidentified and the discovery of unknown DBPs of toxicological relevance continues to be a major focus of current water research. This review will highlight halobenzoquinones as a class of DBPs that serves as an example of analytical development and toxicological studies. We will feature recent trends and gaps in analytical technologies for identification of unknown DBPs and bioassays for evaluation of the toxicological effects of specific DBPs and their mixtures.
Collapse
Affiliation(s)
- Caley B. Craven
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada
- Department of Chemistry, Faculty of Science, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Lindsay K. Jmaiff Blackstock
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Jiaojiao Xie
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071000, PR China
| | - Jinhua Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada
| | - Chun-Gang Yuan
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding, 071000, PR China
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2G3, Canada
| |
Collapse
|
17
|
Zhang CY, Flor S, Ruiz P, Dhakal R, Hu X, Teesch LM, Ludewig G, Lehmler HJ. 3,3'-Dichlorobiphenyl Is Metabolized to a Complex Mixture of Oxidative Metabolites, Including Novel Methoxylated Metabolites, by HepG2 Cells. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:12345-12357. [PMID: 32910851 PMCID: PMC7544623 DOI: 10.1021/acs.est.0c03476] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
3,3'-Dichlorobiphenyl (PCB 11) is a byproduct of industrial processes and detected in environmental samples. PCB 11 and its metabolites are present in human serum, and emerging evidence demonstrates that PCB 11 is a developmental neurotoxicant. However, little is known about the metabolism of PCB 11 in humans. Here, we investigated the metabolism of PCB 11 and the associated metabolomics changes in HepG2 cells using untargeted high-resolution mass spectrometry. HepG2 cells were exposed for 24 h to PCB 11 in DMSO or DMSO alone. Cell culture media were analyzed with ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry. Thirty different metabolites were formed by HepG2 cells exposed to 10 μM PCB 11, including monohydroxylated, dihydroxylated, methoxylated-hydroxylated, and methoxylated-dihydroxylated metabolites and the corresponding sulfo and glucuronide conjugates. The methoxylated PCB metabolites were observed for the first time in a human-relevant model. 4-OH-PCB 11 (3,3'-dichlorobiphenyl-4-ol) and the corresponding catechol metabolite, 4,5-di-OH-PCB 11 (3',5-dichloro-3,4-dihydroxybiphenyl), were unambiguously identified based on liquid and gas chromatographic analyses. PCB 11 also altered several metabolic pathways, in particular vitamin B6 metabolism. These results demonstrate that complex PCB 11 metabolite profiles are formed in HepG2 cells that warrant further toxicological investigation, particularly since catechol metabolites are likely reactive and toxic.
Collapse
Affiliation(s)
- Chun-Yun Zhang
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Susanne Flor
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Patricia Ruiz
- Divison of Toxicology and Human Health Sciences, Computational Toxicology and Methods Development Lab, Agency for Toxic Substances and Disease Registry, Atlanta, Georgia 30333, United States
| | - Ram Dhakal
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Xin Hu
- Department of Medicine, School of Medicine, Emory University, Atlanta, GA 30303, United States
| | - Lynn M. Teesch
- High Resolution Mass Spectrometry Facility, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Gabriele Ludewig
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
18
|
Yang Y, Zeng B, Guo J, Li Y, Yang Y, Yuan Q. Two-Dimensional Device with Light-Controlled Capability for Treatment of Cancer-Relevant Infection Diseases. Anal Chem 2020; 92:10162-10168. [PMID: 32578424 DOI: 10.1021/acs.analchem.0c02216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Concurrent infection in cancer treatment is the leading cause of high cancer mortality that requires urgent action. Currently developed diagnostic methods are hindered by the difficulty of rapidly and reliably screening small amounts of pathogens in the blood and then release pathogens for downstream analysis, limiting the advance of cancer concurrent infection diseases diagnosis and targeted treatment. Herein, we present a near-infrared (NIR) light-responsive black phosphorus (BP)-based device that effectively captures and releases pathogen for downstream drug-resistance analysis. The aptamer-modified BP nanostructures exhibit enhanced topographical interactions and binding capabilities with pathogen, enabling highly efficient and selective capture of pathogen in serum. NIR light irradiation induces BP nanostructure to generate a local thermal effect, which regulates the three-dimensional structure of the aptamer and causes efficient release of pathogen from the substrate surface. The released pathogen is resistant to ampicillin as demonstrated by downstream genetic analysis. The design of the functionalized light-controlled device for monitoring pathogen behavior shows great potential for assisting in cancer therapy and promoting personalized healthcare.
Collapse
Affiliation(s)
- Yanbing Yang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.,Key Laboratory for Micro-/Nano-Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Bo Zeng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Jing Guo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yingxue Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yujie Yang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Quan Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.,Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
19
|
Liu M, Li N, Zhang Y, Zheng Z, Zhuo Y, Sun B, Bai LP, Zhang M, Guo MQ, Wu JL. Characterization of covalent protein modification by triclosan in vivo and in vitro via three-dimensional liquid chromatography-mass spectrometry: New insight into its adverse effects. ENVIRONMENT INTERNATIONAL 2020; 136:105423. [PMID: 32035293 DOI: 10.1016/j.envint.2019.105423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/26/2019] [Accepted: 12/13/2019] [Indexed: 06/10/2023]
Abstract
Triclosan (TCS), an antimicrobial agent widely used in personal care products and ubiquitously exists in environment, has drawn increasing concern due to its potential to exert multiple adverse effects, ranging from endocrine disruption to carcinogenesis. However, the mechanism of these adverse effects is still not fully elucidated. More and more studies have shown that chemical reactive metabolites (RMs) covalently binding to proteins is a possible reason for these adverse effects, but there is still a lack of appropriate methods to predict or evaluate these adverse effects due to the extremely low abundance of the modified proteins in complex biological samples. In this study, we attempted to address this problem and investigate the possible mechanism of TCS adverse effects by a shotgun proteomics approach based on three-dimensional-liquid chromatography-mass spectrometry (3D-LC-MS). First, the in vitro incubation with model amino acids and protein in microsomes showed that TCS could react with cysteine residue of proteins through 3 types of RMs. Then, a 3D-LC-MS approach was developed to sensitively determine the low abundant modified proteins, which resulted in the identification of 45 TCS-modified proteins, including albumin, haptoglobin and NR1I2, in rats. STRING analysis indicated that these modified proteins mainly were involved in reproductive and development system, endocrine and immune system, and carcinogenesis, which were in accord with the main reported TCS-induced adverse effects and suggested that the covalent modification of TCS RMs for proteins might affect their activities and functions, thus inducing serious adverse effects. This study provided a new insight into the mechanism of TCS adverse effects and may serve as a valuable method to predict or evaluate adverse effects of ubiquitous chemicals.
Collapse
Affiliation(s)
- Meixian Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Na Li
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau.
| | - Yida Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Zhiyuan Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Yue Zhuo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Baoqing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Center for Respiratory Diseases, Guangzhou Institute of Respiratory Diseases, First Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Li-Ping Bai
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau
| | - Mingming Zhang
- Department of Gastroenterology, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Ming-Quan Guo
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jian-Lin Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau.
| |
Collapse
|
20
|
Hung S, Mohan A, Reckhow DA, Godri Pollitt KJ. Assessment of the in vitro toxicity of the disinfection byproduct 2,6-dichloro-1,4-benzoquinone and its transformed derivatives. CHEMOSPHERE 2019; 234:902-908. [PMID: 31519098 DOI: 10.1016/j.chemosphere.2019.06.086] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 06/10/2023]
Abstract
An emerging class of unregulated disinfection byproducts, halobenzoquinones (HBQs), has gained recent interest following suggestions of enhanced toxicity compared to regulated disinfection byproducts. While the kinetics of HBQ hydrolysis in water have been well characterized, the stability of HBQs in cell culture media, a critical parameter when evaluating toxicity in vitro, has been overlooked. The objective of this study was: (1) to contrast the stability of a prevalent HBQ, 2,6-dichloro-1,4-benzoquinone (DCBQ), in cell culture media and water, and (2) to evaluate the cytotoxicity of parent and transformed DCBQ compounds as well as the ability of these compounds to generate intracellular reactive oxygen species (ROS) in normal human colon cells (CCD 841 CoN) and human liver cancer cells (HepG2). The half-life of DCBQ in cell media was found to be less than 40 min, compared to 7.2 h in water at pH 7. DCBQ induced a concentration-dependent decrease in cell viability and increase in ROS production in both cell lines. The parent DCBQ compound was found to induce significantly greater cytotoxicity compared to transformed DCBQ products. We demonstrate that the study design used by most published studies (i.e., extended exposure periods) has led to a potential underestimation of the cytotoxicity of HBQs by evaluating the toxicological profile primarily of transformed HBQs, rather than corresponding parent compounds. Future in vitro toxicological studies should account for HBQ stability in media to evaluate the acute cytotoxicity of parent HBQs.
Collapse
Affiliation(s)
- Stephanie Hung
- Environmental Health Sciences, School of Public Health and Health Sciences, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Aarthi Mohan
- Civil and Environmental Engineering, College of Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - David A Reckhow
- Civil and Environmental Engineering, College of Engineering, University of Massachusetts Amherst, Amherst, MA, 01003, USA
| | - Krystal J Godri Pollitt
- Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, 06510, USA.
| |
Collapse
|
21
|
Lou J, Wang W, Zhu L. Occurrence, Formation, and Oxidative Stress of Emerging Disinfection Byproducts, Halobenzoquinones, in Tea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11860-11868. [PMID: 31509700 DOI: 10.1021/acs.est.9b03163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Halobenzoquinones (HBQs) are frequently detected disinfection byproducts (DBPs) in drinking water with high toxicity and relevance to public health. In this study, we characterized the occurrence, formation, and oxidative stress of the HBQs in tea. 2,6-DCBQ and TetraC-1,2-BQ were identified in all prepared teas at total concentrations of 1.3-2.0 ng/L. 2,6-DCBQ originated from drinking water DBPs, while TetraC-1,2-BQ originated from tea leaves or were generated during tea polyphenol chlorination. HBQs in tea induced the formation of reactive oxygen species and semiquinone radicals, and the oxidative stress could be depleted by tea polyphenols, e.g., (-)-epigallocatechin gallate (EGCG). High-resolution mass spectrometry analysis indicated that the HBQs combined with EGCG and formed adducts at a ratio of 1:1 or 2:1 with the binding sites on the A ring and B ring of EGCG. The viability of HepG2 cells exposed to 50 μM 2,6-DCBQ was increased from 20.0% to 65.2% when 50 μM of EGCG was added. These results demonstrated that various HBQs can occur in tea due to the HBQ DBPs in drinking water, the leachate from tea leaves, and the chlorination of tea polyphenols; furthermore, the oxidative stress and cellular toxicity induced by HBQs in tea could be decreased by tea polyphenols. This is the first study to report HBQs in tea, elucidate the sources of HBQs, and assess relevant health risks.
Collapse
Affiliation(s)
- Jinxiu Lou
- Department of Environmental Science , Zhejiang University , Hangzhou 310058 , China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control , Hangzhou 310058 , China
| | - Wei Wang
- Department of Environmental Science , Zhejiang University , Hangzhou 310058 , China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control , Hangzhou 310058 , China
| | - Lizhong Zhu
- Department of Environmental Science , Zhejiang University , Hangzhou 310058 , China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control , Hangzhou 310058 , China
| |
Collapse
|
22
|
Wang C, Yang X, Zheng Q, Moe B, Li XF. Halobenzoquinone-Induced Developmental Toxicity, Oxidative Stress, and Apoptosis in Zebrafish Embryos. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10590-10598. [PMID: 30125093 DOI: 10.1021/acs.est.8b02831] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The developmental toxicity of water disinfection byproducts remains unclear. Here we report the study of halobenzoquinone (HBQ)-induced in vivo developmental toxicity and oxidative stress using zebrafish embryos as a model. Embryos were exposed to 0.5-10 μM of individual HBQs and 0.5-5 mM haloacetic acids for up to 120 h postfertilization (hpf). LC50 values of the HBQs at 24 hpf were 4.6-9.8 μM, while those of three haloacetic acids were up to 200 times higher at 1900-2600 μM. HBQ exposure resulted in significant developmental malformations in larvae, including failed inflation of the gas bladder, heart malformations, and curved spines. An increase in reactive oxygen species was observed, together with a decrease in superoxide dismutase activity and glutathione content. Additionally, the antioxidant N-acetyl-l-cysteine significantly mitigated all HBQ-induced effects, supporting that oxidative stress contributes to HBQ toxicity. Further experiments examined HBQ-induced effects on DNA and genes. HBQ exposure increased 8-hydroxydeoxyguanosine levels, DNA fragmentation, and apoptosis in larvae, with apoptosis induction related to changes in the gene expression of p53 and mdm2. These results suggest that HBQs are acutely toxic, causing oxidative damage and developmental toxicity to zebrafish larvae.
Collapse
Affiliation(s)
- Chang Wang
- Institute of Environment and Health , Jianghan University , Wuhan 430056 , China
| | - Xue Yang
- Institute of Environment and Health , Jianghan University , Wuhan 430056 , China
- School of Environmental Ecology and Biological Engineering , Wuhan Institute of Technology , Wuhan 430025 , China
| | - Qi Zheng
- Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Institute of Environment and Health , Jianghan University , Wuhan 430056 , China
| | - Birget Moe
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada T6G 2G3
- Alberta Centre for Toxicology, Department of Physiology and Pharmacology, Faculty of Medicine , University of Calgary , Calgary , Alberta , Canada T2N 4N1
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada T6G 2G3
| |
Collapse
|
23
|
Li J, Moe B, Liu Y, Li XF. Halobenzoquinone-Induced Alteration of Gene Expression Associated with Oxidative Stress Signaling Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6576-6584. [PMID: 29737854 DOI: 10.1021/acs.est.7b06428] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Halobenzoquinones (HBQs) are emerging disinfection byproducts (DBPs) that effectively induce reactive oxygen species and oxidative damage in vitro. However, the impacts of HBQs on oxidative-stress-related gene expression have not been investigated. In this study, we examined alterations in the expression of 44 genes related to oxidative-stress-induced signaling pathways in human uroepithelial cells (SV-HUC-1) upon exposure to six HBQs. The results show the structure-dependent effects of HBQs on the studied gene expression. After 2 h of exposure, the expression levels of 9 to 28 genes were altered, while after 8 h of exposure, the expression levels of 29 to 31 genes were altered. Four genes ( HMOX1, NQO1, PTGS2, and TXNRD1) were significantly upregulated by all six HBQs at both exposure time points. Ingenuity pathway analysis revealed that the Nrf2 pathway was significantly responsive to HBQ exposure. Other canonical pathways responsive to HBQ exposure included GSH redox reductions, superoxide radical degradation, and xenobiotic metabolism signaling. This study has demonstrated that HBQs significantly alter the gene expression of oxidative-stress-related signaling pathways and contributes to the understanding of HBQ-DBP-associated toxicity.
Collapse
Affiliation(s)
- Jinhua Li
- Department of Health Toxicology, School of Public Health , Jilin University , Changchun , Jilin , China 130021
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada T6G 2G3
| | - Birget Moe
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada T6G 2G3
- Alberta Centre for Toxicology, Department of Physiology and Pharmacology, Faculty of Medicine , University of Calgary , Calgary , Alberta , Canada T2N 4N1
| | - Yanming Liu
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada T6G 2G3
| | - Xing-Fang Li
- Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry , University of Alberta , Edmonton , Alberta , Canada T6G 2G3
| |
Collapse
|