1
|
Lian JZ, Borrion A, Fisher RP, Yaman R, Linden KG, Campos LC, Cucurachi S. A comparative life cycle analysis of Sol-Char and anaerobic digestion sanitation systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 964:178622. [PMID: 39864246 DOI: 10.1016/j.scitotenv.2025.178622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 01/28/2025]
Abstract
In this study, we compared the Sol-Char sanitation system with an Anaerobic Digestion (AD) system using Life Cycle Assessment (LCA) to evaluate their environmental impacts. Since both systems offer opportunities for human waste treatment and resource recovery, understanding their performance is crucial. This comparison aims to determine their environmental impacts while considering diverse factors, such as energy production and nutrient recovery. The Sol-Char system demonstrated a superior life-cycle environmental performance, showing two to five times lower impacts in categories such as Climate Change (e.g., 127 kg CO₂-eq for the Sol-Char system while that 592 kg CO₂-eq for the AD system), Non-Renewable Energy Resources, Ionizing Radiation, Land Use, and Water Use. Both systems exhibited significant potential for resource recovery, with the Sol-Char system producing biochar and disinfected urine, and the AD system generating electricity, heat, and digestate. Updated LCA results, after byproduct application, indicated that both systems potentially have a net positive environmental impact (both with reductions exceeding -500 kg CO₂-eq per day). Nutrient recovery simulations using SAmpSONS2 revealed that the AD system performed better when utilizing multiple biomass sources. The nitrogen content in the solids was 20.25 kg/day after AD and 3.75 kg/day for the Sol-Char system. Our results highlight the Sol-Char system is a viable sanitation solution in rural areas. However, the study also identified key challenges, including the absence of uncertainty analysis and the need for a standardized framework that enables more consistent evaluations and comparisons across diverse sanitation systems and contexts.
Collapse
Affiliation(s)
- Justin Z Lian
- Leiden University, Institute of Environmental Science - Industrial Ecology, Van Steenisgebouw, Einsteinweg 2, 2333 CC Leiden, the Netherlands
| | - Aiduan Borrion
- University College London, Civil Environmental & Geomatic Engineering, Chadwick Building Room GM11, Gower Street, London WC1E 6BT, United Kingdom
| | - Richard P Fisher
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, CO 80303, United States
| | - Rokiah Yaman
- LEAP Micro AD Ltd, 193 Downham Way, London BR1 5EL, United Kingdom
| | - Karl G Linden
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, 4001 Discovery Drive, Boulder, CO 80303, United States
| | - Luiza C Campos
- University College London, Civil Environmental & Geomatic Engineering, Chadwick Building Room GM11, Gower Street, London WC1E 6BT, United Kingdom.
| | - Stefano Cucurachi
- Leiden University, Institute of Environmental Science - Industrial Ecology, Van Steenisgebouw, Einsteinweg 2, 2333 CC Leiden, the Netherlands.
| |
Collapse
|
2
|
Awasthi MK, Amobonye A, Bhagwat P, Ashokkumar V, Gowd SC, Dregulo AM, Rajendran K, Flora G, Kumar V, Pillai S, Zhang Z, Sindhu R, Taherzadeh MJ. Biochemical engineering for elemental sulfur from flue gases through multi-enzymatic based approaches - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169857. [PMID: 38190912 DOI: 10.1016/j.scitotenv.2023.169857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/10/2024]
Abstract
Flue gases are the gases which are produced from industries related to chemical manufacturing, petrol refineries, power plants and ore processing plants. Along with other pollutants, sulfur present in the flue gas is detrimental to the environment. Therefore, environmentalists are concerned about its removal and recovery of resources from flue gases due to its activation ability in the atmosphere to transform into toxic substances. This review is aimed at a critical assessment of the techniques developed for resource recovery from flue gases. The manuscript discusses various bioreactors used in resource recovery such as hollow fibre membrane reactor, rotating biological contractor, sequential batch reactor, fluidized bed reactor, entrapped cell bioreactor and hybrid reactors. In conclusion, this manuscript provides a comprehensive analysis of the potential of thermotolerant and thermophilic microbes in sulfur removal. Additionally, it evaluates the efficacy of a multi-enzyme engineered bioreactor in this process. Furthermore, the study introduces a groundbreaking sustainable model for elemental sulfur recovery, offering promising prospects for environmentally-friendly and economically viable sulfur removal techniques in various industrial applications.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| | - Ayodeji Amobonye
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P O Box 1334, Durban 4000, South Africa
| | - Prashant Bhagwat
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P O Box 1334, Durban 4000, South Africa
| | - Veeramuthu Ashokkumar
- Center for Waste Management and Renewable Energy, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Sarath C Gowd
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University, Andhra Pradesh, India
| | - Andrei Mikhailovich Dregulo
- National Research University "Higher School of Economics", 17 Promyshlennaya str, 198095, Saint-Petersburg, Russia
| | - Karthik Rajendran
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University, Andhra Pradesh, India
| | - G Flora
- Department of Botany, St. Mary's College (Autonomous), Tamil Nadu, India
| | - Vinay Kumar
- Bioconversion and Tissue Engineering (BITE) Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam-602105, India
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P O Box 1334, Durban 4000, South Africa
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | | |
Collapse
|
3
|
Zeng J, Xu S, Lin K, Yao S, Yang B, Peng Z, Hao T, Yu X, Zhu T, Jiang F, Sun J. Long-term stable and efficient degradation of ornidazole with minimized by-product formation by a biological sulfidogenic process based on elemental sulfur. WATER RESEARCH 2024; 249:120940. [PMID: 38071904 DOI: 10.1016/j.watres.2023.120940] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Conventional biological treatment processes cannot efficiently and completely degrade nitroimidazole antibiotics, due to the formation of highly antibacterial and carcinogenic nitroreduction by-products. This study investigated the removal of a typical nitroimidazole antibiotic (ornidazole) during wastewater treatment by a biological sulfidogenic process based on elemental sulfur (S0-BSP). Efficient and stable ornidazole degradation and organic carbon mineralization were simultaneously achieved by the S0-BSP in a 798-day bench-scale trial. Over 99.8 % of ornidazole (200‒500 μg/L) was removed with the removal rates of up to 0.59 g/(m3·d). Meanwhile, the efficiencies of organic carbon mineralization and sulfide production were hardly impacted by the dosed ornidazole, and their rates were maintained at 0.15 kg C/(m3·d) and 0.49 kg S/(m3·d), respectively. The genera associated with ornidazole degradation were identified (e.g., Sedimentibacter, Trichococcus, and Longilinea), and their abundances increased significantly. Microbial degradation of ornidazole proceeded by several functional genes, such as dehalogenases, cysteine synthase, and dioxygenases, mainly through dechlorination, denitration, N-heterocyclic ring cleavage, and oxidation. More importantly, the nucleophilic substitution of nitro group mediated by in-situ formed reducing sulfur species (e.g., sulfide, polysulfides, and cysteine hydropolysulfides), instead of nitroreduction, enhanced the complete ornidazole degradation and minimized the formation of carcinogenic and antibacterial nitroreduction by-products. The findings suggest that S0-BSP can be a promising approach to treat wastewater containing multiple contaminants, such as emerging organic pollutants, organic carbon, nitrate, and heavy metals.
Collapse
Affiliation(s)
- Jiajia Zeng
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China; State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Key Laboratory of Emerging Contaminants Detection and Control in Water Environment, Shenzhen Academy of Environmental Sciences, Shenzhen 518001, China
| | - Shuqun Xu
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Keyue Lin
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Si Yao
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Bin Yang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Zhanhui Peng
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Xiaoyu Yu
- Guangdong Polytechnic of Environmental Protection Engineering, Foshan 528216, China
| | - Tingting Zhu
- State Environmental Protection Key Laboratory of Drinking Water Source Management and Technology, Shenzhen Key Laboratory of Emerging Contaminants Detection and Control in Water Environment, Shenzhen Academy of Environmental Sciences, Shenzhen 518001, China
| | - Feng Jiang
- School of Environmental Science & Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Jianliang Sun
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Ai C, Wang S, Sun P, Zhao S, Mu X. Analysis of the Formation Mechanism of Hydrogen Sulfide in the 13# Coal Seam of Shaping Coal Mine. ACS OMEGA 2024; 9:2980-2987. [PMID: 38250412 PMCID: PMC10795043 DOI: 10.1021/acsomega.3c09057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/05/2023] [Accepted: 12/21/2023] [Indexed: 01/23/2024]
Abstract
In order to accurately predict the law of occurrence and migration of hydrogen sulfide (H2S) in the underground and effectively solve the problem of excessive concentration of H2S gas, laboratory experiments on the content of various forms of sulfur in coal, sulfur isotopes, thermal evolution history, and coal seam water samples were carried out by applying the theories of coal mine geology, microbiology, and analytical chemistry, and based on the experimental results, the cause of H2S gas was explored. Through the analysis of the geological conditions of the coal seam mined, it can be seen that the coal mine experienced the alternation of marine and continental phases in the process of coal formation and that there was no magma intrusion. The experimental results showed that iron sulfide in coal accounts for 73.25% of the total sulfur, indicating that the coal seam was rich in pyrite. The results of the isotope test showed that the sulfur isotopes in coal samples were all negative, indicating that the sulfur isotope fractionation in coal was large, the loss was serious, and the coal seam was greatly affected by seawater. According to the experimental results of vitrinite reflectance, it can be concluded that the highest temperature during the thermal evolution of the coal seam is 108.12 °C, which has not reached the temperature condition of sulfate thermochemical reduction. Comparing the concentration of acid ions in coal seam water and tap water, it was found that the concentration of SO42- in coal seam water is low, while the concentration of HCO3- is high. According to the experimental results and theoretical analysis, the H2S gas in the high-sulfur coal mine was caused by microbial sulfate reduction. Finally, the transformation path of sulfur in the coal seam was deduced and analyzed. The results showed that sulfur in coal is positively correlated with H2S gas concentration.
Collapse
Affiliation(s)
- Chunming Ai
- College
of Safety Science and Engineering, Liaoning
Technical University, Huludao 125000, China
- Key
Laboratory of Thermal Disaster and Prevention, Ministry of Education, Huludao 125000, China
| | - Siqi Wang
- College
of Safety Science and Engineering, Liaoning
Technical University, Huludao 125000, China
- Key
Laboratory of Thermal Disaster and Prevention, Ministry of Education, Huludao 125000, China
| | - Pingping Sun
- College
of Safety Science and Engineering, Liaoning
Technical University, Huludao 125000, China
- Key
Laboratory of Thermal Disaster and Prevention, Ministry of Education, Huludao 125000, China
| | - Shuyu Zhao
- Shanxi
Jinshen Shaping Coal Industry Co., Ltd., Xinzhou 036500, Shanxi, China
| | - Xiaozhi Mu
- Shanxi
Jinshen Shaping Coal Industry Co., Ltd., Xinzhou 036500, Shanxi, China
| |
Collapse
|
5
|
Wang T, Li X, Wang H, Xue G, Zhou M, Ran X, Wang Y. Sulfur autotrophic denitrification as an efficient nitrogen removals method for wastewater treatment towards lower organic requirement: A review. WATER RESEARCH 2023; 245:120569. [PMID: 37683522 DOI: 10.1016/j.watres.2023.120569] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
The sulfur autotrophic denitrification (SADN) process is an organic-free denitrification process that utilizes reduced inorganic sulfur compounds (RISCs) as the electron donor for nitrate reduction. It has been proven to be a cost-effective and environment-friendly approach to achieving carbon neutrality in wastewater treatment plants. However, there is no consensus on whether SADN can become a dominant denitrification process to treat domestic wastewater or industrial wastewater if organic carbon is desired to be saved. Through a comprehensive summary of the SADN process and extensive discussion of state-of-the-art SADN-based technologies, this review provides a systematic overview of the potential of the SADN process as a sustainable alternative for the heterotrophic denitrification (HD) process (organic carbons as electron donor). First, we introduce the mechanism of the SADN process that is different from the HD process, including its transformation pathways based on different RISCs as well as functional bacteria and key enzymes. The SADN process has unique theoretical advantages (e.g., economy and carbon-free, less greenhouse gas emissions, and a great potential for coupling with novel autotrophic processes), even if there are still some potential issues (e.g., S intermediates undesired production, and relatively slow growth rate of sulfur-oxidizing bacteria [SOB]) for wastewater treatment. Then we present the current representative SADN-based technologies, and propose the outlooks for future research in regards to SADN process, including implement of coupling of SADN with other nitrogen removal processes (e.g., HD, and sulfate-dependent anaerobic ammonium oxidation), and formation of SOB-enriched biofilm. This review will provide guidance for the future applications of the SADN process to ensure a robust-performance and chemical-saving denitrification for wastewater treatment.
Collapse
Affiliation(s)
- Tong Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Xiang Li
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, China
| | - Han Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| | - Gang Xue
- College of Environmental Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai 201620, China
| | - Mingda Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Xiaochuan Ran
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| |
Collapse
|
6
|
Fan K, Wang W, Xu X, Yuan Y, Ren N, Lee DJ, Chen C. Recent Advances in Biotechnologies for the Treatment of Environmental Pollutants Based on Reactive Sulfur Species. Antioxidants (Basel) 2023; 12:antiox12030767. [PMID: 36979016 PMCID: PMC10044940 DOI: 10.3390/antiox12030767] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The definition of reactive sulfur species (RSS) is inspired by the reactivity and variable chemical valence of sulfur. Sulfur is an essential element for life and is a part of global geochemical cycles. Wastewater treatment bioreactors can be divided into two major categories: sulfur reduction and sulfur oxidation. We review the origins of the definition of RSS and related biotechnological processes in environmental management. Sulfate reduction, sulfide oxidation, and sulfur-based redox reactions are key to driving the coupled global carbon, nitrogen, and sulfur co-cycles. This shows the coupling of the sulfur cycle with the carbon and nitrogen cycles and provides insights into the global material-chemical cycle. We also review the biological classification and RSS metabolic mechanisms of functional microorganisms involved in the biological processes, such as sulfate-reducing and sulfur-oxidizing bacteria. Developments in molecular biology and genomic technologies have allowed us to obtain detailed information on these bacteria. The importance of RSS in environmental technologies requires further consideration.
Collapse
Affiliation(s)
- Kaili Fan
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Yuan Yuan
- College of Biological Engineering, Beijing Polytechnic, Beijing 100176, China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
7
|
Bhattacharya A, Kumar Nath A, Ghatak A, Nayek A, Dinda S, Saha R, Ghosh Dey S, Dey A. Reduction of Sulfur Dioxide to Sulfur Monoxide by Ferrous Porphyrin. Angew Chem Int Ed Engl 2023; 62:e202215235. [PMID: 36588338 DOI: 10.1002/anie.202215235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
The reduction of SO2 to fixed forms of sulfur can address the growing concerns regarding its detrimental effect on health and the environment as well as enable its valorization into valuable chemicals. The naturally occurring heme enzyme sulfite reductase (SiR) is known to reduce SO2 to H2 S and is an integral part of the global sulfur cycle. However, its action has not yet been mimicked in artificial systems outside of the protein matrix even after several decades of structural elucidation of the enzyme. While the coordination of SO2 to transition metals is documented, its reduction using molecular catalysts has remained elusive. Herein reduction of SO2 by iron(II) tetraphenylporphyrin is demonstrated. A combination of spectroscopic data backed up by theoretical calculations indicate that FeII TPP reduces SO2 by 2e- /2H+ to form an intermediate [FeIII -SO]+ species, also proposed for SiR, which releases SO. The SO obtained from the chemical reduction of SO2 could be evidenced in the form of a cheletropic adduct of butadiene resulting in an organic sulfoxide.
Collapse
Affiliation(s)
- Aishik Bhattacharya
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S.C. Mullick Road, Kolkata, WB 700032, India
| | - Arnab Kumar Nath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S.C. Mullick Road, Kolkata, WB 700032, India
| | - Arnab Ghatak
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S.C. Mullick Road, Kolkata, WB 700032, India
| | - Abhijit Nayek
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S.C. Mullick Road, Kolkata, WB 700032, India
| | - Souvik Dinda
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S.C. Mullick Road, Kolkata, WB 700032, India
| | - Rajat Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S.C. Mullick Road, Kolkata, WB 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S.C. Mullick Road, Kolkata, WB 700032, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S.C. Mullick Road, Kolkata, WB 700032, India
| |
Collapse
|
8
|
Guimerà X, Mora M, Dorado AD, Bonsfills A, Gabriel D, Gamisans X. Optimization of SO2 and NOx sequential wet absorption in a two-stage bioscrubber for elemental sulphur valorisation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24605-24617. [PMID: 32601860 DOI: 10.1007/s11356-020-09607-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
Flue gases contain SO2 and NOx that can be treated together for elemental sulphur recovery in bioscrubbers, a technology that couples physical-chemical and biological processes for gaseous emissions treatment in a more economic manner than classical absorption. Sequential wet absorption of SO2 and NOx from flue gas is thoroughly studied in this work in a two-stage bioscrubber towards elemental sulphur valorisation pursuing reuse of biological process effluents as absorbents. The optimal operating conditions required for SO2 and NOx absorption in two consecutive spray absorbers were defined using NaOH-based absorbents. Overall, removal efficiencies of 98.9% and 55.9% for SO2 and NOx abatement were obtained in two in-series scrubbers operated under a gas contact time of 1 and 100 s, and a liquid-to-gas ratio of 7.5 and 15 L m-3, respectively. Higher NOx removal efficiency to clean gas emission was obtained by oxidants dosing in the absorber for NOx absorption. High NaHCO3 concentration in a two-stage bioscrubber effluent was exploited as alkaline absorbent for flue gas treatment. The performance of scrubbers using an absorbent mimicking a reused effluent exhibited the same removal efficiencies than those observed using NaOH solutions. In addition, the reuse of bioprocess effluent reduced reagents' consumption by a 63.7%. Thus, the two-stage bioscrubber proposed herein offers an environmentally friendly and economic alternative for flue gas treatment.
Collapse
Affiliation(s)
- Xavier Guimerà
- Department of Mining Industrial and ICT Engineering, Universitat Politècnica de Catalunya, Avinguda de les Bases de Manresa 61-73, 08240, Manresa, Spain.
| | - Mabel Mora
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Edifici Q., 08193, Barcelona, Bellaterra, Spain
| | - Antonio David Dorado
- Department of Mining Industrial and ICT Engineering, Universitat Politècnica de Catalunya, Avinguda de les Bases de Manresa 61-73, 08240, Manresa, Spain
| | - Anna Bonsfills
- Department of Mining Industrial and ICT Engineering, Universitat Politècnica de Catalunya, Avinguda de les Bases de Manresa 61-73, 08240, Manresa, Spain
| | - David Gabriel
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Edifici Q., 08193, Barcelona, Bellaterra, Spain
| | - Xavier Gamisans
- Department of Mining Industrial and ICT Engineering, Universitat Politècnica de Catalunya, Avinguda de les Bases de Manresa 61-73, 08240, Manresa, Spain
| |
Collapse
|
9
|
Genesis, controls and risk prediction of H 2S in coal mine gas. Sci Rep 2021; 11:5712. [PMID: 33707648 PMCID: PMC7970972 DOI: 10.1038/s41598-021-85263-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/28/2021] [Indexed: 11/20/2022] Open
Abstract
Abnormal H2S concentration in coal mine gas is a serious threat to normal mining activities, which has caused serious loss of life and property in many coal mines. This study explores the genesis and influencing factors of abnormal H2S concentration in coal mine gas, taking the Xishan coal mine in the Fukang mining area as a case study. The H2S formation by bacterial sulfate reduction (BSR) is simulated with a bacterial culture experiment and that by thermochemical sulfate reduction (TSR) is simulated with a thermal reduction experiment. The potential for a magmatic genesis is assessed using data regarding the tectonic evolution and history of magma intrusion in the study area. The factors influencing H2S formation and enrichment are then analyzed by a comprehensive consideration of the characteristics of coal, the gas composition, the coal seam groundwater geochemistry and other geological factors in the study area. The results show that the study area meets the necessary conditions for the BSR process to operate and that there is widespread BSR derived H2S. TSR genesis H2S mainly forms in coal fire areas and their vicinity, while there is little contribution from magmatically formed H2S. The concentration of H2S is negatively correlated with the buried depth of the coal seam, the concentrations of CH4, N2 and CO2, and the ash yield; and it is positively correlated with the volatiles yield and total sulfur content. In addition, in areas with abnormally high H2S concentration, the concentration of SO42− is obviously lower, HCO3− + CO32− concentration is higher, and the HCO3−/SO42− value is larger than that in non-anomalous areas. Geologically, H2S enrichment is found to be controlled by lithology, tectonism, and hydrogeological conditions. Moreover, the results of predictive modeling show that areas prone to abnormal H2S concentration are generally spatially correlated with coal fire areas. In this study, the genetic types of H2S and the factors controlling their formation and retention are discussed, producing research results that have guiding significance for the prediction and prevention of the coal mine disasters that arises from abnormal H2S concentration.
Collapse
|
10
|
Mei X, Bai J, Chen S, Zhou M, Jiang P, Zhou C, Fang F, Zhang Y, Li J, Long M, Zhou B. Efficient SO 2 Removal and Highly Synergistic H 2O 2 Production Based on a Novel Dual-Function Photoelectrocatalytic System. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11515-11525. [PMID: 32786587 DOI: 10.1021/acs.est.0c00886] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The direct conversion of SO2 to SO3 is rather difficult for flue gas desulfurization due to its inert dynamic with high reaction activation energy, and the absorption by wet limestone-gypsum also needs the forced oxidation of O2 to oxidize sulfite to sulfate, which is necessary for additional aeration. Here, we propose a method to remove SO2 with highly synergistic H2O2 production based on a novel dual-function photoelectrocatalytic (PEC) system in which the jointed spontaneous reaction of desulfurization and H2O2 production was integrated instead of nonspontaneous reaction of O2 to H2O2. SO2 was absorbed by alkali liquor then oxidized quickly into SO42- by a nanorod α-Fe2O3 photoanode, which possessed high alkali corrosion resistance and electron transport properties. H2O2 was produced simultaneously in the cathode chamber on a gas diffusion electrode and was remarkably boosted by the conversion reaction of SO32- to SO42- in the anode chamber in which the released chemical energy was effectively used to increase H2O2. The photocurrent density increased by 40% up to 1.2 mA·cm-2, and the H2O2 evolution rate achieved 58.8 μmol·L-1·h-1·cm-2 with the synergistic treatment of SO2, which is about five times than that without SO2. This proposed PEC cell system offers a cost-effective and environmental-benign approach for dual purpose of flue gas desulfurization and simultaneous high-valued H2O2 production.
Collapse
Affiliation(s)
- Xiaojie Mei
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai 200240, PR China
| | - Jing Bai
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai 200240, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | - Shuai Chen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai 200240, PR China
| | - Mengyang Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai 200240, PR China
| | - Panyu Jiang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai 200240, PR China
| | - Changhui Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai 200240, PR China
| | - Fei Fang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai 200240, PR China
| | - Yan Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai 200240, PR China
| | - Jinhua Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai 200240, PR China
| | - Mingce Long
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai 200240, PR China
| | - Baoxue Zhou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Rd, Shanghai 200240, PR China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
- Key Laboratory of Thin Film and Microfabrication Technology, Ministry of Education, Shanghai 200240, PR China
| |
Collapse
|
11
|
Mora M, Fernández-Palacios E, Guimerà X, Lafuente J, Gamisans X, Gabriel D. Feasibility of S-rich streams valorization through a two-step biosulfur production process. CHEMOSPHERE 2020; 253:126734. [PMID: 32302909 DOI: 10.1016/j.chemosphere.2020.126734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/19/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
A bioscrubbing process named SONOVA has been developed, tested and assessed herein to valorize flue gases containing SOx. The process consists in a first scrubbing stage, to absorb and oxidize SO2 to sulfate, followed by a two-step biological stage. It consists of (1) an up-flow anaerobic sludge (UASB) reactor to reduce sulfate to sulfide with crude glycerol and (2) a continuous stirred tank reactor (CSTR) to partially oxidize sulfide to elemental sulfur (S0). SONOVA integrates the reutilization of resources, using the effluent of the biological stage as a sorbent agent and the residual heat of flue gases to dry the product. S0 is then obtained as a value-added product, which nowadays is produced from fossil fuels. In this research, SO2 concentrations up to 4000 ppmv were absorbed in 2 s of gas contact time in the spray-scrubber with removal efficiencies above 80%. The UASB reduced up to 9.3 kg S-Sulfate m-3 d-1 with sulfide productivities of 6 kg S m-3 d-1 at an hydraulic retention time (HRT) as low as 2 h. Finally, CSTR was fed with the UASB effluent and operated at HRT ranging from 12 h to 4 h without biomass wash-out. Sulfide was fully oxidized to S0 with a productivity of 2.3 kg S m-3 d-1 at the lowest HRT tested. Overall, this research has explored not only maximum capabilities of each SONOVA stage but has also assessed the interactions between the different units, which opens up the possibility of recovering S0 from harmful SOx emissions, optimizing resources utilization and costs.
Collapse
Affiliation(s)
- M Mora
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain.
| | - E Fernández-Palacios
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - X Guimerà
- Department of Mining Industrial and ICT Engineering, Universitat Politècnica de Catalunya, Avinguda de les Bases de Manresa 61-73, 08240, Manresa, Spain
| | - J Lafuente
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - X Gamisans
- Department of Mining Industrial and ICT Engineering, Universitat Politècnica de Catalunya, Avinguda de les Bases de Manresa 61-73, 08240, Manresa, Spain
| | - D Gabriel
- GENOCOV Research Group, Department of Chemical, Biological and Environmental Engineering, Escola d'enginyeria, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| |
Collapse
|
12
|
Yu X, Sun J, Li G, Huang Y, Li Y, Xia D, Jiang F. Integration of •SO 4--based AOP mediated by reusable iron particles and a sulfidogenic process to degrade and detoxify Orange II. WATER RESEARCH 2020; 174:115622. [PMID: 32145554 DOI: 10.1016/j.watres.2020.115622] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 12/26/2019] [Accepted: 02/12/2020] [Indexed: 06/10/2023]
Abstract
The sulfate radical (•SO4-)-based advanced oxidation processes (AOPs) for the degradation of refractory organic pollutants consume a large amount of persulfate activators and often generate toxic organic by-products. In this study, we proposed a novel iron-cycling process integrating •SO4--based AOP mediated by reusable iron particles and a sulfidogenic process to degrade and detoxify Orange II completely. The rusted waste iron particles (Fe0@FexOy), which contained FeII/FeIII oxides (FexOy) on the shell and zero-valent iron (Fe0) in the core, efficiently activated persulfate to produce •SO4- and hydroxyl radicals (•OH) to degrade over 95% of Orange II within 120 min. Both •SO4- and •OH destructed Orange II through a sequence of electron transfer, electrophilic addition and hydrogen abstraction reactions to generate several organic by-products (e.g., aromatic amines and phenol), which were more toxic than the untreated Orange II. The AOP-generated organic by-products were further mineralized and detoxified in a sulfidogenic bioreactor with sewage treatment together. In a 170-d trial, the organic carbon removal efficiency was up to 90%. The inhibition of the bioreactor effluents on the growth of Chlorella pyrenoidosa became negligible, due to the complete degradation and mineralization of toxic AOP-generated by-products by aromatic-degrading bacteria (e.g., Clostridium and Dechloromonas) and other bacteria. The sulfidogenic process also well recovered the used Fe0@FexOy particles through the reduction of surface FeIII back into FeII by hydrogen sulfide formed and iron-reducing bacteria (e.g., Sulfurospirillum and Paracoccus). The regenerated Fe0@FexOy particles had more reactive surface FeII sites and exhibited much better reactivity in activating persulfate in at least 20 reuse cycles. The findings demonstrate that the integrated process is a promising solution to the remediation of toxic and refractory organic pollutants because it reduces the chemical cost of persulfate activation and also completely detoxifies the toxic by-products.
Collapse
Affiliation(s)
- Xiaoyu Yu
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China; Department of Environmental Engineering, Guangdong Polytechnic of Environmental Protection Engineering, Foshan, 528216, China
| | - Jianliang Sun
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Guibiao Li
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yi Huang
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Yu Li
- Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China
| | - Dehua Xia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Feng Jiang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
13
|
Lü X, Li H, Du X, Wang X, Lan M, Wu J, Zhu J, Sun J, Jiang F. Simultaneous catalytic reduction of SO 2 and NO from flue gas using H 2S as a reductant at low temperatures. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00347a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-efficiency simultaneous removal of NO and SO2 in flue gas can be realized by catalytic reduction with H2S on CeO2–AT catalyst in the low temperature range of 240 to 280 °C.
Collapse
Affiliation(s)
- Xianghong Lü
- MOE Key Laboratory of Theoretical Chemistry of Environment
- School of Environment
- South China Normal University
- Guangzhou
- China
| | - Hao Li
- MOE Key Laboratory of Theoretical Chemistry of Environment
- School of Environment
- South China Normal University
- Guangzhou
- China
| | - Xiaohui Du
- MOE Key Laboratory of Theoretical Chemistry of Environment
- School of Environment
- South China Normal University
- Guangzhou
- China
| | - Xue Wang
- MOE Key Laboratory of Theoretical Chemistry of Environment
- School of Environment
- South China Normal University
- Guangzhou
- China
| | - Minyi Lan
- MOE Key Laboratory of Theoretical Chemistry of Environment
- School of Environment
- South China Normal University
- Guangzhou
- China
| | - Jianlin Wu
- MOE Key Laboratory of Theoretical Chemistry of Environment
- School of Environment
- South China Normal University
- Guangzhou
- China
| | - Jin Zhu
- MOE Key Laboratory of Theoretical Chemistry of Environment
- School of Environment
- South China Normal University
- Guangzhou
- China
| | - Jianliang Sun
- MOE Key Laboratory of Theoretical Chemistry of Environment
- School of Environment
- South China Normal University
- Guangzhou
- China
| | - Feng Jiang
- School of Environmental Science & Engineering
- Sun Yat-sen University
- Guangzhou
- China
| |
Collapse
|
14
|
Song W, Zhou J, Wang B, Li S, Cheng R. Production of SO2 Gas: New and Efficient Utilization of Flue Gas Desulfurization Gypsum and Pyrite Resources. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04403] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Wang J, Hong Y, Lin Z, Zhu C, Da J, Chen G, Jiang F. A novel biological sulfur reduction process for mercury-contaminated wastewater treatment. WATER RESEARCH 2019; 160:288-295. [PMID: 31154126 DOI: 10.1016/j.watres.2019.05.066] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 05/19/2019] [Accepted: 05/20/2019] [Indexed: 05/25/2023]
Abstract
The sulfidogenic process driven by sulfate-reducing bacteria (SRB) is not suitable for mercury-contaminated wastewater treatment due to the highly toxic methyl-mercury (MeHg) produced by SRB. In our previous study, we observed in short-term batch tests that sulfur-reducing bacteria (S0RB) could remove mercury ions without MeHg production. Thus, the aim of this study is to develop a biological sulfur reduction process driven by S0RB for mercury-contaminated wastewater, and investigate its long-term performance on mercury removal and MeHg accumulation. Receiving mercury-contaminated wastewater containing 0-50 mg Hg(II)/L for 326 days, S0RB in the sulfur-reducing bioreactor showed high tolerance with mercury toxicity, and removed 99.4% ± 1.4% of the influent Hg(II) by biogenic sulfide. MeHg was always found to be undetectable in the bioreactor, even though the sulfidogenic bacteria were exposed to high levels of Hg(II) in long-term trials. The result of qPCR analysis further revealed that the mercury-methylation functional gene (hgcA) concentration in the bioreactor sludge was found to be extremely lower than in the SRB-enriched sludge, Geobacter sulfurreducens PCA and Desulfomicrobium baculatum DSM 4028, implying that there was no or few mercury methylators in the bioreactor. In short, the biological sulfur reduction process using S0RB can efficiently treat mercury-contaminated wastewater, with high Hg(II) removal efficiency and no MeHg accumulation.
Collapse
Affiliation(s)
- Jinting Wang
- Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yaowu Hong
- MOE Laboratory of Theoretical Chemistry of Environment, School of Chemistry & Environment, South China Normal University, Guangzhou, China
| | - Zichao Lin
- MOE Laboratory of Theoretical Chemistry of Environment, School of Chemistry & Environment, South China Normal University, Guangzhou, China
| | - Chulian Zhu
- MOE Laboratory of Theoretical Chemistry of Environment, School of Chemistry & Environment, South China Normal University, Guangzhou, China
| | - Ji Da
- Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Water Technology Center, Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Feng Jiang
- MOE Laboratory of Theoretical Chemistry of Environment, School of Chemistry & Environment, South China Normal University, Guangzhou, China; School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
16
|
Qian J, Zhang M, Niu J, Fu X, Pei X, Chang X, Wei L, Liu R, Chen GH, Jiang F. Roles of sulfite and internal recirculation on organic compound removal and the microbial community structure of a sulfur cycle-driven biological wastewater treatment process. CHEMOSPHERE 2019; 226:825-833. [PMID: 30974375 DOI: 10.1016/j.chemosphere.2019.03.139] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Revised: 03/19/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
A sulfur cycle-driven bioprocess was developed for co-treatment wet flue gas desulfurization wastes with municipal sewage, as a result of sludge minimization. In this process, organics removal (one of the main objectives in sewage treatment) is closely associated with biological sulfate/sulfite reduction (BSR). In the previous studies, both the pros and corns of sulfite (SO32-) in microbial activities were demonstrated. In this study, we are motivated to unveil the detailed role of SO32- in organic compound removal in the sulfur conversion-associated process. In addition, the effect of internal recirculation (IR) of UASB reactor was also explored. The results demonstrated that sulfite does inhibit the organic removal rate via depressing the acetate oxidation to inorganic carbon. And the inhibition is reversible when influent sulfite concentration decreased from 400 to 132 mg S/L, corresponding to the relative sulfate/sulfite-reducing genera increased from 18.66 to 38.62%. And the fermenting-related bacteria significantly decreased when an internal recirculation was employed for the UASB reactor. The results of this study could shed light on the understanding of the roles of sulfite and IR in organic compound removal performance and microbial community structures in BSR, which could be in turn beneficial to optimize the organic removal capacity of the sulfur bionconversion-concerning sewage treatment technology.
Collapse
Affiliation(s)
- Jin Qian
- Research and Development Institute in Shenzhen & School of Natural and Applied Sciences, Northwestern Polytechnical University, China; State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, China
| | - Mingkuan Zhang
- Research and Development Institute in Shenzhen & School of Natural and Applied Sciences, Northwestern Polytechnical University, China
| | - Juntao Niu
- Research and Development Institute in Shenzhen & School of Natural and Applied Sciences, Northwestern Polytechnical University, China
| | - Xiaoying Fu
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Xiangjun Pei
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu, China; College of Ecology and Environment, Chengdu University of Technology, Chengdu, China
| | - Xing Chang
- Research and Development Institute in Shenzhen & School of Natural and Applied Sciences, Northwestern Polytechnical University, China
| | - Li Wei
- Department of Civil & Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Rulong Liu
- Department of Civil & Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Guang-Hao Chen
- Department of Civil & Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Feng Jiang
- School of Chemistry and Environment, South China Normal University, Guangzhou, China.
| |
Collapse
|
17
|
Sun J, Yang J, Liu Y, Guo M, Wen Q, Sun W, Yao J, Li Y, Jiang F. Magnetically-mediated regeneration and reuse of core-shell Fe 0@Fe III granules for in-situ hydrogen sulfide control in the river sediments. WATER RESEARCH 2019; 157:621-629. [PMID: 31004978 DOI: 10.1016/j.watres.2019.03.066] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/03/2019] [Accepted: 03/06/2019] [Indexed: 06/09/2023]
Abstract
A novel iron-cycling process based on core-shell iron granules, which contained zero-valent iron (Fe0) in the core and maghemite (γ-Fe2O3) on the shell (Fe0@FeIII granules), was proposed to in-situ control hydrogen sulfide in the sediments of the polluted urban rivers. The Fe0@FeIII granules added in the top sediment layer removed 97% of sulfide generated by sulfate-reducing bacteria in the sediments, and the sulfide removal capacity of virgin granules was 163 mg S/g Fe (114 mg S/g granule). The Fe0@FeIII granules removed the formed sulfide through the abiotic sulfide oxidation and precipitation, and they also stimulated the microbial iron reduction, which competitively consumed wastewater-derived organics and partially inhibited the sulfate reduction in the sediments. The used Fe0@FeIII granules were easily regenerated through magnetic separation from sediments and air exposure for 12 h, which enhanced the sulfide removal capacities of the regenerated granules by 12%-22%, compared to the virgin granules. During the air exposure, ferrous products (i.e., iron sulfide and surface-associated FeII) on the granule shell were completely oxidized to poorly ordered FeIII hydroxides (γ-FeOOH and amorphous FeOOH) having larger specific surface areas and higher reactivity to sulfide than γ-Fe2O3 on the virgin granules. Meanwhile, the Fe0 in the core was also partially oxidized through the indirect electron transfer, which was facilitated by the electrically conductive iron oxide minerals (Fe3O4 and Fe2O3) and the microbial electron carriers (e.g., Geobacter). The oxidation of Fe0 core contributed additional FeIII hydroxides to the sulfide control. The Fe0@FeIII granules were reused for four times in a 293-day trial, and their overall sulfide removal capacity was at least 920 mg S/g Fe. The proposed iron-cycling process can be a chemical-saving, energy-saving and cost-effective approach for the hydrogen sulfide control in the sediments of polluted urban rivers, as well as lakes, aquaculture ponds and marine.
Collapse
Affiliation(s)
- Jianliang Sun
- School of Chemistry & Environment, South China Normal University, Guangzhou, 510631, China
| | - Jierui Yang
- School of Chemistry & Environment, South China Normal University, Guangzhou, 510631, China
| | - Yueping Liu
- School of Chemistry & Environment, South China Normal University, Guangzhou, 510631, China
| | - Mengli Guo
- School of Chemistry & Environment, South China Normal University, Guangzhou, 510631, China
| | - Qiaoyun Wen
- School of Chemistry & Environment, South China Normal University, Guangzhou, 510631, China
| | - Weijun Sun
- School of Chemistry & Environment, South China Normal University, Guangzhou, 510631, China
| | - Jianxin Yao
- School of Chemistry & Environment, South China Normal University, Guangzhou, 510631, China
| | - Yu Li
- School of Chemistry & Environment, South China Normal University, Guangzhou, 510631, China
| | - Feng Jiang
- School of Chemistry & Environment, South China Normal University, Guangzhou, 510631, China; MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
18
|
Sun J, Hong Y, Guo J, Yang J, Huang D, Lin Z, Jiang F. Arsenite removal without thioarsenite formation in a sulfidogenic system driven by sulfur reducing bacteria under acidic conditions. WATER RESEARCH 2019; 151:362-370. [PMID: 30616048 DOI: 10.1016/j.watres.2018.12.027] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 12/14/2018] [Accepted: 12/17/2018] [Indexed: 06/09/2023]
Abstract
Sulfidogenic process using sulfate-reducing bacteria (SRB) has been used to remove arsenite from the arsenic-contaminated waters through the precipitation of arsenite with sulfide. However, excessive sulfide production and significant pH increase induced by sulfate reduction result in the formation of the mobile thioarsenite by-products and the inefficiency and instability of arsenite removal, especially when the arsenite level fluctuates. In this study, we proposed a novel sulfidogenic process driven by sulfur reducing bacteria (S0RB) for the arsenite removal under acidic conditions. In a long term experiment, efficient sulfide production (0.42 ± 0.2 kg S/m3-d) was achieved without changing the acidic condition (pH around 4.3) in a sulfur reduction bio-reactor. With the acidic sulfide-containing effluents from the bio-reactor, over 99% of arsenite (10 mg As/L) in the arsenic-contaminated water was precipitated without the formation of soluble thioarsenite by-products, even in the presence of excessive sulfide. Maintaining the acidic condition (pH around 4.3) of the sulfide-containing effluent was essential to ensure the efficient arsenite precipitation and minimize the formation of thioarsenite by-products when the arsenite to sulfide molar ratios ranged from 0.1 to 0.46. An acid-tolerant S0RB, Desulfurella, was found to be responsible for the efficient dissimilatory sulfur reduction under acidic conditions without changing the solution pH significantly. The microbial sulfur reduction may proceed through the direct electron transfer between the S0RB and sulfur particles, and also through the indirect electron transport mediated by electron carriers. The findings of this study demonstrate that the proposed sulfidogenic process driven by S0RB working under acidic conditions can be a promising alternative to the SRB-based process for arsenite removal from the arsenic-contaminated waters.
Collapse
Affiliation(s)
- Jianliang Sun
- School of Chemistry & Environment, South China Normal University, Guangzhou, 510631, China
| | - Yaowu Hong
- School of Chemistry & Environment, South China Normal University, Guangzhou, 510631, China
| | - Jiahua Guo
- School of Chemistry & Environment, South China Normal University, Guangzhou, 510631, China
| | - Jierui Yang
- School of Chemistry & Environment, South China Normal University, Guangzhou, 510631, China
| | - Duanyi Huang
- School of Chemistry & Environment, South China Normal University, Guangzhou, 510631, China
| | - Zichao Lin
- School of Chemistry & Environment, South China Normal University, Guangzhou, 510631, China
| | - Feng Jiang
- School of Chemistry & Environment, South China Normal University, Guangzhou, 510631, China; MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
19
|
Adsorption and desorption behavior of anion-exchange resin towards SO42− in the desulphurization process using citric method. ADSORPTION 2018. [DOI: 10.1007/s10450-018-9988-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|