1
|
Tian Z, Kim SK, Kim K. Distinguishing between extractable and leachable contents of styrene oligomers in various polystyrene consumer products: Towards environmentally realistic scenarios. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137190. [PMID: 40087825 DOI: 10.1016/j.jhazmat.2025.137190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/14/2024] [Accepted: 01/10/2025] [Indexed: 03/17/2025]
Abstract
Plastic additives' environmental impacts remain insufficiently understood due to knowledge gaps in their bioavailability, despite growing concerns from increased plastic use and waste. Additives that are non-covalently bound but strongly interact with polymers can be extractable but not leachable, thus non-bioavailable. Nevertheless, most studies have not distinguished between extractable (EC) and leachable content (LC) in plastic additives. We quantified the EC and LC of styrene oligomers (SOs) in polystyrene (PS) by applying the selective solvent compatibility of PS-dissolution in dichloromethane for EC and swelling in n-hexane for LC. Significant differences were found between EC and LC of SOs in 28 widely consumed PS products and across three PS types-expanded PS (EPS), extruded PS (XPS), and solid PS. EPS showed lower EC and LC values and fewer SO isomers. LCs were only 32 % (EPS), 84 % (XPS), and 72 % (solid PS) of ECs, suggesting bioavailable fractions may be overestimated if only EC is considered. We estimate that 3.3 MT of PS-incorporated SOs, with 76 % in leachable forms, have entered the environment, but much may still remain in PS debris. Distinct isomer ratios and high non-leachable fractions in EPS suggest that SOs could serve as effective tracers for distinguishing and quantifying invisible EPS-origin particles in beach sediments. This study underscores the need to differentiate EC from LC for environmentally realistic risk assessment and source identification.
Collapse
Affiliation(s)
- Zhexi Tian
- Institute of Basic Science, Incheon National University, 119 Academy-ro, Yeounsu-gu, Incheon 22012, Republic of Korea
| | - Seung-Kyu Kim
- Institute of Basic Science, Incheon National University, 119 Academy-ro, Yeounsu-gu, Incheon 22012, Republic of Korea; Department of Marine Science, College of Natural Sciences, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea; Yellow Sea Research Institute, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea.
| | - Kitae Kim
- Korea Polar Research Institute (KOPRI), 26 Songdomirae-ro, Yeonsu-gu, Incheon 21990, Republic of Korea
| |
Collapse
|
2
|
Zhang K, Cheng P, Liu Y, Xia S. Efficient removal of per- and polyfluoroalkyl substances by a metal-organic framework membrane with high selectivity and stability. WATER RESEARCH 2024; 265:122276. [PMID: 39154397 DOI: 10.1016/j.watres.2024.122276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) in water requires sufficient removal due to their extreme chemical stability and potential health risk. Membrane separation can be a promising strategy, while membranes with conventional structures used for PFAS removal often face challenges such as limited efficiency and stability. In this study, a novel metal-organic framework (MOF) membrane with local modification of polyamide (PA) was developed by introducing interfacial polymerization process during the construction of lamellar membranes with MOF nanosheets. Benefiting from the dense structure and strong negative surface charge, the PA-modified MOF membrane could effectively remove 11 types of PFAS (five short-chain and six long-chain ones with molecular weights ranging from 214.0 to 514.1 Da), especially displaying high rejections for short-chain PFAS (over 84%), along with a remarkable water permeance of 21.4 L·m⁻²·h⁻¹·bar⁻1. The membrane removal characteristics for PFAS were deeply analyzed by elucidating various rejection mechanisms, with particularly distinguishing the rejection and adsorption capacity. Moreover, the membrane stability was significantly enhanced, demonstrated by the structural integrity after 10 min of ultrasonic treatment and stable separation efficiency over 120 h of continuous filtration. With enhanced surface hydrophilicity and negative charge as well as dense membrane pores, the novel membrane also exhibited more superior anti-fouling performance compared to conventional lamellar and PA membranes, further manifesting advantages for practical applications. This work provides a promising solution for developing high-performance membranes tailored specifically for efficient PFAS removal, addressing a critical need in water treatment.
Collapse
Affiliation(s)
- Kunpeng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji Advanced membrane Technology Center, Tongji University, Shanghai 200092, PR China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, PR China
| | - Peng Cheng
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji Advanced membrane Technology Center, Tongji University, Shanghai 200092, PR China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, PR China
| | - Yanling Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji Advanced membrane Technology Center, Tongji University, Shanghai 200092, PR China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, PR China.
| | - Shengji Xia
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji Advanced membrane Technology Center, Tongji University, Shanghai 200092, PR China; Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai, 200092, PR China
| |
Collapse
|
3
|
Xiao Q, Yang Z, Li W, Wei B, Guo H, Yu S, Gan Q, Liu W, Tang CY. Iron Nanoparticles-Confined Graphene Oxide Membranes Coupled with Sulfite-Based Advanced Reduction Processes for Highly Efficient and Stable Removal of Bromate. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18009-18019. [PMID: 39329389 DOI: 10.1021/acs.est.4c04392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Advanced reduction processes (ARPs) are promising for pollutant removal in drinking water treatment. In this study, we demonstrated highly efficient reduction of bromate, a harmful disinfection byproduct, by coupling ARPs with an iron nanoparticles-intercalated graphene oxide (GO@FeNPs) catalytic membrane. In the presence of 1.0 mM sulfite (S(IV)), the GO@FeNPs membrane/S(IV) system achieved nearly complete removal of 80 μg/L bromate in 3 min. The first-order reaction rate constant for bromate removal in this system was 420 ± 42 min-1, up to 5 orders of magnitude faster than previously reported ARPs. The GO@FeNPs catalytic membrane may offer potential advantages of nanoconfinement and facilitated electron shuttling in addition to the high surface area of the fine FeNPs, leading to the remarkable ARP performance. The GO@FeNPs membrane showed excellent stability, maintaining >97.0% bromate removal over 20 cycles of repeated runs. The membrane can also be applied for fast catalytic reduction of other oxyanions, showing >98.0% removal of nitrate and chlorate. This work may present a viable option for utilizing high-performance reductive catalytic membranes for water decontamination.
Collapse
Affiliation(s)
- Qian Xiao
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, SAR 999077, China
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhe Yang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, SAR 999077, China
| | - Wanbin Li
- Guangdong Key Laboratory of Environmental Pollution and Health, College of Environment and Climate, Jinan University, Guangzhou 511443, China
| | - Bo Wei
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China
- School of Energy and Environment, City University of Hong Kong, Hong Kong, SAR 999077, China
| | - Hao Guo
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, SAR 999077, China
| | - Shuili Yu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Qimao Gan
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, SAR 999077, China
| | - Wenyu Liu
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, SAR 999077, China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, SAR 999077, China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen 518000, China
| |
Collapse
|
4
|
Xue J, Jia Y, Qi L, Yang H, Wang Y, Guo L. Highly sensitive electrochemical quantification of carbendazim via synergistic enhancement of ring-opening metathesis polymerization and polyethyleneimine modified graphene oxide. Mikrochim Acta 2024; 191:348. [PMID: 38805077 DOI: 10.1007/s00604-024-06412-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 05/04/2024] [Indexed: 05/29/2024]
Abstract
A novel aptamer-based sensor was developed using the signal amplification strategy of ring-opening metathesis polymerization (ROMP) and polyethyleneimine modified graphene oxide to achieve trace detection of carbendazim (CBZ). The dual identification of aptamer and antibody was used to avoid false positive results and improve the selectivity. Polyethyleneimine modified graphene oxide (GO-PEI), as a substrate material with excellent conductivity, was modified on the surface of a glassy carbon electrode (GCE) to increase the grafting amount of aptamer on the electrode surface. Moreover, a large number of cyclopentenyl ferrocene (CFc) was aggregated to form long polymer chains through ring-opening metathesis polymerization (ROMP), so as to significantly improve the detection sensitivity of the biosensor. The linear range of this sensor was 1 pg/mL-100 ng/mL with a detection limit as low as 7.80 fg/mL. The sensor exhibited excellent reproducibility and stability, and also achieved satisfactory results in actual sample detection. The design principle of such a sensor could provide innovative ideas for sensors in the detection of other types of targets.
Collapse
Affiliation(s)
- Jinyan Xue
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Yuzhen Jia
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Linying Qi
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
| | - Yanzhi Wang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
| | - Liang Guo
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou, 450046, People's Republic of China.
| |
Collapse
|
5
|
Rawindran H, Arif Bin Hut N, Vrasna DK, Goh PS, Lim JW, Liew CS, Ho CD, Kang HS, Shahid MK, Ng HS, Habila MA, Khoo KS. Ultrafiltration membrane fabricated from polyethylene terephthalate plastic waste for treating microalgal wastewater and reusing for microalgal cultivation. CHEMOSPHERE 2024; 346:140591. [PMID: 37918531 DOI: 10.1016/j.chemosphere.2023.140591] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/07/2023] [Accepted: 10/29/2023] [Indexed: 11/04/2023]
Abstract
Current study had made a significant progress in microalgal wastewater treatment through the implementation of an economically viable polyethylene terephthalate (PET) membrane derived from plastic bottle waste. The membrane exhibited an exceptional pure water flux of 156.5 ± 0.25 L/m2h and a wastewater flux of 15.37 ± 0.02 L/m2h. Moreover, the membrane demonstrated remarkable efficiency in selectively removing a wide range of residual parameters, achieving rejection rates up to 99%. The reutilization of treated wastewater to grow microalgae had resulted in a marginal decrease in microalgal density, from 10.01 ± 0.48 to 9.26 ± 0.66 g/g. However, this decline was overshadowed by a notable enhancement in lipid production with level rising from 181.35 ± 0.42 to 225.01 ± 0.11 mg/g. These findings signified the membrane's capacity to preserve nutrients availability within the wastewater; thus, positively influencing the lipid synthesis and accumulation within microalgal cells. Moreover, the membrane's comprehensive analysis of cross-sectional and surface topographies revealed the presence of macropores with a highly interconnected framework, significantly amplifying the available surface area for fluid flow. This exceptional structural attribute had substantially contributed to the membrane's efficacy by facilitating superior filtration and separation process. Additionally, the identified functional groups within the membrane aligned consistently with those commonly found in PET polymer, confirming the membrane's compatibility and efficacy in microalgal wastewater treatment.
Collapse
Affiliation(s)
- Hemamalini Rawindran
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Nur Arif Bin Hut
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor, Malaysia
| | - Dhita Karunia Vrasna
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor, Malaysia
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, Johor, Malaysia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia; Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, 602105, Chennai, India.
| | - Chin Seng Liew
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Chii-Dong Ho
- Department of Chemical and Materials Engineering, Tamkang University, Tamsui, New Taipei, 251301, Taiwan
| | - Hooi-Siang Kang
- Marine Technology Center, Institute for Vehicle System & Engineering, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
| | - Muhammad Kashif Shahid
- Research Institute of Environment & Biosystem, Chungnam National University, Yuseonggu, Daejeon, 34134, Republic of Korea
| | - Hui-Suan Ng
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000, Cyberjaya, Selangor, Malaysia
| | - Mohamed A Habila
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| |
Collapse
|
6
|
Ren C, Yan R, Yuan Z, Yin L, Li H, Ding J, Wu T, Chen R. Maternal exposure to sunlight-irradiated graphene oxide induces neurodegeneration-like symptoms in zebrafish offspring through intergenerational translocation and genomic DNA methylation alterations. ENVIRONMENT INTERNATIONAL 2023; 179:108188. [PMID: 37690221 DOI: 10.1016/j.envint.2023.108188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/20/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
The physiochemical properties of graphene oxide may be affected by sunlight irradiation. However, the underlying mechanisms that alter the properties and subsequent intergenerational effects are not sufficiently investigate. Epigenetics is an early sensitive marker for the intergenerational effects of nanomaterial exposure due to the epigenetic memory. In this study, we investigate changes in the physicochemical properties and the intergenerational effects of maternal exposure to simulated sunlight-irradiated polyethyleneimine-functionalized graphene oxide (SL-PEI-GO). Results show that the physicochemical properties of polyethyleneimine-functionalized graphene oxide (PEI-GO) can be altered significantly by the oxidation of carbon atoms with unpaired electrons present in the defects and on the edges of PEI-GO by sunlight. First, the positive charges, sharp edges, defects and disordered structures of SL-PEI-GO make it translocate from maternal zebrafish to offspring, thus catalyzing the production of reactive oxygen species and damaging mitochondria directly. In addition, changes in DNA methylation reduce the expression of protocadherin1a, protocadherin19 and cadherin4, thus destroying cell membrane integrity, cell adhesion and Ca2+ binding. The alteration of DNA methylation induced by maternal exposure activates the Ca2+-CaMKK-brsk2a pathway, which catalyzes the phosphorylation of Tau and eventually results in the appearance of neurodegeneration-like symptoms, including the loss of neurons and neurobehavioral disorders. This study demonstrates that maternal exposure to SL-PEI-GO induces clear neurodegeneration-like symptoms in offspring through both the intergenerational translocation of nanomaterials and differential DNA methylation. These findings may provide new insights into the health risks of nanomaterials altered by nature conditions.
Collapse
Affiliation(s)
- Chaoxiu Ren
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ruyu Yan
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Ziyi Yuan
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Lijia Yin
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Hongji Li
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary chemistry, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Jing Ding
- Tianjin Environmental Meteorological Center, Tianjin 300074, China
| | - Tao Wu
- Beijing Key Laboratory of Enze Biomass Fine Chemicals, College of New Materials and Chemical Engineering, Beijing institute of Petrochemical Technology, Beijing 102617, China.
| | - Rui Chen
- Beijing Key Laboratory of Environmental Toxicology, Department of Toxicology and Sanitary chemistry, School of Public Health, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
7
|
Cheng P, Zhu T, Wang X, Fan K, Liu Y, Wang XM, Xia S. Enhancing Nanofiltration Selectivity of Metal-Organic Framework Membranes via a Confined Interfacial Polymerization Strategy. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12879-12889. [PMID: 37582261 DOI: 10.1021/acs.est.3c03120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Development of well-constructed metal-organic framework (MOF) membranes can bring about breakthroughs in nanofiltration (NF) performance for water treatment applications, while the relatively loose structures and inevitable defects usually cause low rejection capacity of MOF membranes. Herein, a confined interfacial polymerization (CIP) method is showcased to synthesize polyamide (PA)-modified NF membranes with MOF nanosheets as the building blocks, yielding a stepwise transition from two-dimensional (2D) MOF membranes to polyamide NF membranes. The CIP process was regulated by adjusting the loading amount of piperazine (PIP)-grafted MOF nanosheets on substrates and the additional content of free PIP monomers distributed among the nanosheets, followed by the reaction with trimesoyl chloride in the organic phase. The prepared optimal membrane exhibited a high Na2SO4 rejection of 98.4% with a satisfactory water permeance of 37.4 L·m-2·h-1·bar-1, which could be achieved by neither the pristine 2D MOF membranes nor the PA membranes containing the MOF nanosheets as the conventional interlayer. The PA-modified MOF membrane also displayed superior stability and enhanced antifouling ability. This CIP strategy provides a novel avenue to develop efficient MOF-based NF membranes with high ion-sieving separation performance for water treatment.
Collapse
Affiliation(s)
- Peng Cheng
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Tongren Zhu
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, 301 E. Dean Keeton Street, Austin, Texas 78712, United States
| | - Xiaoping Wang
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
| | - Kaiming Fan
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
| | - Yanling Liu
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| | - Xiao-Mao Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shengji Xia
- State Key Laboratory of Pollution Control and Resources Reuse, Advanced Membrane Technology Center, Tongji University, Shanghai 200092, China
- Key Laboratory of Yangtze River Water Environment, Ministry of Education, Tongji University, Shanghai 200092, China
| |
Collapse
|
8
|
Li Z, Xie W, Zhang Z, Wei S, Chen J, Li Z. Multifunctional sodium alginate/chitosan-modified graphene oxide reinforced membrane for simultaneous removal of nanoplastics, emulsified oil, and dyes in water. Int J Biol Macromol 2023; 245:125524. [PMID: 37355070 DOI: 10.1016/j.ijbiomac.2023.125524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 06/26/2023]
Abstract
Membrane technology is widely recognized as an efficient and advanced approach for wastewater treatment. However, the development of environmentally friendly and versatile membranes capable of effectively removing multiple contaminants remains a significant challenge. Inspired by natural magnets, we developed a heterostructured membrane using biomass materials to achieve the efficient removal of multiple contaminants from wastewater. Specifically, a bionic three-layer SA/GO/CS composite membrane was prepared by using sodium alginate (SA) and chitosan (CS) to modify graphene oxide (GO), respectively, and then assembled to both sides of the glass fiber (GF) membrane. The composite membranes achieved 99.87 % and 97.10 % removal of NPs with particle sizes of 500 nm and 50 nm. Moreover, the membrane demonstrated superior separation performance for mixed wastewater, enabling effective treatment of a broad spectrum of contaminants. Additionally, the membrane exhibited excellent stability when exposed to strong acid and alkali environments and demonstrated good recyclability throughout the multiple contaminants removal process. The bionic membrane, prepared using a straightforward method proposed in this study, provides an effective approach for enhanced removal of multiple contaminants in water. These findings contribute to the advancement of eco-friendly and versatile wastewater treatment membranes, opening new possibilities for sustainable water purification technologies.
Collapse
Affiliation(s)
- Zichen Li
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Wei Xie
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Zheng Zhang
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Shuxia Wei
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Jiaqi Chen
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China
| | - Zhili Li
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China.
| |
Collapse
|
9
|
Zhang P, Zhang C, Song J, Wang S, Li Q, Su F, Li S. Novel fluorescent nanoprobe based on hyaluronic acid and polyethyleneimine functionalized graphene oxide for detecting hyaluronidase as tumor marker. POLYM ADVAN TECHNOL 2023. [DOI: 10.1002/pat.6055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Affiliation(s)
- Ping Zhang
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Chaoqun Zhang
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Jie Song
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Shuxin Wang
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
| | - Qian Li
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
- Cancer Institute Affiliated Hospital of Qingdao University Qingdao 266071 China
| | - Feng Su
- College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 China
- Institute of High Performance Polymers Qingdao University of Science and Technology Qingdao 266042 China
| | - Suming Li
- Institut Europeen des Membranes IEM UMR 5635, Université Montpellier CNRS, ENSCM Montpellier France
| |
Collapse
|
10
|
Lei X, Lian Q, Zhang X, Karsili TK, Holmes W, Chen Y, Zappi ME, Gang DD. A review of PFAS adsorption from aqueous solutions: Current approaches, engineering applications, challenges, and opportunities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 321:121138. [PMID: 36702432 DOI: 10.1016/j.envpol.2023.121138] [Citation(s) in RCA: 56] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have drawn great attention due to their wide distribution in water bodies and toxicity to human beings. Adsorption is considered as an efficient treatment technique for meeting the increasingly stringent environmental and health standards for PFAS. This paper systematically reviewed the current approaches of PFAS adsorption using different adsorbents from drinking water as well as synthetic and real wastewater. Adsorbents with large mesopores and high specific surface area adsorb PFAS faster, their adsorption capacities are higher, and the adsorption process are usually more effective under low pH conditions. PFAS adsorption mechanisms mainly include electrostatic attraction, hydrophobic interaction, anion exchange, and ligand exchange. Various adsorbents show promising performances but challenges such as requirements of organic solvents in regeneration, low adsorption selectivity, and complicated adsorbent preparations should be addressed before large scale implementation. Moreover, the aid of decision-making tools including response surface methodology (RSM), techno-economic assessment (TEA), life cycle assessment (LCA), and multi criteria decision analysis (MCDA) were discussed for engineering applications. The use of these tools is highly recommended prior to scale-up to determine if the specific adsorption process is economically feasible and sustainable. This critical review presented insights into the most fundamental aspects of PFAS adsorption that would be helpful to the development of effective adsorbents for the removal of PFAS in future studies and provide opportunities for large-scale engineering applications.
Collapse
Affiliation(s)
- Xiaobo Lei
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA
| | - Qiyu Lian
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA
| | - Xu Zhang
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, School of Civil Engineering, Beijing Jiaotong University, 3 Shangyuancun, Beijing 100044, PR China
| | - Tolga K Karsili
- Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - William Holmes
- Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA; Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Yushun Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, PR China
| | - Mark E Zappi
- Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA; Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA
| | - Daniel Dianchen Gang
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA.
| |
Collapse
|
11
|
Zhou H, Gong J, Li J, Song B, Fang S, Wang Y, Tang L, Peng P. Cross-Linked and Doped Graphene Oxide Membranes with Excellent Antifouling Capacity for Rejection of Antibiotics and Salts. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8636-8652. [PMID: 36735585 DOI: 10.1021/acsami.2c19789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Graphene oxide (GO) membranes have suffered from the instability of water permeability and low rejection of pollutant separation. In this paper, a reasonable modification protocol for GO nanosheets at the molecular level was proposed. A molecular cross-linking strategy was adopted to regulate the interlayer spacing of GO nanosheets, and nanofiltration membranes with high water stability and excellent antifouling capacity were prepared, which could effectively reject antibiotics and salts. The GO1-MPD0.5 (the mass ratio of GO nanosheets to MPD is 1:0.5) and GO/GO1-MPD0.5-0.25 (the doping ratio of GO1-MPD0.5 is 25%) membranes had stable water permeability of 4.22 ± 0.06 and 3.65 ± 0.11 L m-2 h-1 bar-1, and the rejection rates for ciprofloxacin (CIP) and ofloxacin (OFX) were 93.35 ± 3.62 and 95.48 ± 2.97 and 85.89 ± 6.52 and 88.21 ± 3.67%, respectively. Molecular dynamics simulations well explained the high water stability of membranes, and the cross-linked hydrophobic benzene ring played a role in the rejection of pollutant molecules. Moreover, the GO1-MPD0.5 membrane showed excellent antifouling capacity and the flux recovery ratio (FRR) was more than 98%. This paper provides a new idea for the design of nanofiltration membranes with high stability and good rejection permeability at the molecular level and provides a prospect for the application of nanofiltration membranes in practical water treatment and water purification.
Collapse
Affiliation(s)
- Huaiyang Zhou
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha410082, P. R. China
| | - Jilai Gong
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha410082, P. R. China
- Shenzhen Institute, Hunan University, Shenzhen518000, P. R. China
| | - Juan Li
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha410082, P. R. China
| | - Biao Song
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha410082, P. R. China
| | - Siyuan Fang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha410082, P. R. China
| | - Yuwen Wang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha410082, P. R. China
| | - Liangxiu Tang
- College of Environmental Science and Engineering, Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha410082, P. R. China
| | - Ping Peng
- College of Materials Science and Engineering, Hunan University, Changsha410082, P. R. China
| |
Collapse
|
12
|
Lei X, Lian Q, Zhang X, Wang T, Gee M, Holmes W, Jin S, Ponnusamy SK, Gang DD, Zappi ME. Removal of perfluorooctanoic acid via polyethyleneimine modified graphene oxide: Effects of water matrices and understanding mechanisms. CHEMOSPHERE 2022; 308:136379. [PMID: 36088978 DOI: 10.1016/j.chemosphere.2022.136379] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
This research aimed to evaluate the adsorption behaviors and mechanisms of perfluorooctanoic acid (PFOA) onto polyethyleneimine modified graphene oxide (GO-PEI) from aqueous solutions. The adsorption capacity was significantly improved by doping polyethyleneimine (PEI) onto graphene oxide (GO). The Brunauer-Emmett-Teller (BET) isotherm model was considered as the best isotherm model in describing the PFOA adsorption onto GO-PEI3 (wPEI/wGO = 3). GO-PEI3 exhibited high adsorption capacity (qe = 368.2 mg/g, calculated from BET isotherm model) and excellent stability. The maximum monolayer amount of PFOA adsorption onto GO-PEI3 (qm = 231.2 mg/g) was successfully evaluated. The calculated saturated concentration (Cs = 169.9 mg/L) of PFOA on GO-PEI3 closely agrees with its critical micelle concentration (CMC = 157.0 mg/L), suggesting the formation of multilayer hemi-micelles or micelles PFOA structures on the surface of GO-PEI3. PFOA adsorption onto GO-PEI3 was inhibited by several factors including: the presence of humic acid (HA) by competing with the adsorption sites, background salts through the double-layer compression effect, and the competition from soluble ions for the amine or amide functional groups on GO-PEI3. Finally, both the FT-IR and XPS results confirmed that the adsorption of PFOA onto GO-PEI3 was through electrostatic attraction and hydrophobic interaction (physical adsorption), but not chemical adsorption. This work provides fundamental knowledge both in understanding the adsorption behavior through the BET isotherm model and in developing a stable adsorbent for PFOA adsorption. In addition, the findings highlight the potential of PFOA remediation from wastewater systems using GO-PEI in engineering applications.
Collapse
Affiliation(s)
- Xiaobo Lei
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA
| | - Qiyu Lian
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA
| | - Xu Zhang
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA; Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, School of Civil Engineering, Beijing Jiaotong University, Shangyuancun, Beijing, 100044, PR China
| | - Tiejun Wang
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA; Nanyang Vocational College of Agriculture, Nanyang, 473000, PR China
| | - Michael Gee
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA; Department of Engineering, University of California, Berkeley, CA, 94720, USA
| | - William Holmes
- Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA; Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| | - Shiwei Jin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Senthil Kumar Ponnusamy
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Tamil Nadu, India
| | - Daniel Dianchen Gang
- Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA; Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA.
| | - Mark E Zappi
- Center for Environmental Technology, The Energy Institute of Louisiana, University of Louisiana at Lafayette, P. O. Box 43597, Lafayette, LA, 70504, USA; Department of Chemical Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, USA
| |
Collapse
|
13
|
Liao Z, Wu Y, Cao S, Zhao S, Yan X, Yuan S, Dong K, Qin J, Ou C, Zhu J. Facile engineering of PES ultrafiltration membranes using polyoxometalates for enhanced filtration and antifouling performance. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
14
|
Liu M, Zhang X, Han R, Qu L. Crosslinked polyethylenimine/polyacrylonitrile blend membrane for multifunctional adsorption of heavy metals and endocrine disrupting chemicals in solution. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Qu W, Wen H, Qu X, Guo Y, Hu L, Liu W, Tian S, He C, Shu D. Enhanced Fenton-like catalysis for pollutants removal via MOF-derived Co xFe 3-xO 4 membrane: Oxygen vacancy-mediated mechanism. CHEMOSPHERE 2022; 303:135301. [PMID: 35691400 DOI: 10.1016/j.chemosphere.2022.135301] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/24/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Traditional batch configuration is not sustainable due to catalyst leaching and ineffective recovery. Herein, a novel membrane-based catalyst with oxygen vacancies is developed, which assembled metal-organic-framework cobalt ferrite nanocrystals (MOF-d CoxFe3-xO4) on polyvinylidene fluoride membrane to activate peroxymonosulfate (PMS) for catalytic degradation of emerging pollutants. MOF-d CoxFe3-xO4 are synthesized by one-step pyrolysis using Co/Fe bimetallic organic frameworks (CoxFe3-x bi-MOF) with tunable cobalt content as a template (x/3-x represented the molar ratio of Co and Fe in MOF). Intriguingly, MOF-d Co1.75Fe1.25O4 membrane exhibits excellent PMS activation efficiency as indicated by 95.12% removal of the probe chemical (bisphenol A) at 0.5 mM PMS (∼100 L m-2 h-1 at the loading of 10 mg), which is significantly higher than the traditional Co1.75Fe1.25O4 suspension system (34.16%). Experimental results show that the membrane has excellent anti-interference ability to anions and dissolved organic matter, and can effectively degrade a variety of emerging pollutants, and its performance is not inhibited by the change of solution pH (3-9) or the long-term (20 h) continuous flow operation. EPR and quenching experiments show that catalytic degradation is the result of the synergistic effect of radicals and non-radicals. The oxygen vacancy-mediated mechanism can explain the formation of active substances, and the formation of 1O2 plays an important role in the degradation of bisphenol A. This study provides a membrane-based strategy for effective and sustainable removal of emerging pollutants.
Collapse
Affiliation(s)
- Wei Qu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hailin Wen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xinran Qu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yifan Guo
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lingling Hu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Wei Liu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shuanghong Tian
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Chun He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China.
| | - Dong Shu
- Key Lab of Technology on Electrochemical Energy Storage and Power Generation in Guangdong Universities, School of Chemistry and Environment, South China Normal University, Guangzhou, 510006, China
| |
Collapse
|
16
|
Cheng S, Duan X, Cui Y, Liang C, Zhang Z, Zhao G, Liu Y. Facile strategy for the preparation of green graphene rubber with enhanced interfacial interaction and thermal management capability. J Appl Polym Sci 2022. [DOI: 10.1002/app.52882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shuaishuai Cheng
- Shanxi Key Laboratory of Nano‐Functional Composite Materials North University of China Taiyuan China
| | - Xiaoyuan Duan
- Shanxi Key Laboratory of Nano‐Functional Composite Materials North University of China Taiyuan China
| | - Yiwen Cui
- Shanxi Key Laboratory of Nano‐Functional Composite Materials North University of China Taiyuan China
| | - Chaobo Liang
- Shanxi Key Laboratory of Nano‐Functional Composite Materials North University of China Taiyuan China
| | - Zhiyi Zhang
- Shanxi Key Laboratory of Nano‐Functional Composite Materials North University of China Taiyuan China
| | - Guizhe Zhao
- Shanxi Key Laboratory of Nano‐Functional Composite Materials North University of China Taiyuan China
| | - Yaqing Liu
- Shanxi Key Laboratory of Nano‐Functional Composite Materials North University of China Taiyuan China
| |
Collapse
|
17
|
Feng C, Zhang YJ, Ren CL. pH-Regulated Single and Double Charge Inversions on PEI-Coated Surfaces. ACS Macro Lett 2022; 11:773-779. [PMID: 35653775 DOI: 10.1021/acsmacrolett.2c00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The pH-regulated charge inversions on polyethylenimine (PEI)-coated surfaces are indispensable to their applications in biomaterials and nanomaterials. Various PEI-coated surfaces, where single charge inversion happens, have been extensively investigated, while the surfaces where double charge inversion appears are less reported. Here, using a molecular theory, we systematically study the pH-regulated charge density of PEI-coated surfaces. The results suggest whether single or double charge inversion happens depends on PEI affinity to the surface and the bare surface charge density. The region of double charge inversion is much smaller than that of single charge inversion, revealing the reason why double charge inversion is less observed in experiments. Besides, the charge inversions are significantly influenced by the solution condition. The present work provides a useful guideline to the selection of the coated materials and the parameters of PEI solution in the design of PEI-coated surfaces aiming to promote their applications in multifunctional nanomaterials.
Collapse
Affiliation(s)
- Chao Feng
- State Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory of Microstructural Material Physics, School of Science, Yanshan University, Qinhuangdao, 066004, China
| | - Yun-jian Zhang
- State Key Laboratory of Metastable Materials Science and Technology and Hebei Key Laboratory of Microstructural Material Physics, School of Science, Yanshan University, Qinhuangdao, 066004, China
| | - Chun-lai Ren
- National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing, 210093, China
- Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
18
|
Improved dyes separation performance of reduced graphene by incorporation MoS2 nanosheets. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.04.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
19
|
Al-Araji DD, Al-Ani FH, Alsalhy QF. Modification of polyethersulfone membranes by Polyethyleneimine (PEI) grafted Silica nanoparticles and their application for textile wastewater treatment. ENVIRONMENTAL TECHNOLOGY 2022:1-17. [PMID: 35244524 DOI: 10.1080/09593330.2022.2049890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/22/2022] [Indexed: 05/26/2023]
Abstract
In the current work, a novel nanocomposite membrane for wastewater treatment applications has been synthesized. A hydrophilic nature nanoadditive comprised grafting polyethylenimine (PEI) molecules onto the surfaces of silica nanoparticles (SiO2 NPs) was synthesized then entrapped within a polyethersulfone polymeric matrix at disparate ratios via the classical phase inversion technique. A series of experimental tools were employed to probe the influence of SiO2-PEI on the surface topography and morphological changes, hydrophilicity, porosity, surface chemistry as well as permeation and dyes retention characteristics of the new nanocomposite. Upon increasing the nanoadditives content (up to 0.7 wt. % SiO2- PEI), clear cross-sectional changes were depicted along with a noticeable decline in the water contact angle by 29.7%. Performance evaluation measurements against synthetic dye solutions were disclosed explicit enhancement in both; retention and permeation characteristics of the nanocomposite membranes. Besides, prolonged permeation test has maintained high flux stability against real textile wastewater; implying better resistance and self-cleaning characteristics have been achieved.
Collapse
Affiliation(s)
- Dalya D Al-Araji
- Civil Engineering Department, University of Technology-Iraq, Baghdad, Iraq
| | - Faris H Al-Ani
- Civil Engineering Department, University of Technology-Iraq, Baghdad, Iraq
| | - Qusay F Alsalhy
- Membrane Technology Research Unit, Chemical Engineering Department, University of Technology-Iraq, Baghdad, Iraq
| |
Collapse
|
20
|
Zhang Y, Chen B, Zhao H, Zhu L. Polysulfone membranes with the improved antibacterial property via surface co‐deposition of dopamine and sodium polystyrene sulfonate. J Appl Polym Sci 2022. [DOI: 10.1002/app.51729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yan Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo China
- School of Materials Science and Engineering Shenyang University of Chemical Technology Shenyang China
| | - Bin Chen
- School of Materials Science and Engineering Shenyang University of Chemical Technology Shenyang China
| | - Haichao Zhao
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo China
| | - Lijing Zhu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences Ningbo China
| |
Collapse
|
21
|
Zhang Y, Zhu X, Chen B. Adhesion force evolution of protein on the surfaces with varied hydration extent: Quantitative determination via atomic force microscopy. J Colloid Interface Sci 2022; 608:255-264. [PMID: 34626972 DOI: 10.1016/j.jcis.2021.09.131] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/05/2021] [Accepted: 09/21/2021] [Indexed: 01/03/2023]
Abstract
The adhesion force evolution of protein on surfaces with continuously varied hydrophobicity/hydration layer has not been completely clarified yet, limiting the further development of environmental applications such as membrane anti-biofouling and selective adsorption of the functional surfaces. Herein, chemical force spectroscopy using atomic force microscopy (AFM) was utilized to quantify the evolution of the adhesion forces of protein on hydration surfaces in water, where bovine serum albumin (BSA) was immobilized on an AFM tip as the representative protein. The stiffness, roughness and charge properties of the substrate surfaces were kept constant and the hydrophobicity was the only variant to monitor the role of hydrated water layers in protein adhesion. The adhesion force increased non-monotonically as a function of hydrophobicity of substrate surfaces, which was related to the concentration of humic acid, and independent of pH values and ionic strength. The non-monotonic variation occurred in the range of contact angle at 60-80° due to the mutual restriction between solid-liquid interface energy and solid-solid interface energy. Hydrophobic attraction was the dominant force that drove adhesion of BSA to these model substrate surfaces, but the passivation of hydration layers at the interface could weaken the hydrophobic attraction. In contrast to the measurements in water, the adhesion forces decreased as a function of surface hydrophobicity when measured in air, because capillary forces from condensation water dominated adhesion forces. The passivation of hydration layers of protein was revealed by quantitatively determining the evolution of adhesion forces on the hydration surfaces of varying hydrophobicity, which was ignored by traditional adhesion theory.
Collapse
Affiliation(s)
- Yuyao Zhang
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China.
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China.
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
22
|
Xu D, Zheng J, Zhang X, Lin D, Gao Q, Luo X, Zhu X, Li G, Liang H, Van der Bruggen B. Mechanistic Insights of a Thermoresponsive Interface for Fouling Control of Thin-Film Composite Nanofiltration Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1927-1937. [PMID: 35007424 DOI: 10.1021/acs.est.1c06156] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In spite of extensive research, fouling is still the main challenge for nanofiltration membranes, generating an extra transport resistance and requiring a larger operational pressure in practical applications. We fabricated a highly antifouling nanofiltration membrane by grafting poly(N-isopropylacrylamide) (PNIPAM) chains on a bromine-containing polyamide layer. The resulting membrane was found to have a double permeance compared to the pristine membrane, while the rejection of multivalent ions remained the same. In addition, PNIPAM chains yielded a better deposition resistance and adhesion resistance, thereby mitigating the increase of fouling and promoting the recovery of flux during the filtration and traditional cleaning stages, respectively. Moreover, PNIPAM chains shrank when the water temperature was above the lower critical solution temperature (LCST), indicating the formation of a buffer layer between the membrane and pollutants. The buffer layer would eliminate the membrane-foulant interaction energy, thus further enhancing the detachment of pollutants. This simple and efficient cleaning method could act as an enhanced cleaning procedure to remove irreversible fouling. This provides new insights into the fabrication of enhanced antifouling membranes using smart responsive polymer chains.
Collapse
Affiliation(s)
- Daliang Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Junfeng Zheng
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Xin Zhang
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
- State Key Laboratory of Chemical Engineering, Membrane Science and Engineering R&D Lab, Chemical Engineering Research Center, School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Dachao Lin
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
- Lehrstuhl für Technische Chemie II, Universität Duisburg-Essen, Essen 45117, Germany
| | - Qieyuan Gao
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Xinsheng Luo
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Xuewu Zhu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan 250101, P. R. China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P. R. China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
- Faculty of Engineering and the Built Environment, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| |
Collapse
|
23
|
Liu R, Zhao M, Zheng X, Wang Q, Huang X, Shen Y, Chen B. Reduced graphene oxide/TiO 2(B) immobilized on nylon membrane with enhanced photocatalytic performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149370. [PMID: 34358743 DOI: 10.1016/j.scitotenv.2021.149370] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/24/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
Taking advantage of the unique properties of reduced graphene oxide (rGO) and monoclinic crystalline titanium dioxide (TiO2(B)) nanomaterials, a novel rGO-TiO2(B) composite membrane (MrGO-TiO2(B)) was constructed by UV-light-assisted self-assembly of rGO and TiO2 on a nylon membrane. The structure of MrGO-TiO2(B) was characterized by scanning electron microscopy, transmission electron microscopy, UV-visible diffuse reflectance spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction analysis. Through 2D/2D self-assembly, rGO and TiO2(B) were more tightly combined, and then MrGO-TiO2(B) exhibited outstanding photocatalytic activity and an excellent methylene blue (MB) removal rate. MB was completely removed in 60 min at a constant rate of 0.042 min-1 by the MrGO-TiO2(B)/H2O2/MB system upon solar simulating Xe lamp irradiation. The synergistic effect of rGO and TiO2(B) facilitated the photocatalytic degradation of MB. TiO2(B) was excited and generated electrons and holes upon irradiation. Some electrons migrated to the surface of TiO2(B) to react with H2O2 to produce hydroxyl radicals (OH), while the other electrons migrated to the surface of rGO to react with H2O2, producing OH. In addition, a number of superoxide radicals (O2-) was detected. The holes in the valence band of TiO2(B) directly oxidized MB. The catalytic activity of MrGO-TiO2(B) toward MB degradation remained stable after four rounds of reuse. Therefore, the surface modification of a nylon membrane with TiO2(B) and rGO can serve as a promising route to fabricate photocatalytic membranes for use in the water treatment industry.
Collapse
Affiliation(s)
- Renlan Liu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Engineering Laboratory for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou 325035, China.
| | - Min Zhao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Engineering Laboratory for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou 325035, China.
| | - Xiangyong Zheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Engineering Laboratory for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou 325035, China.
| | - Qi Wang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Engineering Laboratory for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou 325035, China.
| | - Xianfeng Huang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; National and Local Joint Engineering Research Center of Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou 325035, China; Zhejiang Provincial Engineering Laboratory for Ecological Treatment Technology of Urban Water Pollution, Wenzhou University, Wenzhou 325035, China.
| | - Yi Shen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
24
|
Ismail RA, Kumar M, Thomas N, An AK, Arafat HA. Multifunctional hybrid UF membrane from poly(ether sulfone) and quaternized polydopamine anchored reduced graphene oxide nanohybrid for water treatment. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Composite PVDF ultrafiltration membrane tailored by sandwich-like GO@UiO-66 nanoparticles for breaking the trade-off between permeability and selectivity. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119308] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
26
|
Ghouri ZK, Elsaid K, Badreldin A, Nasef MM, Jusoh NWC, Abdel-Wahab A. Enhanced oxygen evolution reaction on polyethyleneimine functionalized graphene oxide in alkaline medium. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
27
|
Immobiling enzyme-like ligand in the ultrafiltration membrane to remove the micropollutant for the ultrafast water purification. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119566] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Wei H, Pan D, Zhou Z, Han H, Zhu R. On-site electrochemical determination of phosphate with high sensitivity and anti-interference ability in turbid coastal waters. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 221:112444. [PMID: 34174734 DOI: 10.1016/j.ecoenv.2021.112444] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 06/15/2021] [Accepted: 06/19/2021] [Indexed: 06/13/2023]
Abstract
Phosphate is considered to be an important biogenic element and responsible for eutrophication in aquatic ecosystems, existing in both dissolved and absorbed forms. Due to the complex matrix of coastal seawater, a high sensitivity and anti-interference method for phosphate detection is required for environmental protection. In this study, a novel electrochemical method was proposed based on reduced graphene oxide-ordered mesoporous carbon screen-printed electrode (rGO-OMC/SPE) analysis, allowing sensitivity and reliable determination of phosphate in turbid coastal waters. Combining the good absorption capacity of OMC with the excellent electroconductivity of rGO, the fabricated electrode exhibits improved signal responses, enhanced by up to 43-fold. The platform was evaluated using turbidity interference test with good recovery percentages comprised between 96% and 105% in different phosphate concentration, and salinity interference test between 92% and 105%, respectively. A linear range from 0.2 to 150 μM phosphate was achieved, with a detection limit of 0.05 μM (s/n = 3). The fabricated platform was successfully used for on-site analysis of phosphate in turbid coastal waters. This reliable and effective method for the analysis of phosphate in turbid coastal waters allows for sensitivity and anti-interference determination, while also representing a significant step towards comprehensive and convenient analysis of phosphorus species.
Collapse
Affiliation(s)
- Hong Wei
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Dawei Pan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Zhengwen Zhou
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Haitao Han
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Research Center for Coastal Environment Engineering Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Rilong Zhu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, PR China.
| |
Collapse
|
29
|
Zhang Z, Xiao X, Zhou Y, Huang L, Wang Y, Rong Q, Han Z, Qu H, Zhu Z, Xu S, Tang J, Chen J. Bioinspired Graphene Oxide Membranes with pH-Responsive Nanochannels for High-Performance Nanofiltration. ACS NANO 2021; 15:13178-13187. [PMID: 34210144 DOI: 10.1021/acsnano.1c02719] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Tunable gating graphene oxide (GO) membranes with high water permeance and precise molecular separation remain highly desired in smart nanofiltration devices. Herein, bioinspired by the filtration function of the renal glomerulus, we report a smart and high-performance graphene oxide membrane constructed via introducing positively charged polyethylenimine-grafted GO (GO-PEI) to negatively charged GO nanosheets. It was found that the additional GO-PEI component changed the surface charge, improved the hydrophilicity, and enlarged the nanochannels. The glomerulus-inspired graphene oxide membrane (G-GOM) shows a water permeance up to 88.57 L m-2 h-1 bar-1, corresponding to a 4 times enhancement compared with that of a conventional GO membrane due to the enlarged confined nanochannels. Meanwhile, owing to the electrostatic interaction, it can selectively remove positively charged methylene blue at pH 12 and negatively charged methyl orange at pH 2, with a removal rate of over 96%. The high and cyclic water permeance and highly selective organic removal performance can be attributed to the synergic effect of controlled nanochannel size and tunable electrostatic interaction in responding to the environmental pH. This strategy provides insight into designing pH-responsive gating membranes with tunable selectivity, representing a great advancement in smart nanofiltration with a wide range of applications.
Collapse
Affiliation(s)
- Zhijie Zhang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xiao Xiao
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Yihao Zhou
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Linjun Huang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Yanxin Wang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Qinglin Rong
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhenyang Han
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Huaijiao Qu
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Zhijun Zhu
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Shumao Xu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Research for Hybrid Materials Technology, National Base of International Science & Technology Cooperation, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
30
|
Samanta S, Sahoo RR. Layer by layer assembled functionalized graphene oxide-based polymer brushes for superlubricity on steel-steel tribocontact. SOFT MATTER 2021; 17:7014-7031. [PMID: 34251016 DOI: 10.1039/d1sm00690h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This study demonstrates a simple and multistep approach for a covalent functionalization of chemically-prepared graphene oxide (GO) using branched polyethylenimine (PEI) through nucleophilic addition reaction to prepare GO-PEI. Further layer-by-layer (LBL) assembly on functionalized GO-PEI with anionic polyelectrolyte, poly(acrylic acid sodium salt) (PAA) and poly(sodium 4-styrenesulfonate) (PSS) have been undertaken to fabricate polymer brushes (PB). The physicochemical structures of GO, GO-PEI and LBL assembled PB [GO-PEI-PAA and GO-PEI-PSS] have been explored using standard spectral and morphological analysis. The macrotribological results demonstrated that GO-PEI-PAA/GO-PEI-PSS (0.5 wt%) as paraffin oil dispersible additives significantly decreased the coefficient of friction (COF) and wear at different contact pressures of steel-steel tribopairs. The influence of contact pressure and load-bearing ability of the polymer-grafted GO as nanolubricants have been examined carefully. The COF of PB particles provided a reduction of 85% (low pressure, ∼0.9 MPa) and 66.65% (high pressure, ∼1.35 GPa) compared to lube paraffin oil and exhibited a lower specific wear rate (2.26 × 10-8 mm3 N-1 m-1) at macrotribological pin/ball-on-disc trials, revealing superior lubricity. The PB containing nanolubricants also exhibited high load-bearing ability (till ∼1000 N load, Pm ∼6.1 GPa) with considerably lower COF and wear, which were investigated using a four-ball tribotester. Among the functionalized polymeric GO particles, PSS polyelectrolyte containing GO-PEI-PSS showed better COF and wear reduction ability with extremely high load-bearing capacity due to the strong interfacial adhesion properties of PSS to generate strong protective synergetic lubricating tribofilm into the rubbing interfaces, which is comprehensively investigated by post-tribological analysis.
Collapse
Affiliation(s)
- Suprakash Samanta
- Environmental Engineering Division, CSIR - Central Mechanical Engineering Research Institute, Durgapur - 713209, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India and Department of Materials Science and Chemical Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Rashmi R Sahoo
- Environmental Engineering Division, CSIR - Central Mechanical Engineering Research Institute, Durgapur - 713209, India. and Academy of Scientific and Innovative Research (AcSIR), Ghaziabad - 201002, India
| |
Collapse
|
31
|
Tang H, Han D, Zhang J. Electrospinning fabrication of polystyrene-silica hybrid fibrous membrane for high-efficiency air filtration. NANO EXPRESS 2021. [DOI: 10.1088/2632-959x/abfe3d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
The development of new materials for air filtration and particulate matter (PM) pollution is critical to solving global environmental issues that threaten human health and accelerate the greenhouse effect. In this study, a novel electrospun polystyrene-SiO2 nanoparticle (PS-SNP) fibrous membrane was explored by a single-step strategy to obtain the composite multi-layered filter masks. In addition, the air filtration performance of this fibrous membrane for PM was evaluated. The effects of SiO2 on the composition, morphology, mechanical property, and surface wetting of PS-SNP membranes were studied. Allowing SiO2 to be incorporated into the PS polymer was endowed with promising superhydrophobicity and demonstrated excellent mechanical properties. As-prepared PS-SNP membranes possess significantly better filtration efficiency than pure PS membrane. Furthermore, a three-layered air filter media (viscose/PS-SNP/polyethylene terephthalate) used in this study has considerable performances compared to the commercial masks. Since this air filtration membrane has excellent features such as high air filtration and permeability, we anticipate it to have huge potential application in air filtration systems, including cleanroom, respirator, and protective clothing.
Collapse
|
32
|
Zong P, Shao M, Cao D, Xu X, Wang S, Zhang H. Synthesis of potential Ca-Mg-Al layered double hydroxides coated graphene oxide composites for simultaneous uptake of europium and fulvic acid from wastewater systems. ENVIRONMENTAL RESEARCH 2021; 196:110375. [PMID: 33130174 DOI: 10.1016/j.envres.2020.110375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/23/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
High background electrolyte and natural organic matter are favorable to migration of hazardous radionuclides in geochemical repository. Herein, Ca-Mg-Al layered double hydroxide coated onto graphene oxide (Ca-Mg-Al LDH/GO) composites were successfully synthesized, characterized and adopted to decontaminate Eu(III) and fulvic acid (FA) under diverse experimental conditions. Diverse concentration gradients and different addition sequences on Eu(III) and FA were also obtained, which revealed different interaction mechanisms. The experimental results displayed that the coexistence of FA and Eu(III) respectively promoted adsorption performance of Eu(III) and FA under the ternary systems. The acquired Ca-Mg-Al LDH/GO composites were adopted to remove Eu(III) and FA, which further illustrated excellent chemo-physical stability and adsorption capacity of 1.12 × 10-3 mol/g and 3.54 × 10-4 mol/g, respectively. The remarkable adsorption performances of Ca-Mg-Al LDH/GO were confirmed through kinetic procedures and depending-temperature isotherms, illustrating that the kinetics processes were simulated using pseudo-second-order pattern, and the adsorption isotherms were splendidly simulated using Langmuir pattern. XPS spectrum analysis revealed that these containing oxygen groups took significant part in the restricting of Eu(III) and FA onto the surfaces of Ca-Mg-Al LDH/GO composites. In view of experimental results, the Ca-Mg-Al LDH/GO composites can be as potential adsorbents with availably recycled reusability for the decontamination of Eu(III) and FA from nuclear fuel partition or nuclear wastewater systems.
Collapse
Affiliation(s)
- Pengfei Zong
- National Demonstration Center for Experimental Comprehensive Chemical Engineering Education, Shanxi Province Key Laboratory of Functional Nanocomposites, School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, PR China.
| | - Min Shao
- National Demonstration Center for Experimental Comprehensive Chemical Engineering Education, Shanxi Province Key Laboratory of Functional Nanocomposites, School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, PR China
| | - Duanlin Cao
- National Demonstration Center for Experimental Comprehensive Chemical Engineering Education, Shanxi Province Key Laboratory of Functional Nanocomposites, School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, PR China.
| | - Xuejuan Xu
- National Demonstration Center for Experimental Comprehensive Chemical Engineering Education, Shanxi Province Key Laboratory of Functional Nanocomposites, School of Chemical Engineering and Technology, North University of China, Taiyuan, Shanxi, 030051, PR China
| | - Shoufang Wang
- School of Science, North University of China, Taiyuan, Shanxi, 030051, PR China
| | - Hangzhou Zhang
- Reactor Operation and Application Sub-Institute, Nuclear Power Institute of China, Chengdu, 610005, PR China
| |
Collapse
|
33
|
Abdulkarem E, Ibrahim Y, Kumar M, Arafat HA, Naddeo V, Banat F, Hasan SW. Polyvinylidene fluoride (PVDF)-α-zirconium phosphate (α-ZrP) nanoparticles based mixed matrix membranes for removal of heavy metal ions. CHEMOSPHERE 2021; 267:128896. [PMID: 33187662 DOI: 10.1016/j.chemosphere.2020.128896] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 10/15/2020] [Accepted: 11/03/2020] [Indexed: 06/11/2023]
Abstract
The removal of heavy metal ions from industrial wastewater is essential as they pose serious threats to human health and the environment. In this study, novel poly(vinylidene fluoride) (PVDF)-alpha-zirconium phosphate (PVDF-α-ZrP) mixed matrix membranes (MMM) were prepared via the phase inversion method. Membranes with different α-ZrP nanoparticles (NPs) loadings (0.25, 0.50, 0.75, or 1.00 wt%) were fabricated. The impacts of α-ZrP NP loading on the membrane's morphology, functionality, surface charge, and hydrophilicity were evaluated. Fourier-transform infrared and the energy-dispersive X-ray spectroscopy were performed to verify the presence of α-ZrP NPs in the fabricated membranes. The PVDF membranes became more hydrophilic after incorporating the α-ZrP NPs. The thermal and mechanical stability and porosity of the PVDF-α-ZrP MMM were higher than those of the pristine PVDF membrane. The increased hydrophilicity, pore size and porosity and reduced surface roughness of the PVDF-α-ZrP membrane led to significant flux increase and reduced fouling propensity. The PVDF-α-ZrP membrane containing 1.00 wt% α-ZrP was capable of removing 42.8% (Cd2+), 93.1% (Cu2+), 44.4% (Ni2+), 91.2% (Pb2+), and 44.2% (Zn2+) from an aqueous solution at neutral pH during filtration.
Collapse
Affiliation(s)
- Elham Abdulkarem
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Yazan Ibrahim
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Mahendra Kumar
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Hassan A Arafat
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, Via Giovanni Paolo II #132, 84084, Fisciano, SA, Italy
| | - Fawzi Banat
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Shadi W Hasan
- Center for Membranes and Advanced Water Technology (CMAT), Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
34
|
Du J, Yan Y, Tang K, Ding C. Modified Carbon Nanotubes Decorated with ZIFs as New Immobilized Metal Ion Affinity Chromatography Platform for Enrichment of Phosphopeptides. ChemistrySelect 2021. [DOI: 10.1002/slct.202004650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jianglong Du
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry Ningbo University Ningbo 315211 China
| | - Yinghua Yan
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry Ningbo University Ningbo 315211 China
| | - Keqi Tang
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry Ningbo University Ningbo 315211 China
| | - Chuan‐Fan Ding
- School of Materials Science and Chemical Engineering, Institute of Mass Spectrometry Ningbo University Ningbo 315211 China
| |
Collapse
|
35
|
Cao XL, Zhou FY, Cai J, Zhao Y, Liu ML, Xu L, Sun SP. High-permeability and anti-fouling nanofiltration membranes decorated by asymmetric organic phosphate. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118667] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
A double anti-fouling mechanism established by self-assembly of TiO2 on F127 chains for improving the hydrophilicity of PES membrane based on RTIPS method. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.117742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
37
|
Wang Q, Wu X, Chen J, Li W, Zhang H, Wang J. Ultrathin and stable organic-inorganic lamellar composite membrane for high-performance organic solvent nanofiltration. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.116002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
38
|
Low-pressure driven electrospun membrane with tuned surface charge for efficient removal of polystyrene nanoplastics from water. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118470] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
39
|
Engineered Zero-Dimensional Fullerene/Carbon Dots-Polymer Based Nanocomposite Membranes for Wastewater Treatment. Molecules 2020; 25:molecules25214934. [PMID: 33114470 PMCID: PMC7663180 DOI: 10.3390/molecules25214934] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/10/2020] [Accepted: 04/13/2020] [Indexed: 11/26/2022] Open
Abstract
With the rapid growth of industrialization, diverse pollutants produced as by-products are emitted to the air-water ecosystem, and toxic contamination of water is one of the most hazardous environmental issues. Various forms of carbon have been used for adsorption, electrochemical, and ion-exchange membrane filtration to separation processes for water treatment. The utilization of carbon materials has gained tremendous attention as they have exceptional properties such as chemical, mechanical, thermal, antibacterial activities, along with reinforcement capability and high thermal stability, that helps to maintain the ecological balance. Recently, engineered nano-carbon incorporated with polymer as a composite membrane has been spotlighted as a new and effective mode for water treatment. In particular, the properties of zero-dimensional (0D) carbon forms (fullerenes and carbon dots) have encouraged researchers to explore them in the field of wastewater treatment through membrane technologies as they are biocompatible, which is the ultimate requirement to ensure the safety of drinking water. Thus, the purpose of this review is to highlight and summarize current advances in the field of water purification/treatment using 0D carbon-polymer-based nanocomposite membranes. Particular emphasis is placed on the development of 0D carbon forms embedded into a variety of polymer membranes and their influence on the improved performance of the resulting membranes. Current challenges and opportunities for future research are discussed.
Collapse
|
40
|
Liao Z, Nguyen MN, Wan G, Xie J, Ni L, Qi J, Li J, Schäfer AI. Low pressure operated ultrafiltration membrane with integration of hollow mesoporous carbon nanospheres for effective removal of micropollutants. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122779. [PMID: 32387831 DOI: 10.1016/j.jhazmat.2020.122779] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/25/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
An effective way to remove micropollutants is desirable for water purification. In this work, a dual-functional ultrafiltration (DFUF) membrane was fabricated by loading hollow mesoporous carbon nanospheres (HMCNs) into the finger-like support layer pores of the polymeric ultrafiltration (UF) membrane. The designed DFUF membrane combines the high selectivity of ultrafiltration that removes macromolecules based on size exclusion mechanism, and excellent adsorption capacity of HMCNs towards micropollutants in water. When tetracycline (TCN) and 17β-Estradiol (E2) were selected as model micropollutants, corresponding 97 % and 94 % removal were achieved at a low pressure less than 0.15 bar and a flux of 50 and 64 L h-1 m-2 (estimated residence time less than 6 s), respectively. Moreover, simultaneous removal of multiple pollutants was demonstrated by filtering a mixture containing TCN and polyethylene glycols (PEG) 600 kDa macromolecules. Over a long filtration period (more than 60 h) that produced 3180 L/m2 of permeate, the TCN concentration reduced from 100 μg/L in the feed to less than 10 μg/L in the permeate. The above results indicate that the DFUF membrane is capable of removing the small molecular and macromolecular pollutants simultaneously at low pressure, and hence offers remarkable potential in water treatment applications.
Collapse
Affiliation(s)
- Zhipeng Liao
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Minh Nhat Nguyen
- Membrane Technology Department, Institute of Functional Interfaces (IFG-MT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Gaojie Wan
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jia Xie
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Linhan Ni
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Junwen Qi
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jiansheng Li
- Key Laboratory of New Membrane Materials, Ministry of Industry and Information Technology, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| | - Andrea Iris Schäfer
- Membrane Technology Department, Institute of Functional Interfaces (IFG-MT), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
41
|
Arabi S, Pellegrin ML, Aguinaldo J, Sadler ME, McCandless R, Sadreddini S, Wong J, Burbano MS, Koduri S, Abella K, Moskal J, Alimoradi S, Azimi Y, Dow A, Tootchi L, Kinser K, Kaushik V, Saldanha V. Membrane processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1447-1498. [PMID: 32602987 DOI: 10.1002/wer.1385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
This literature review provides a review for publications in 2018 and 2019 and includes information membrane processes findings for municipal and industrial applications. This review is a subsection of the annual Water Environment Federation literature review for Treatment Systems section. The following topics are covered in this literature review: industrial wastewater and membrane. Bioreactor (MBR) configuration, membrane fouling, design, reuse, nutrient removal, operation, anaerobic membrane systems, microconstituents removal, membrane technology advances, and modeling. Other sub-sections of the Treatment Systems section that might relate to this literature review include the following: Biological Fixed-Film Systems, Activated Sludge, and Other Aerobic Suspended Culture Processes, Anaerobic Processes, and Water Reclamation and Reuse. This publication might also have related information on membrane processes: Industrial Wastes, Hazardous Wastes, and Fate and Effects of Pollutants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Joseph Wong
- Brown and Caldwell, Walnut Creek, California, USA
| | | | | | | | - Jeff Moskal
- Suez Water Technologies & Solutions, Oakville, ON, Canada
| | | | | | - Andrew Dow
- Donohue and Associates, Chicago, Illinois, USA
| | | | | | | | | |
Collapse
|
42
|
Liberatori G, Grassi G, Guidi P, Bernardeschi M, Fiorati A, Scarcelli V, Genovese M, Faleri C, Protano G, Frenzilli G, Punta C, Corsi I. Effect-Based Approach to Assess Nanostructured Cellulose Sponge Removal Efficacy of Zinc Ions from Seawater to Prevent Ecological Risks. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1283. [PMID: 32629917 PMCID: PMC7407410 DOI: 10.3390/nano10071283] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/25/2020] [Accepted: 06/28/2020] [Indexed: 12/19/2022]
Abstract
To encourage the applicability of nano-adsorbent materials for heavy metal ion removal from seawater and limit any potential side effects for marine organisms, an ecotoxicological evaluation based on a biological effect-based approach is presented. ZnCl2 (10 mg L-1) contaminated artificial seawater (ASW) was treated with newly developed eco-friendly cellulose-based nanosponges (CNS) (1.25 g L-1 for 2 h), and the cellular and tissue responses of marine mussel Mytilus galloprovincialis were measured before and after CNS treatment. A control group (ASW only) and a negative control group (CNS in ASW) were also tested. Methods: A significant recovery of Zn-induced damages in circulating immune and gill cells and mantle edges was observed in mussels exposed after CNS treatment. Genetic and chromosomal damages reversed to control levels in mussels' gill cells (DNA integrity level, nuclear abnormalities and apoptotic cells) and hemocytes (micronuclei), in which a recovery of lysosomal membrane stability (LMS) was also observed. Damage to syphons, loss of cilia by mantle edge epithelial cells and an increase in mucous cells in ZnCl2-exposed mussels were absent in specimens after CNS treatment, in which the mantle histology resembled that of the controls. No effects were observed in mussels exposed to CNS alone. As further proof of CNS' ability to remove Zn(II) from ASW, a significant reduction of >90% of Zn levels in ASW after CNS treatment was observed (from 6.006 to 0.510 mg L-1). Ecotoxicological evaluation confirmed the ability of CNS to remove Zn from ASW by showing a full recovery of Zn-induced toxicological responses to the levels of mussels exposed to ASW only (controls). An effect-based approach was thus proven to be useful in order to further support the environmentally safe (ecosafety) application of CNS for heavy metal removal from seawater.
Collapse
Affiliation(s)
- Giulia Liberatori
- Department of Physical, Earth and Environmental Sciences and INSTM Local Unit, University of Siena, 53100 Siena, Italy; (G.L.); (G.G.); (G.P.)
| | - Giacomo Grassi
- Department of Physical, Earth and Environmental Sciences and INSTM Local Unit, University of Siena, 53100 Siena, Italy; (G.L.); (G.G.); (G.P.)
| | - Patrizia Guidi
- Department of Clinical and Experimental Medicine-Section of Applied Biology and Genetics, University of Pisa, 56126 Pisa, Italy; (P.G.); (M.B.); (V.S.); (M.G.)
| | - Margherita Bernardeschi
- Department of Clinical and Experimental Medicine-Section of Applied Biology and Genetics, University of Pisa, 56126 Pisa, Italy; (P.G.); (M.B.); (V.S.); (M.G.)
| | - Andrea Fiorati
- Department of Chemistry, Materials, and Chemical Engineering “G. Natta” and INSTM Local Unit, Politecnico di Milano, 20131 Milano, Italy; (A.F.); (C.P.)
| | - Vittoria Scarcelli
- Department of Clinical and Experimental Medicine-Section of Applied Biology and Genetics, University of Pisa, 56126 Pisa, Italy; (P.G.); (M.B.); (V.S.); (M.G.)
| | - Massimo Genovese
- Department of Clinical and Experimental Medicine-Section of Applied Biology and Genetics, University of Pisa, 56126 Pisa, Italy; (P.G.); (M.B.); (V.S.); (M.G.)
| | - Claudia Faleri
- Department of Life Sciences, University of Siena, 53100 Siena, Italy;
| | - Giuseppe Protano
- Department of Physical, Earth and Environmental Sciences and INSTM Local Unit, University of Siena, 53100 Siena, Italy; (G.L.); (G.G.); (G.P.)
| | - Giada Frenzilli
- Department of Clinical and Experimental Medicine-Section of Applied Biology and Genetics, University of Pisa, 56126 Pisa, Italy; (P.G.); (M.B.); (V.S.); (M.G.)
| | - Carlo Punta
- Department of Chemistry, Materials, and Chemical Engineering “G. Natta” and INSTM Local Unit, Politecnico di Milano, 20131 Milano, Italy; (A.F.); (C.P.)
| | - Ilaria Corsi
- Department of Physical, Earth and Environmental Sciences and INSTM Local Unit, University of Siena, 53100 Siena, Italy; (G.L.); (G.G.); (G.P.)
| |
Collapse
|
43
|
Alam I, Guiney LM, Hersam MC, Chowdhury I. Pressure-driven water transport behavior and antifouling performance of two-dimensional nanomaterial laminated membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117812] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
44
|
Wu Z, Gao L, Wang J, Zhao F, Fan L, Hua D, Japip S, Xiao J, Zhang X, Zhou SF, Zhan G. Preparation of glycine mediated graphene oxide/g-C3N4 lamellar membranes for nanofiltration. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.117948] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Luque-Alled JM, Abdel-Karim A, Alberto M, Leaper S, Perez-Page M, Huang K, Vijayaraghavan A, El-Kalliny AS, Holmes SM, Gorgojo P. Polyethersulfone membranes: From ultrafiltration to nanofiltration via the incorporation of APTS functionalized-graphene oxide. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.115836] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
46
|
Thakur AK, Singh SP, Thamaraiselvan C, Kleinberg MN, Arnusch CJ. Graphene oxide on laser-induced graphene filters for antifouling, electrically conductive ultrafiltration membranes. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117322] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
47
|
Wei G, Dong J, Bai J, Zhao Y, Li Y. Structurally Stable, Antifouling, and Easily Renewable Reduced Graphene Oxide Membrane with a Carbon Nanotube Protective Layer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11896-11903. [PMID: 31507168 DOI: 10.1021/acs.est.9b03129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The excellent permeability and selectivity of reduced graphene oxide (rGO) membranes have been demonstrated both theoretically and experimentally; however, strategies for the fabrication of highly stable, antifouling rGO membranes with facile recovery after fouling have rarely been investigated. In this work, we report a structurally durable rGO-based hollow fiber membrane that allows high-pressure (at least 1 bar) back-flushing. This is achieved by sandwiching the rGO layer between a carbon nanotube (CNT) protective layer and a polyacrylonitrile (PAN) support. The CNT layer could also function as a prefiltration and pre-adsorption microsystem and endow a higher resistance against fouling. This is experimentally confirmed by the much higher normalized permeance (0.82-0.92) of the CNT/rGO/PAN membranes than the simple rGO/PAN membranes (0.42-0.53) under the same operating conditions. Additionally, under a low cathode potential (0.9 V), the membrane could easily be renewed after fouling by simple back-flushing with a flux recovery ratio of ∼96%. An investigation of the mechanism indicates that electrostatic repulsive forces promote the desorption of charged organic foulants (e.g., humic acid and dyes) from the rGO and CNT layers, and they can subsequently be removed from the membrane with water.
Collapse
Affiliation(s)
- Gaoliang Wei
- Key Laboratory of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment , Jilin University , Changchun 130021 , China
| | - Jun Dong
- Key Laboratory of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment , Jilin University , Changchun 130021 , China
| | - Jing Bai
- Key Laboratory of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment , Jilin University , Changchun 130021 , China
| | - Yongsheng Zhao
- Key Laboratory of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment , Jilin University , Changchun 130021 , China
| | - Yan Li
- Key Laboratory of Groundwater Resources and Environment (Ministry of Education), College of New Energy and Environment , Jilin University , Changchun 130021 , China
| |
Collapse
|
48
|
Jiang Y, Zhang Y, Chen B, Zhu X. Membrane hydrophilicity switching via molecular design and re-construction of the functional additive for enhanced fouling resistance. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117222] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
49
|
Jiang T, Qi L, Qin W. Improving the Environmental Compatibility of Marine Sensors by Surface Functionalization with Graphene Oxide. Anal Chem 2019; 91:13268-13274. [DOI: 10.1021/acs.analchem.9b03974] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Tianjia Jiang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation and Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, Shandong 264003, P. R. China
| | - Longbin Qi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation and Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, Shandong 264003, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wei Qin
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation and Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Yantai, Shandong 264003, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, P. R. China
| |
Collapse
|
50
|
Zhang L, Ghaffar A, Zhu X, Chen B. Stable Graphene-Based Membrane with pH-Responsive Gates for Advanced Molecular Separation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10398-10407. [PMID: 31389235 DOI: 10.1021/acs.est.9b03662] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Graphene-based stable pH-responsive membranes (GPMs) were developed by alternative deposition of graphene oxide (GO) with polyethylenimine (PEI) in a layer-by-layer manner. Different from the conventional pore-blocking pH-responsive membranes, the size of the gaps among the GO sheets were first designed to respond to the surrounding pH. Atomic force microscopy was used to dynamically explore the internal structure alteration of GPM in the pH range from 3 to 11. It was found that the PEI molecules not only cross-linked the GO sheets through amide bonds to ensure the membrane stability but also reversibly altered the gate size of GPM in a certain extent according to the surrounding pH. In filtration, the gates of GPM were widened with the decreasing pH of the feed and vice versa. As a result, the permeate flux of GPM increased with the decreasing feed pH. More importantly, the molecular weight cutoff of GPM could be continuously regulated by the feed pH in a certain range; during the filtration of the polyvinylpyrrolidone (PVP) and polyethylene oxide (PEO) mixed solution, only PVP (58 kDa) could penetrate GPM at pH 11, while the left PEO (600 kDa) would penetrate GPM at pH 3. The controlled penetration through GPM led to a complete separation and recovery of the molecules in different sizes, which is highly desirable for advanced molecular separation in environmental applications.
Collapse
Affiliation(s)
- Lina Zhang
- Department of Environmental Science , Zhejiang University , Hangzhou , Zhejiang 310058 , China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control , Hangzhou 310058 , China
| | - Abdul Ghaffar
- Department of Environmental Science , Zhejiang University , Hangzhou , Zhejiang 310058 , China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control , Hangzhou 310058 , China
| | - Xiaoying Zhu
- Department of Environmental Science , Zhejiang University , Hangzhou , Zhejiang 310058 , China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control , Hangzhou 310058 , China
| | - Baoliang Chen
- Department of Environmental Science , Zhejiang University , Hangzhou , Zhejiang 310058 , China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control , Hangzhou 310058 , China
| |
Collapse
|