1
|
Qiu Z, Wang H, Dai R, Wang Z. Enhancing Silica Scaling Resistance and Perm-Selectivity of Reverse Osmosis Membranes via Increased Charge Density and Suppressed Coordination Capacity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5370-5381. [PMID: 40052783 DOI: 10.1021/acs.est.4c13117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Silica scaling poses a substantial challenge in the advanced treatment of industrial wastewater by reverse osmosis (RO) membranes, while the existing methods modifying RO membranes to enhance antisilica scaling performance often compromise water permeance. Herein, we fabricated a sulfonated RO membrane (SLRO) using sodium lignosulfonate as a comonomer, achieving an enhanced charge density and reduced coordination capacity. SLRO exhibited superior antisilica scaling performance, reducing scaling rates by ∼145, ∼166, and ∼157% under acidic, neutral, and alkaline conditions compared to the control. Reduced density gradient analysis confirmed that sulfonic acid groups (-SO3H) on the SLRO surface increased the repulsion of silicic acid. Moreover, the SLRO demonstrated reductions of ∼112, ∼137, and ∼133% in cation-mediated silica scaling rates under the same conditions, attributed to the weaker coordination between -SO3H and cations, which diminished the cation-bridging effect. Furthermore, SLRO membranes exhibited high pure water permeance (3.3 L m-2 h-1 bar-1) and NaCl rejection (99.2%), with a water/NaCl selectivity (7.8 bar-1) three times greater than that of the control (2.6 bar-1), primarily attributed to increased surface roughness and reduced apparent thickness of the PA layer. Our work provides a robust strategy for fabricating silica scaling-resistant RO membranes with improved perm-selectivity.
Collapse
Affiliation(s)
- Zhiwei Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, China
| | - Hailan Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, China
| | - Ruobin Dai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, No.1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
2
|
Wang S, Li W, Xi B, Cao L, Huang C. Mechanisms and influencing factors of horizontal gene transfer in composting system: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177017. [PMID: 39427888 DOI: 10.1016/j.scitotenv.2024.177017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/22/2024]
Abstract
Organic solid wastes such as livestock manure and sewage sludge are important sources and repositories of antibiotic resistance genes (ARGs). Composting, a solid waste treatment technology, has demonstrated efficacy in degrading various antibiotics and reducing ARGs. However, some recalcitrant ARGs (e.g., sul1, sul2) will enrich during the composting maturation period. These ARGs persist in compost products and spread through horizontal gene transfer (HGT). We analyzed the reasons behind the increase of ARGs during the maturation phase. It was found that the proliferation of ARG-host bacteria and HGT process play an important role. This article revealed that microbial physiological responses, environmental factors, pollutants, and quorum sensing (QS) can all influence the HGT process in composting systems. We examined the influence of these factors on HGT in the compost system and summarized potential mechanisms by analyzing the alterations in microbial communities. We comprehensively summarized the HGT hazards that these factors may present in composting systems. Finally, we summarized methods to inhibit HGT in compost, such as using additives, quorum sensing inhibitors (QSIs), microbial inoculation, and predicting HGT events. Overall, the HGT mechanism and driving force in complex composting systems are still insufficiently studied. In view of the current situation, using predictions to assess the risk of HGT in composting may be advisable.
Collapse
Affiliation(s)
- Simiao Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Wei Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Beidou Xi
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lijia Cao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Caihong Huang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
3
|
Gao Q, Duan L, Zhang H, Jia Y, Li M, Li S, Yang D. Effect of Mn 2+ on RO membrane organic fouling: Insights into the complexation and interfacial interaction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 367:122041. [PMID: 39083934 DOI: 10.1016/j.jenvman.2024.122041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/13/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
RO process is commonly used to treat and reuse manganese-containing industrial wastewater. Nevertheless, even after undergoing multi-stage treatment, the secondary biochemical effluent still exhibits a high concentration of Mn2+ coupled with organics entering the RO system, leading to membrane fouling. In this work, we systematically analyze the RO membrane organic fouling processes and mechanisms, considering the coexistence of Mn2+ with humic acid (HA), sodium alginate (SA), bovine serum albumin (BSA) and their mixtures (HBS). The impact of Mn2+ on membrane fouling was HBS > SA > HA > BSA, controlling polysaccharide pollutant concentrations should be a priority for mitigating membrane fouling. In the presence of Mn2+ with HA, SA, or HBS, membrane fouling is primarily attributed to the complexation of organics and Mn2+ and the facilitation of interfacial interaction energy. RO membrane BSA fouling was not directly affected by Mn2+, the addition of Mn2+ induced a salting-out effect, leading to the deposition of BSA in a single molecular on the membrane. Simultaneously, adhesion energy hinders the deposition of BSA on the membrane, resulting in milder membrane fouling. This study provided the theoretical basis and suggestions for RO membrane organic fouling control in the presence of Mn2+.
Collapse
Affiliation(s)
- Qiusheng Gao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Liang Duan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Hengliang Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Yanyan Jia
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Mingyue Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Shilong Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Dongmin Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Basin Research Center for Water Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| |
Collapse
|
4
|
Wang X, Guo Y, Li Y, Ma Z, Li Q, Wang Q, Xu D, Gao J, Gao X, Sun H. Molecular level unveils anion exchange membrane fouling induced by natural organic matter via XDLVO and molecular simulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170272. [PMID: 38266735 DOI: 10.1016/j.scitotenv.2024.170272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Membrane fouling, critically determined by the interplay of interfacial interaction between foulant and membrane, is a critical impediment that limits application extension of electrodialysis (ED) process. In this study, the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) model and molecular simulation were performed to quantify the interaction energy barrier for revealing anion exchange membranes (AEMs) fouling mechanisms of calcium ions coexisted with natural organic matter (NOM) (sodium alginate, humic acid, and bovine serum albumin). The insight gained from DMol3 module was also utilized to interpret the adhesion process of NOM at the molecular level. The interaction energy suggested that the presence of Ca-NOM complex magnify the adhesion on the surface cavities of AEMs structures. The molecular simulation and XDLVO presented a good agreement in predicting the fouling trajectory based on the experimental findings. The short-path acid-base interaction exerted a predominant influence on exploring the fouling formation process. In addition, the sodium alginate displayed more stable adhesion behavior through calcium ions bridges stimuli than humic acid and bovine serum albumin. In particular, the molecular simulation calculations exhibited a superior level of concurrence with colloid growth of membrane fouling. Combined XDLVO theory with DMol3 model proposed a new approach to understand membrane fouling mechanisms in ED process.
Collapse
Affiliation(s)
- Xiaomeng Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
| | - Yanyan Guo
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
| | - Yuanxin Li
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
| | - Zhun Ma
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China.
| | - Qing Li
- College of Chemistry and Chemical Engineering, De Zhou University, De Zhou 253023, Shandong, China
| | - Qun Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
| | - Dongmei Xu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China.
| | - Jun Gao
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
| | - Xueli Gao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China.
| | - Hui Sun
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
5
|
Tong T, Liu X, Li T, Park S, Anger B. A Tale of Two Foulants: The Coupling of Organic Fouling and Mineral Scaling in Membrane Desalination. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:7129-7149. [PMID: 37104038 DOI: 10.1021/acs.est.3c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Membrane desalination that enables the harvesting of purified water from unconventional sources such as seawater, brackish groundwater, and wastewater has become indispensable to ensure sustainable freshwater supply in the context of a changing climate. However, the efficiency of membrane desalination is greatly constrained by organic fouling and mineral scaling. Although extensive studies have focused on understanding membrane fouling or scaling separately, organic foulants commonly coexist with inorganic scalants in the feedwaters of membrane desalination. Compared to individual fouling or scaling, combined fouling and scaling often exhibits different behaviors and is governed by foulant-scalant interactions, resembling more complex but practical scenarios than using feedwaters containing only organic foulants or inorganic scalants. In this critical review, we first summarize the performance of membrane desalination under combined fouling and scaling, involving mineral scales formed via both crystallization and polymerization. We then provide the state-of-the-art knowledge and characterization techniques pertaining to the molecular interactions between organic foulants and inorganic scalants, which alter the kinetics and thermodynamics of mineral nucleation as well as the deposition of mineral scales onto membrane surfaces. We further review the current efforts of mitigating combined fouling and scaling via membrane materials development and pretreatment. Finally, we provide prospects for future research needs that guide the design of more effective control strategies for combined fouling and scaling to improve the efficiency and resilience of membrane desalination for the treatment of feedwaters with complex compositions.
Collapse
Affiliation(s)
- Tiezheng Tong
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Xitong Liu
- Department of Civil and Environmental Engineering, George Washington University, Washington, D.C. 20052, United States
| | - Tianshu Li
- Department of Civil and Environmental Engineering, George Washington University, Washington, D.C. 20052, United States
| | - Shinyun Park
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Bridget Anger
- Department of Civil and Environmental Engineering, George Washington University, Washington, D.C. 20052, United States
| |
Collapse
|
6
|
Park S, Choi S, Lee YK, Jho Y, Kang S, Hwang DS. Cation-π Interactions Contribute to Hydrophobic Humic Acid Removal for the Control of Hydraulically Irreversible Membrane Fouling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3853-3863. [PMID: 36826440 DOI: 10.1021/acs.est.2c07593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hydraulically irreversible membrane fouling is a major problem encountered during membrane-based water purification. Membrane foulants present large hydrophobic fractions, with humic acid (HA) being a prevalent example of hydrophobic natural organic matter. Furthermore, HA contains numerous aromatic rings (π electrons), and its hydrophobic interactions are a major cause of irreversible membrane fouling. To address this issue, in this study, we used the cation-π interaction, which is a strong noncovalent, competitive interaction present in water. Because the strength of cation-π interactions depends on the combination of cations and π molecules, utilizing the appropriate cations will effectively remove irreversible fouling caused by hydrophobic HA. We performed macroscale experiments to determine the cleaning potential of the test cations, nanomechanically analyzed the changes in HA cohesion caused by the test cations using a surface force apparatus and an atomic force microscope, and used molecular dynamics simulations to elucidate the HA removal mechanism of test studied cations. We found that the addition of 1-ethyl-3-methylimidazolium, an imidazolium cation with an aromatic moiety, effectively removed the HA layer by weakening its cohesion, and the size, hydrophobicity, and polarity of the HA layer synergistically affected the HA removal mechanism based on the cation-π interactions.
Collapse
Affiliation(s)
- Sohee Park
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Chengam-ro, Nam-gu, Pohang 37673, Republic of Korea
| | - Seungju Choi
- Department of Civil and Environmental Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Yeong Kyu Lee
- Department of Physics and Research Institute of Natural Science, Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea
| | - Yongseok Jho
- Department of Physics and Research Institute of Natural Science, Gyeongsang National University (GNU), 501 Jinju-daero, Jinju 52828, Korea
| | - Seoktae Kang
- Department of Civil and Environmental Engineering, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dong Soo Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Chengam-ro, Nam-gu, Pohang 37673, Republic of Korea
| |
Collapse
|
7
|
Advanced Polymeric Nanocomposite Membranes for Water and Wastewater Treatment: A Comprehensive Review. Polymers (Basel) 2023; 15:polym15030540. [PMID: 36771842 PMCID: PMC9920371 DOI: 10.3390/polym15030540] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
Nanomaterials have been extensively used in polymer nanocomposite membranes due to the inclusion of unique features that enhance water and wastewater treatment performance. Compared to the pristine membranes, the incorporation of nanomodifiers not only improves membrane performance (water permeability, salt rejection, contaminant removal, selectivity), but also the intrinsic properties (hydrophilicity, porosity, antifouling properties, antimicrobial properties, mechanical, thermal, and chemical stability) of these membranes. This review focuses on applications of different types of nanomaterials: zero-dimensional (metal/metal oxide nanoparticles), one-dimensional (carbon nanotubes), two-dimensional (graphene and associated structures), and three-dimensional (zeolites and associated frameworks) nanomaterials combined with polymers towards novel polymeric nanocomposites for water and wastewater treatment applications. This review will show that combinations of nanomaterials and polymers impart enhanced features into the pristine membrane; however, the underlying issues associated with the modification processes and environmental impact of these membranes are less obvious. This review also highlights the utility of computational methods toward understanding the structural and functional properties of the membranes. Here, we highlight the fabrication methods, advantages, challenges, environmental impact, and future scope of these advanced polymeric nanocomposite membrane based systems for water and wastewater treatment applications.
Collapse
|
8
|
Li H, Jiang E, Wang Y, Zhong R, Zhou J, Wang T, Jia H, Zhu L. Natural organic matters promoted conjugative transfer of antibiotic resistance genes: Underlying mechanisms and model prediction. ENVIRONMENT INTERNATIONAL 2022; 170:107653. [PMID: 36436463 DOI: 10.1016/j.envint.2022.107653] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Dissemination of antibiotic resistance gene (ARG) is a huge challenge around the world. Natural organic matter (NOM) is one of the most commonly components in aquatic systems. Information regarding ARG transfer induced by NOM is still lacking. In this study, experimental exploration and model prediction on RP4 plasmid conjugative transfer between bacteria under NOM exposure was conducted. Compared with no exposure, the conjugative transfer frequency of RP4 plasmid increased 7.1-fold and 3.2-fold under exposure to 10 kDa and 100 kDa NOM exposure, respectively. NOM exposure with a lower molecular weight and higher concentration promoted gene expressions related to reactive oxygen species generation, cell membrane permeability, intercellular contact, quorum sensing, and energy driving force. Concurrently, the expressions of conjugation genes in RP4 plasmid were also upregulated. Moreover, model prediction demonstrated that the maintenance of the acquired plasmid was shortened to 133 h under 10 kDa NOM exposure compared with the control (200 h). Long-term NOM exposure enhanced transfer frequency and transfer rate of ARG. This study firstly theoretically and experimentally revealed the underlying mechanisms for promoting ARG transfer by NOM.
Collapse
Affiliation(s)
- Hu Li
- Breeding Base for State Key Lab. of Land Degradation and Ecological Restoration in northwestern China, China; Key Lab. of Restoration and Reconstruction of Degraded Ecosystems in northwestern China of Ministry of Education, China; School of Ecology and Environment, Ningxia University, Yinchuan 750021, China
| | - Enli Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Yangyang Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Rongwei Zhong
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Jian Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Tiecheng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| | - Hanzhong Jia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, China.
| |
Collapse
|
9
|
Yuan YD, Zhang X, Yang Z, Zhao D. Metal-organic cage incorporating thin-film nanocomposite membranes with antifouling properties. Chem Commun (Camb) 2022; 58:6865-6868. [PMID: 35621067 DOI: 10.1039/d2cc01032a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the antifouling properties of thin-film nanocomposite (TFN) membranes containing two water-stable metal-organic cages (MOCs). The MOC-containing TFN membranes possess excellent antifouling properties against positively-charged foulants and protein (BSA, up to 99.7% water permeability retention) and achieve up to 100% water permeability recovery.
Collapse
Affiliation(s)
- Yi Di Yuan
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore.
| | - Xiaomei Zhang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore.
| | - Ziqi Yang
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore.
| | - Dan Zhao
- Department of Chemical & Biomolecular Engineering, National University of Singapore, 117585, Singapore.
| |
Collapse
|
10
|
Mahmoudpour M, Jouyban A, Soleymani J, Rahimi M. Rational design of smart nano-platforms based on antifouling-nanomaterials toward multifunctional bioanalysis. Adv Colloid Interface Sci 2022; 302:102637. [PMID: 35290930 DOI: 10.1016/j.cis.2022.102637] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 12/16/2022]
Abstract
The ability to design nanoprobe devices with the capability of quantitative/qualitative operation in complex media will probably underpin the main upcoming progress in healthcare research and development. However, the biomolecules abundances in real samples can considerably alter the interface performance, where unwanted adsorption/adhesion can block signal response and significantly decrease the specificity of the assay. Herein, this review firstly offers a brief outline of several significances of fabricating high-sensitivity and low-background interfaces to adjust various targets' behaviors induced via bioactive molecules on the surface. Besides, some important strategies to resist non-specific protein adsorption and cell adhesion, followed by imperative categories of antifouling reagents utilized in the construction of high-performance solid sensory interfaces, are discussed. The next section specifically highlights the various nanocomposite probes based on antifouling-nanomaterials for electrode modification containing carbon nanomaterials, noble metal nanoparticles, magnetic nanoparticles, polymer, and silicon-based materials in terms of nanoparticles, rods, or porous materials through optical or chemical strategies. We specially outline those nanoprobes that are capable of identification in complex media or those using new constructions/methods. Finally, the necessity and requirements for future advances in this emerging field are also presented, followed by opportunities and challenges.
Collapse
|
11
|
Zhang H, Zhu S, Yang J, Ma A. Advancing Strategies of Biofouling Control in Water-Treated Polymeric Membranes. Polymers (Basel) 2022; 14:1167. [PMID: 35335498 PMCID: PMC8951698 DOI: 10.3390/polym14061167] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 01/27/2023] Open
Abstract
Polymeric membranes, such as polyamide thin film composite membranes, have gained increasing popularity in wastewater treatment, seawater desalination, as well as the purification and concentration of chemicals for their high salt-rejection and water flux properties. Membrane biofouling originates from the attachment or deposition of organic macromolecules/microorganisms and leads to an increased operating pressure and shortened service life and has greatly limited the application of polymeric membranes. Over the past few years, numerous strategies and materials were developed with the aim to control membrane biofouling. In this review, the formation process, influence factors, and consequences of membrane biofouling are systematically summarized. Additionally, the specific strategies for mitigating membrane biofouling including anchoring of hydrophilic monomers, the incorporation of inorganic antimicrobial nanoparticles, coating/grafting of cationic bactericidal polymers, and the design of multifunctional material integrated multiple anti-biofouling mechanisms, are highlighted. Finally, perspectives on the challenges and opportunities in anti-biofouling polymeric membranes are shared, shedding light on the development of even better anti-biofouling materials in near future.
Collapse
Affiliation(s)
- Hongli Zhang
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China;
| | - Shilin Zhu
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China;
| | - Jie Yang
- School of Materials Science and Engineering, Xi’an Polytechnic University, Xi’an 710048, China;
| | - Aijie Ma
- School of Materials Science and Chemical Engineering, Xi’an Technological University, Xi’an 710021, China;
| |
Collapse
|
12
|
Yu H, Di S, Su X, Wang J, Ning T, Yang H, Zhu S. Preparation of beta-cyclodextrin based nanocomposite for magnetic solid-phase extraction of organic ultraviolet filters. J Chromatogr A 2021; 1663:462765. [PMID: 34963090 DOI: 10.1016/j.chroma.2021.462765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 10/19/2022]
Abstract
A simple and efficient analytical method for organic UV filters (UV-Fs) in environmental samples has been established in this study. Taking advantage of the hydrophobicity on the inner cavity, hydrophilicity on the outer wall, and host-guest interaction provided by beta-cyclodextrin, a core-shell magnetic extraction material was firstly synthesized by using a facile method. The extractant was utilized in magnetic solid-phase extraction of UV-Fs in complex environmental samples, including beach sand, sediment and river water samples, followed by the quantitation using high-performance liquid chromatography. A series of factors affecting extraction efficiencies of seven UV-Fs were profoundly optimized. Under the optimal conditions, the linear ranges were at 5.0-5.0 × 102 ng mL-1 for the UV-Fs with regression coefficients (r) at 0.9984-0.9998. The limits of detection were from 0.12 to 1.4 ng mL-1. The recoveries were in the range of 84.2-109%. Furthermore, the molecular dynamics simulations and independent gradient model analysis were applied to reveal the adsorption configuration and interaction mechanisms between target analytes and the sorbent.
Collapse
Affiliation(s)
- Hao Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Siyuan Di
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Xueli Su
- College of Chemical Engineering and Pharmacy, Jingchu University of Technology, Jingmen 448000, China
| | - Jiahao Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Tao Ning
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hucheng Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Shukui Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China.
| |
Collapse
|
13
|
Xu M, Feng X, liu Z, Han X, Zhu J, Wang J, Bruggen BVD, Zhang Y. MOF laminates functionalized polyamide self-cleaning membrane for advanced loose nanofiltration. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Yang H, Yu H, Wang J, Ning T, Chen P, Yu J, Di S, Zhu S. Magnetic porous biochar as a renewable and highly effective adsorbent for the removal of tetracycline hydrochloride in water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:61513-61525. [PMID: 34184221 DOI: 10.1007/s11356-021-15124-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
In this study, discarded cigarette butts were used as a precursor for preparing magnetic porous biochar with a facile annealing method. The magnetic porous biochar was applied to remove tetracycline hydrochloride (TCH) from aqueous solution. It exhibited excellent adsorption capacity for TCH, which was much higher than various similar materials reported. At the same time, the adsorption kinetics and adsorption isotherms of TCH were well fitted to the pseudo-second-order models and Freundlich models, respectively. The thermodynamics experiments proved that the adsorption on magnetic porous biochar was an endothermic reaction. Furthermore, the adsorption mechanism was explored, and the outstanding adsorption ability was mainly dependent on the pore filling effect, electrostatic interaction, and π-π interaction. By using the magnetic porous biochar, the real water samples were treated and high removal efficiency to TCH was obtained. What's more, the excellent reusability endowed the magnetic porous biochar with great potential as adsorbents for practical application.
Collapse
Affiliation(s)
- Hucheng Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, China
| | - Hao Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, China
| | - Jiahao Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, China
| | - Tao Ning
- Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, China
| | - Pin Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, China
| | - Jing Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, China
- Gemmological Institute, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, China
| | - Siyuan Di
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, China
| | - Shukui Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, China.
| |
Collapse
|
15
|
Li D, Lin W, Shao R, Shen YX, Zhu X, Huang X. Interaction between humic acid and silica in reverse osmosis membrane fouling process: A spectroscopic and molecular dynamics insight. WATER RESEARCH 2021; 206:117773. [PMID: 34695668 DOI: 10.1016/j.watres.2021.117773] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/04/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Combined organic and inorganic fouling is a primary barrier constraining the performance of reverse osmosis (RO) membrane. In this work, we conducted a systematic study focusing on the synergetic fouling effects of silica and humic acid (HA) in RO process, and found the critical silica concentration where the fouling pattern changed qualitatively. When the silica concentration was lower than 6 mM at a typical HA concentration of 50 mg·L-1, no severe fouling was observed, while silica reaching this critical point could cause severe synergetic fouling with HA. Concentrated silica above the critical point acted as the prior foulant with marginal fouling effect caused by HA. A variety of solutions and surface-based characterizations were performed to elucidate the synergistic fouling responsibility for silica and HA. Our study suggests that the carboxylic groups from HA formed hydrogen bonds with silica hydrate, inducing silica adsorption onto HA aggregates at low silica particle concentrations. The HA network was bridged together to form large foulants due to the silica-silica interaction above the silica critical concentration. These mechanisms were further confirmed by molecular dynamics simulations. This study provides an in-depth insight into the combined organic-inorganic fouling and can serve as a guideline to optimize feed conditions in order to mitigate fouling of RO in wastewater reusing industry.
Collapse
Affiliation(s)
- Danyang Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, International Joint Laboratory on Low Carbon Clean Energy Innovation, Ministry of Education, School of Environment, Tsinghua University, Beijing 100084, China
| | - Weichen Lin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, International Joint Laboratory on Low Carbon Clean Energy Innovation, Ministry of Education, School of Environment, Tsinghua University, Beijing 100084, China
| | - Ruipeng Shao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, International Joint Laboratory on Low Carbon Clean Energy Innovation, Ministry of Education, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yue-Xiao Shen
- Department of Construction, Civil and Environmental Engineering, Texas Tech University, Lubbock, TX 79409, United States
| | - Xianzheng Zhu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, International Joint Laboratory on Low Carbon Clean Energy Innovation, Ministry of Education, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, International Joint Laboratory on Low Carbon Clean Energy Innovation, Ministry of Education, School of Environment, Tsinghua University, Beijing 100084, China; Research and Application Center for Membrane Technology, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
16
|
Kawabata Y, Gonzales RR, Nakagawa K, Shintani T, Matsuyama H, Fujimura Y, Kawakatsu T, Yoshioka T. Molecular dynamics study on the elucidation of polyamide membrane fouling by nonionic surfactants and disaccharides. Phys Chem Chem Phys 2021; 23:20313-20322. [PMID: 34486597 DOI: 10.1039/d1cp01455b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reverse osmosis (RO) is a widely used energy-efficient separation technology for water treatment. Polyamide (PA) membranes are the conventional choice for this process. Fouling is a serious problem for RO separation. This issue leads to significant decreases in the water permeability of PA membranes, and it has yet to be fully elucidated. In particular, the fouling behavior of a nonionic substance on the negatively charged surface of a PA membrane in an aqueous environment has not been previously studied. In this work, the mechanisms of nonionic substances such as polyoxyethylene octyl ether (PE5) and maltose (Mal) were investigated using molecular dynamics (MD) simulations. In a PA membrane in which the carboxyl group was not dissociated, the hydrophobic portion of the membrane was exposed due to the localization of water molecules around the carboxyl groups in the PA membrane. This caused hydrophobic interaction with the hydrophobic groups of PE5. In the case of an amine-modified PA membrane containing no carboxyl groups, water was not localized around the functional group, and the water orientation of the polyamide surface was also low. Due to this membrane property, the presence of stabilized water around PE5 reduced the number of hydrophobic interactions. In similar manner, a PA membrane with a slightly dissociated carboxyl group was hydrophilic, which reduced the PE5 adsorption. The presence of many dissociated carboxyl groups, however, enhanced the adsorption of PE5 due to the increase in interactions between the dissociated carboxyl groups and the hydrophilic groups of PE5. Therefore, PE5 exhibited an amphipathic adsorption wherein both hydrophilic and hydrophobic groups contributed to adsorption onto the PA membrane. Mal, on the other hand, was highly stable in every aqueous environment independent of the state of the functional groups of the PA membrane, and was not easily affected by the properties of the PA membrane.
Collapse
Affiliation(s)
- Yuki Kawabata
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan. .,Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kove 657-8501, Japan
| | - Ralph Rolly Gonzales
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kove 657-8501, Japan
| | - Keizo Nakagawa
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan. .,Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kove 657-8501, Japan
| | - Takuji Shintani
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan. .,Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kove 657-8501, Japan
| | - Hideto Matsuyama
- Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kove 657-8501, Japan.,Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kove 657-8501, Japan
| | - Yu Fujimura
- Research and Development Division, Kurita Water Industries Ltd, 1-1 Kawada, Nogi, Shimotsuga, Tochigi 329-0105, Japan
| | - Takahiro Kawakatsu
- Research and Development Division, Kurita Water Industries Ltd, 1-1 Kawada, Nogi, Shimotsuga, Tochigi 329-0105, Japan
| | - Tomohisa Yoshioka
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan. .,Research Center for Membrane and Film Technology, Kobe University, 1-1 Rokkodai, Nada, Kove 657-8501, Japan
| |
Collapse
|
17
|
Noguchi T, Niihara K, Kawamoto K, Fukushi M, Jinnai H, Nakajima K, Endo M. Preparation of high‐performance carbon nanotube/polyamide composite materials by elastic high‐shear kneading and improvement of properties by induction heating treatment. J Appl Polym Sci 2021. [DOI: 10.1002/app.50512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Toru Noguchi
- Research Institute for Supra‐Materials, Interdisciplinary Cluster for Cutting Edge Research Shinshu University Nagoano Japan
| | | | | | - Masanori Fukushi
- Research Institute for Supra‐Materials, Interdisciplinary Cluster for Cutting Edge Research Shinshu University Nagoano Japan
| | - Hiroshi Jinnai
- Institute of Multidisciplinary Research for Advanced Materials Tohoku University Sendai Japan
| | - Ken Nakajima
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology Tokyo Institute of Technology Tokyo Japan
| | - Morinobu Endo
- Research Institute for Supra‐Materials, Interdisciplinary Cluster for Cutting Edge Research Shinshu University Nagoano Japan
| |
Collapse
|
18
|
Liu C, Wang W, Yang B, Xiao K, Zhao H. Separation, anti-fouling, and chlorine resistance of the polyamide reverse osmosis membrane: From mechanisms to mitigation strategies. WATER RESEARCH 2021; 195:116976. [PMID: 33706215 DOI: 10.1016/j.watres.2021.116976] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Membrane technology has been widely used in the wastewater treatment and seawater desalination. In recent years, the reverse osmosis (RO) membrane represented by polyamide (PA) has made great progress because of its excellent properties. However, the conventional PA RO membranes still have some scientific problems, such as membrane fouling, easy degradation after chlorination, and unclear mechanisms of salt retention and water flux, which seriously impede the widespread use of RO membrane technology. This paper reviews the progress in the research and development of the RO membrane, with key focus on the mechanisms and strategies of the contemporary separation, anti-fouling and chlorine resistance of the PA RO membrane. This review seeks to provide state-of-the-art insights into the mitigation strategies and basic mechanisms for some of the key challenges. Under the guidance of the fundamental understanding of each mechanism, operation and modification strategies are discussed, and reasonable analysis is carried out, which can address some key technical challenges. The last section of the review focuses on the technical issues, challenges, and future perspective of these mechanisms and strategies. Advances in synergistic mechanisms and strategies of the PA RO membranes have been rarely reviewed; thus, this review can serve as a guide for new entrants to the field of membrane water treatment and established researchers.
Collapse
Affiliation(s)
- Chao Liu
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Wenjing Wang
- Institute of Ecology & Environment Governance, Hebei University, Baoding 071002, China
| | - Bo Yang
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ke Xiao
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Huazhang Zhao
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
19
|
Matin A, Laoui T, Falath W, Farooque M. Fouling control in reverse osmosis for water desalination & reuse: Current practices & emerging environment-friendly technologies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142721. [PMID: 33129530 DOI: 10.1016/j.scitotenv.2020.142721] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/22/2020] [Accepted: 09/22/2020] [Indexed: 05/26/2023]
Abstract
Reverse Osmosis (RO) is becoming increasingly popular for seawater desalination and wastewater reclamation. However, fouling of the membranes adversely impacts the overall process efficiency and economics. To date, several strategies and approaches have been used in RO plants and investigated at the laboratory-scale for their effectiveness in the control of different fouling types. Amid growing concerns and stringent regulations for the conservation of environment, there is an increasing trend to identify technologies that are effective in fouling mitigation as well as friendly to the environment. The present review elaborates on the different types of environment-friendly technologies for membrane fouling control that are currently being used or under investigation. It commences with a brief introduction to the global water crisis and the potential of membrane-based processes in overcoming this problem. This is followed by a section on membrane fouling that briefly describes the major fouling types and their impact on the membrane performance. Section 3 discusses the predominant fouling control/prevention strategies including feedwater pretreatment, membrane and spacer surface modification and membrane cleaning. The currently employed techniques are discussed together with their drawbacks, with some light being shed on the emerging technologies that have the ability to overcome the current limitations. The penultimate section provides a detailed discussion on a variety of eco-friendly/chemical free techniques investigated to control different fouling types. These include both control and prevention strategies, for example, bioflocculation and electromagnetic fields, as well as remediation techniques such as osmotic backwashing and gas purging. In addition, quorum sensing has been specifically discussed for biofouling remediation. The promising findings from different studies are presented followed by a discussion on their drawbacks and limitations. The review concludes with a need for carrying out fundamental studies to develop better understanding of the eco-friendly processes discussed in the penultimate section and their optimization for possible integration into the RO plants.
Collapse
Affiliation(s)
- Asif Matin
- Center of Research Excellence in Desalination & Water Treatment, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; Center for Environment & Water, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| | - Tahar Laoui
- Dept. of Mechanical & Nuclear Engineering, University of Sharjah, Sharjah 27272, United Arab Emirates; Desalination Research Group, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Wail Falath
- Center of Research Excellence in Desalination & Water Treatment, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; Center for Environment & Water, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; Dept. of Mechanical Engineering, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| | - Mohammed Farooque
- Desalination Technologies Research Institute, Saline Water Conversion Corporation, Jubail, Saudi Arabia
| |
Collapse
|
20
|
Tiwari S, Gogoi A, Anki Reddy K. Effect of an ionic environment on membrane fouling: a molecular dynamics study. Phys Chem Chem Phys 2021; 23:5001-5011. [PMID: 33624656 DOI: 10.1039/d0cp05268j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The effect of the ionic environment on membrane fouling was investigated for polyamide (PA) and graphene oxide (GO) membranes using equilibrium molecular dynamics (MD) simulations. For each of these membranes, bovine serum albumin (BSA) was considered as the model foulant. The effect of the foulant on the membranes is investigated at seawater concentration and also in a normal aqueous environment. We investigated the translational and rotational motion of the protein relative to the membrane, interaction energy between the protein and the membrane surface, structural changes in the protein, and ion distribution around the protein and the membrane surface for all the systems. We found that the effects of ions were very different on both the membranes. Specifically, with an increase in ionic strength, the repulsion between the protein and membrane was observed in the case of GO, while for PA, no significant changes were observed for the same. Also, the ion distribution around the protein and the membrane surface were found to be different. In particular, for GO, there were more number of chloride ions around the protein and the membrane than that of sodium ions, which was probably the reason for the repulsion in the case of GO. However, in the case of PA, the membrane surface did not exhibit any affinity towards a specific ion, and the protein in the case of PA was surrounded by more number of sodium ions than chloride ions.
Collapse
Affiliation(s)
- Shivam Tiwari
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| | | | | |
Collapse
|
21
|
Cruz-Silva R, Izu K, Maeda J, Saito S, Morelos-Gomez A, Aguilar C, Takizawa Y, Yamanaka A, Tejiima S, Fujisawa K, Takeuchi K, Hayashi T, Noguchi T, Isogai A, Endo M. Nanocomposite desalination membranes made of aromatic polyamide with cellulose nanofibers: synthesis, performance, and water diffusion study. NANOSCALE 2020; 12:19628-19637. [PMID: 32627791 DOI: 10.1039/d0nr02915g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Reverse osmosis membranes of aromatic polyamide (PA) reinforced with a crystalline cellulose nanofiber (CNF) were synthesized and their desalination performance was studied. Comparison with plain PA membranes shows that the addition of CNF reduced the matrix mobility resulting in a molecularly stiffer membrane because of the attractive forces between the surface of the CNFs and the PA matrix. Fourier transform-infrared spectroscopy and X-ray photoelectron spectroscopy results showed complex formation between the carboxy groups of the CNF surface and the m- phenylenediamine monomer in the CNF-PA composite. Molecular dynamics simulations showed that the CNF-PA had higher hydrophilicity which was key for the higher water permeability of the synthesized nanocomposite membrane. The CNF-PA reverse osmosis nanocomposite membranes also showed enhanced antifouling performance and improved chlorine resistance. Therefore, CNF shows great potential as a nanoreinforcing material towards the preparation of nanocomposite aromatic PA membranes with longer operation lifetime due to its antifouling and chlorine resistance properties.
Collapse
Affiliation(s)
- Rodolfo Cruz-Silva
- Research Initiative for Supra-Materials, Faculty of Engineering, Shinshu University, 4-17-1 Wakasato, Nagano-city 380-8553, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Landsman MR, Sujanani R, Brodfuehrer SH, Cooper CM, Darr AG, Davis RJ, Kim K, Kum S, Nalley LK, Nomaan SM, Oden CP, Paspureddi A, Reimund KK, Rowles LS, Yeo S, Lawler DF, Freeman BD, Katz LE. Water Treatment: Are Membranes the Panacea? Annu Rev Chem Biomol Eng 2020; 11:559-585. [DOI: 10.1146/annurev-chembioeng-111919-091940] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alongside the rising global water demand, continued stress on current water supplies has sparked interest in using nontraditional source waters for energy, agriculture, industry, and domestic needs. Membrane technologies have emerged as one of the most promising approaches to achieve water security, but implementation of membrane processes for increasingly complex waters remains a challenge. The technical feasibility of membrane processes replacing conventional treatment of alternative water supplies (e.g., wastewater, seawater, and produced water) is considered in the context of typical and emerging water quality goals. This review considers the effectiveness of current technologies (both conventional and membrane based), as well as the potential for recent advancements in membrane research to achieve these water quality goals. We envision the future of water treatment to integrate advanced membranes (e.g., mixed-matrix membranes, block copolymers) into smart treatment trains that achieve several goals, including fit-for-purpose water generation, resource recovery, and energy conservation.
Collapse
Affiliation(s)
- Matthew R. Landsman
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Rahul Sujanani
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Samuel H. Brodfuehrer
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Carolyn M. Cooper
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Addison G. Darr
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - R. Justin Davis
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Kyungtae Kim
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Soyoon Kum
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Lauren K. Nalley
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Sheik M. Nomaan
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Cameron P. Oden
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Akhilesh Paspureddi
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Kevin K. Reimund
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Lewis Stetson Rowles
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Seulki Yeo
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Desmond F. Lawler
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Benny D. Freeman
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| | - Lynn E. Katz
- Department of Civil, Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
23
|
Yin Z, Wen T, Li Y, Li A, Long C. Pre-ozonation for the mitigation of reverse osmosis (RO) membrane fouling by biopolymer: The roles of Ca 2+ and Mg 2. WATER RESEARCH 2020; 171:115437. [PMID: 31893554 DOI: 10.1016/j.watres.2019.115437] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 12/19/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Despite plenty of literatures focused on the application of pre-ozonation prior to membrane, it was still unclear about the role of divalent cations (Ca2+ and Mg2+) in reverse osmosis (RO) membrane fouling mitigation. In this study, ozone pre-treatment (0.10, 0.25 and 0.50 mg O3/mg DOC (dissolved organic carbon)) was employed to oxidize model biopolymer, which was represented by bovine serum albumin (BSA) and sodium alginate (SA) in the presence of Ca2+ and Mg2+ (0.5, 1.0 and 2.0 mM). Cross-flow filtration was conducted to investigate RO membrane fouling by concentration mode. The results showed that at appropriate ozone dose there were measurable changes in physicochemical properties of BSA and SA, including increases in particle size, hydrophilicity, density of negative charge and carboxylic groups. Pre-ozonation markedly alleviated RO fouling by BSA at ozone dose of 0.25 mg O3/mg DOC when Ca2+ and Mg2+ concentrations raised from 0.5 to 2.0 mM since the increase in electrostatic (EL) repulsion and decrease in hydrophobic (HP) interaction compensated the increase in divalent cation bridging. Similar results were obtained for SA fouling in the presence of Mg2+. In contrast, the effect of pre-ozonation on SA fouling strongly depended on the concentration of Ca2+. In brief, it mitigated SA fouling at 0.5 mM Ca2+, whereas accelerated irreversible fouling at higher Ca2+ concentration (1.0 and 2.0 mM) due to the overwhelming effect of divalent cation bridging compared to EL and HP interactions, as revealed by adsorption experiments (in-situ streaming potential measurement). Pre-ozonation shifted the fouling layer from compact to porous and weakened the adhesion forces between foulants and membrane (foulants) except for SA containing 1.0 and 2.0 mM Ca2+. This study may provide the guidance for the application of pre-ozonation prior to RO filtration.
Collapse
Affiliation(s)
- Zhonglong Yin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Tiancheng Wen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Yan Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Chao Long
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China.
| |
Collapse
|
24
|
Kumar M, Sreedhar N, Jaoude MA, Arafat HA. High-Flux, Antifouling Hydrophilized Ultrafiltration Membranes with Tunable Charge Density Combining Sulfonated Poly(ether sulfone) and Aminated Graphene Oxide Nanohybrid. ACS APPLIED MATERIALS & INTERFACES 2020; 12:1617-1627. [PMID: 31834764 DOI: 10.1021/acsami.9b19387] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In this work, a new protocol was developed for creating charge-tuned, hydrophilic hybrid ultrafiltration (UF) membranes with high flux, rejection rate, and fouling resistance. The membranes were fabricated using a combination of sulfonated poly(ether sulfone) (SPES) and aminated graphene (GO-SiO2-NH2) nanohybrid via the non-solvent-induced phase separation (NIPS) method. The GO-SiO2-NH2 nanohybrid was first synthesized using GO nanosheets and 3-aminopropyl triethoxysilane (APTES) through the covalent condensation reaction at 80 °C and was thoroughly characterized. Then, 2-8 wt% of the nanohybrid was incorporated into the matrix of SPES for the fabrication of the hybrid membranes. The resulting membranes were characterized using an electrokinetic analyzer, a contact angle goniometer, and Raman, field emission scanning electron microscopy-energy-dispersive X-ray spectrometry (FESEM-EDX), and atomic force microscopy experiments. The porosity, charge density, and surface morphology were altered, and the hybrid membranes became more hydrophilic after the incorporation of the nanohybrid. The pure water flux of the hybrid membranes systematically increased with the loading amount of the nanohybrid. The pure water flux of the hybrid membrane containing 6 wt% GO-SiO2-NH2 nanohybrid at a 2 bar feed pressure was 537 L m-2 h-1, about 3-fold that of pristine membrane (186 L m-2 h-1). The fouling resistance of the hybrid membranes was evaluated and confirmed using several representative foulants, including bovine serum albumin, humic acid, sodium alginate, and a synthetic solution of natural organic matter (NOM). The fabricated membranes were capable of removing more than 97% of NOM, without a compromise of their rejection rate.
Collapse
Affiliation(s)
- Mahendra Kumar
- Center for Membrane and Advanced Water Technology , Khalifa University of Science and Technology , 127788 Abu Dhabi , United Arab Emirates
| | - Nurshaun Sreedhar
- Center for Membrane and Advanced Water Technology , Khalifa University of Science and Technology , 127788 Abu Dhabi , United Arab Emirates
| | - Maguy Abi Jaoude
- Center for Membrane and Advanced Water Technology , Khalifa University of Science and Technology , 127788 Abu Dhabi , United Arab Emirates
| | - Hassan A Arafat
- Center for Membrane and Advanced Water Technology , Khalifa University of Science and Technology , 127788 Abu Dhabi , United Arab Emirates
| |
Collapse
|
25
|
Hao X, Gao S, Tian J, Wang S, Zhang H, Sun Y, Shi W, Cui F. New insights into the organic fouling mechanism of an in situ Ca 2+ modified thin film composite forward osmosis membrane. RSC Adv 2019; 9:38227-38234. [PMID: 35541777 PMCID: PMC9075835 DOI: 10.1039/c9ra06272f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 11/18/2019] [Indexed: 12/04/2022] Open
Abstract
In this study, the effect of organic substances on the fouling behavior of a thin film composite (TFC) membrane with in situ Ca2+ addition (TFC-Ca membrane) was evaluated. Bovine serum albumin (BSA), humic acid (HA) and sodium alginate (SA) were used as surrogate foulants for protein, natural organic substances and polysaccharides, respectively, thus enabling the analysis of foulant–membrane interaction in the membrane fouling process. Fouling experiments were carried out and the fouling mechanism was investigated by extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) theory. SEM-EDX, ICP-OES and TOC analysis were applied to characterize the fouled TFC-Ca membrane. Results suggested that the interfacial free energies obtained from advanced contact angle measurements were correlated strongly with the rates of membrane fouling. In situ Ca2+ addition in the TFC membrane resulted in the decrease of the interfacial adhesion free energy (i.e., foulant–membrane interaction) and thus the mitigation of membrane fouling. The permeate flux of TFC-Ca FO membrane after organic fouling could be fully restored by simple physical cleaning. The antifouling mechanism of Ca2+ pre-binding carboxyl groups in the TFC-Ca FO membrane was demonstrated, which provides new insights into the development of antifouling TFC membranes in the future. In this study, the effect of organic substances on the fouling behavior of a thin film composite (TFC) membrane with in situ Ca2+ addition (TFC-Ca membrane) was evaluated.![]()
Collapse
Affiliation(s)
- Xiujuan Hao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Harbin 150090 China
| | - Shanshan Gao
- School of Civil Engineering and Transportation, Hebei University of Technology Tianjin 300401 China
| | - Jiayu Tian
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Harbin 150090 China .,School of Civil Engineering and Transportation, Hebei University of Technology Tianjin 300401 China
| | - Songxue Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Harbin 150090 China
| | - Huizhong Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology Harbin 150090 China
| | - Yan Sun
- School of Civil Engineering, Chang'an University Xi'an 710061 China
| | - Wenxin Shi
- College of Urban Construction and Environmental Engineering, Chongqing University Chongqing 400044 China
| | - Fuyi Cui
- College of Urban Construction and Environmental Engineering, Chongqing University Chongqing 400044 China
| |
Collapse
|