1
|
Xu G, He H, Tang D, Lu Q, Mai B, He Z, Adrian L, He J, Dolfing J, Wang S. High-Throughput Screening of Microbial Reductive Dechlorination of Polychlorinated Biphenyls: Patterns in Reactivity and Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7712-7721. [PMID: 40193699 DOI: 10.1021/acs.est.4c13917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Polychlorinated biphenyls (PCBs) are pervasive pollutants that pose risks to ecosystems and human health. Microbial reductive dehalogenation plays crucial roles in attenuating PCBs, but comprehensive insights into PCB dechlorination pathways, reactivity, and governing factors are limited by the vast number of congeners and costly experimental approaches. We address this challenge by establishing a high-throughput in vitro assay approach of reductive dehalogenation (HINVARD), which increases dechlorination test throughput by 30-fold and enhances reagents and cell utilization efficiency by over 10-fold compared to conventional assay methods. Using HINVARD, we screened 61 PCB congeners across 9 enrichment cultures and 3 Dehalococcoides isolates, identifying active dechlorination of 31-44 congeners. Results showed that PCB congener properties (chlorine substitution patterns, steric hindrance, and solubility) primarily determine the dechlorination potential, leading to consistent reactivity trends across cultures. In contrast, different organohalide-respiring bacteria catalyzed distinct dechlorination pathways, preferentially removing para- or meta-chlorines. Structural modeling of reductive dehalogenases revealed unique binding orientations governing substrate specificity, offering molecular insights into these pathways. This study provides a high-efficiency strategy for investigating microbial reductive dehalogenation, yielding the first comprehensive understanding of PCB dechlorination patterns and mechanisms. These findings guide the design of tailored microbial consortia for effective PCB bioremediation.
Collapse
Affiliation(s)
- Guofang Xu
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Haozheng He
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Daoyu Tang
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
| | - Qihong Lu
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, The People's Republic of China
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, The People's Republic of China
| | - Zhili He
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, The People's Republic of China
| | - Lorenz Adrian
- UFZ Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research, Permoserstraße 15, Leipzig 04318, Germany
- Chair of Geobiotechnology, Technische Universität Berlin, Ackerstraße 76, Berlin 13355, Germany
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Jan Dolfing
- Faculty of Energy and Environment, Northumbria University, Newcastle upon Tyne NE1 8QH, UK
| | - Shanquan Wang
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510275, The People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, The People's Republic of China
| |
Collapse
|
2
|
Hashmi MZ, Mughal AF. Microbial and chemically induced reductive dechlorination of polychlorinated biphenyls in the environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:2167-2181. [PMID: 39762530 DOI: 10.1007/s11356-024-35831-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 12/18/2024] [Indexed: 02/07/2025]
Abstract
Polychlorinated biphenyls (PCBs) are persistent organic pollutants and are emitted during e-waste activities. Once they enter into the environment, PCBs could pose toxic effects to environmental compartments and public health. Reductive dechlorination offers a sustainable solution to manage the PCBs-contaminated environment. Under anaerobic conditions, reductive dechlorination of PCBs occurs, and PCBs congeners serve as potential electron acceptors which stimulate the growth of PCBs-dechlorinating microorganisms. In this review, microbial and chemically induced reductive dechlorination was summarized. During anaerobic conditions, highly chlorinated PCBs undergo reductive dechlorination and are converted into less chlorinated PCBs. The mechanisms involved in reductive dechlorination are mainly attacks on meta and/or para chlorines of PCBs mixtures in a contaminated environment and ortho dechlorination of PCBs. Based on methods, PCBs removal efficiency was as chemical > biological. Activated carbon (90%) showed more treatment efficiency than bacterial (84%). The review suggested that microbial remediation is a slow process; however, efficiency could be enhanced after amendments. Different microorganisms appear to be responsible for different dechlorination activities and the occurrence of various dehalogenation routes. However, PCBs dechlorination rate, extent, and route are influenced by pH, temperature, availability of carbon sources, and the presence or absence of H2 or competing electron acceptors and other electron donors.
Collapse
Affiliation(s)
- Muhammad Zaffar Hashmi
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
| | - Amina F Mughal
- The State University of New York College of Environmental Science and Forestry, Syracuse, USA
| |
Collapse
|
3
|
Yang S, Guo T, Fu H, Zheng S, Sun J, Qu X. Catalytic hydrodehalogenation activity and selectivity of polyiodinated phenolic disinfection byproducts at ambient conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 944:173905. [PMID: 38871330 DOI: 10.1016/j.scitotenv.2024.173905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/08/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024]
Abstract
Iodo-phenolic disinfection byproducts (DBPs) widely occur in disinfected water, posing potential risks to human health and the ecosystem as they possess higher toxicity than the bromo- and chloro-analogs. Herein, we elucidated the catalytic hydrodehalogenation (HDH) activity and selectivity of polyiodinated phenolic DBPs on supported noble metal catalysts at ambient conditions. Both 2,4,6-triiodophenol and 4-chloro-2,6-diiodophenol can be efficiently eliminated on Pd/TiO2 and Rh/TiO2 within 20 min, with Pd/TiO2 exhibiting higher turnover frequency. The HDH reactions proceeded in both stepwise and concerted pathways on Pd/TiO2, while they were dominantly stepwise on Rh/TiO2. Experimental results and theoretical calculations revealed that the HDH selectivity depends on the position and the bond energy of halo-substitutions. For the HDH of 2,4,6-triiodophenol, the para-substituted iodine was more favorable to be dehalogenated than the ortho-substituted ones due to the steric hindrance of the hydroxyl group. For the HDH of 4-chloro-2,6-diiodophenol, the ortho-substituted iodine was removed before the para-substituted chlorine as CI bond had higher reactivity than CCl bond. Significant catalyst deactivation was observed for the HDH of 4-chloro-2,6-diiodophenol on Pd/TiO2 due to iodine poisoning, resulting in 4-chlorophenol as the dominant product. In contrast, Rh/TiO2 can completely hydrodehalogenate 4-chloro-2,6-diiodophenol into cyclohexanone with little iodine poisoning. Our results suggest that HDH is an efficient process for abating iodo-phenolic DBPs. Rh/TiO2 is a more promising HDH catalyst for iodinated DBP removal than Pd/TiO2 with excellent resistance to iodine poisoning.
Collapse
Affiliation(s)
- Shuxue Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China; Nanjing University (Suzhou) High-tech Institute, Suzhou 215123, China
| | - Tao Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China; Nanjing University (Suzhou) High-tech Institute, Suzhou 215123, China
| | - Shourong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China
| | - Jingya Sun
- School of Environmental Science, Nanjing XiaoZhuang University, Nanjing 211171, China.
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Jiangsu 210023, China; Nanjing University (Suzhou) High-tech Institute, Suzhou 215123, China.
| |
Collapse
|
4
|
Xu G, Ng HL, Chen C, Rogers MJ, He J. Combatting multiple aromatic organohalide pollutants in sediments by bioaugmentation with a single Dehalococcoides. WATER RESEARCH 2024; 255:121447. [PMID: 38508042 DOI: 10.1016/j.watres.2024.121447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/05/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Dehalococcoides are capable of dehalogenating various organohalide pollutants under anaerobic conditions, and they have been applied in bioremediation. However, the presence of multiple aromatic organohalides, including polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and tetrabromobisphenol A (TBBPA), at contaminated sites may pose challenges to Dehalococcoides-mediated bioremediation due to the lack of knowledge about the influence of co-contamination on bioremediation. In this study, we investigated the bioremediation of aromatic organohalides present as individual and co-contaminants in sediments by bioaugmentation with a single population of Dehalococcoides. Bioaugmentation with Dehalococcoides significantly increased the dehalogenation rate of PCBs, PBDEs, and TBBPA in sediments contaminated with individual pollutants, being up to 19.7, 27.4 and 2.1 times as that in the controls not receiving bioinoculants. For sediments containing all the three classes of pollutants, bioaugmentation with Dehalococcoides also effectively enhanced dehalogenation, and the extent of enhancement depended on the bioinoculants and types of pollutants. Interestingly, in many cases co-contaminated sediments bioaugmented with Dehalococcoides mccartyi strain CG1 displayed a greater enhancement in dehalogenation rates compared to the sediments polluted with individual pollutant. For instance, when augmented with a low quantity of strain CG1, the dehalogenation rates of Aroclor1260 and PBDEs in co-contaminated sediments were approximately two times as that in sediments containing individual pollutants (0.428 and 9.03 vs. 0.195 and 4.20 × 10-3d-1). Additionally, D. mccartyi CG1 grew to higher abundances in co-contaminated sediments. These findings demonstrate that a single Dehalococcoides population can sustain dehalogenation of multiple aromatic organohalides in contaminated sediments, suggesting that co-contamination does not necessarily impede the use of Dehalococcoides for bioremediation. The study also underscores the significance of anaerobic organohalide respiration for effective bioremediation.
Collapse
Affiliation(s)
- Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Hung Liang Ng
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Chen Chen
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Matthew J Rogers
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576.
| |
Collapse
|
5
|
Guo Y, Li Y, Wang Z. Electrocatalytic hydro-dehalogenation of halogenated organic pollutants from wastewater: A critical review. WATER RESEARCH 2023; 234:119810. [PMID: 36889094 DOI: 10.1016/j.watres.2023.119810] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/06/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Halogenated organic pollutants are often found in wastewater effluent although it has been usually treated by advanced oxidation processes. Atomic hydrogen (H*)-mediated electrocatalytic dehalogenation, with an outperformed performance for breaking the strong carbon-halogen bonds, is of increasing significance for the efficient removal of halogenated organic compounds from water and wastewater. This review consolidates the recent advances in the electrocatalytic hydro-dehalogenation of toxic halogenated organic pollutants from contaminated water. The effect of the molecular structure (e.g., the number and type of halogens, electron-donating or electron-withdrawing groups) on dehalogenation reactivity is firstly predicted, revealing the nucleophilic properties of the existing halogenated organic pollutants. The specific contribution of the direct electron transfer and atomic hydrogen (H*)-mediated indirect electron transfer to dehalogenation efficiency has been established, aiming to better understand the dehalogenation mechanisms. The analyses of entropy and enthalpy illustrate that low pH has a lower energy barrier than that of high pH, facilitating the transformation from proton to H*. Furthermore, the quantitative relationship between dehalogenation efficiency and energy consumption shows an exponential increase of energy consumption for dehalogenation efficiency increasing from 90% to 100%. Lastly, challenges and perspectives are discussed for efficient dehalogenation and practical applications.
Collapse
Affiliation(s)
- Yun Guo
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yang Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
6
|
Resuscitation-Promoting Factor Accelerates Enrichment of Highly Active Tetrachloroethene/Polychlorinated Biphenyl-Dechlorinating Cultures. Appl Environ Microbiol 2023; 89:e0195122. [PMID: 36629425 PMCID: PMC9888273 DOI: 10.1128/aem.01951-22] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The anaerobic bioremediation of polychlorinated biphenyls (PCBs) is largely impeded by difficulties in massively enriching PCB dechlorinators in short periods of time. Tetrachloroethene (PCE) is often utilized as an alternative electron acceptor to preenrich PCB-dechlorinating bacteria. In this study, resuscitation promoting factor (Rpf) was used as an additive to enhance the enrichment of the microbial communities involved in PCE/PCBs dechlorination. The results indicated that Rpf accelerates PCE dechlorination 3.8 to 5.4 times faster than control cultures. In Aroclor 1260-fed cultures, the amendment of Rpf enables significantly more rapid and extensive dechlorination of PCBs. The residual high-chlorinated PCB congeners (≥5 Cl atoms) accounted for 36.7% and 59.8% in the Rpf-amended cultures and in the corresponding controls, respectively. This improvement was mainly attributed to the enhanced activity of the removal of meta-chlorines (47.7 mol % versus 14.7 mol %), which did not appear to affect dechlorination pathways. The dechlorinators, including Dehalococcoides in Chloroflexi and Desulfitobacterium in Firmicutes, were greatly enriched via Rpf amendment. The abundance of nondechlorinating populations, including Methanosarcina, Desulfovibrio, and Bacteroides, was also greatly enhanced via Rpf amendment. These results suggest that Rpf serves as an effective additive for the rapid enrichment of active dechlorinating cultures so as to provide a new approach by which to massively cultivate bioinoculants for accelerated in situ anaerobic bioremediation. IMPORTANCE The resuscitation promoting factor (Rpf) of Micrococcus luteus has been reported to resuscitate and stimulate the growth of functional microorganisms that are involved in the aerobic degradation of polychlorinated biphenyls (PCBs). However, few studies have been conducted to investigate the role of Rpf on anaerobic microbial populations. In this study, the enhancement of Rpf on the anaerobic microbial dechlorination of PCE/PCBs was discovered. Additionally, the Rpf-responsive populations underlying the enhanced dechlorination were uncovered. This report reveals the rapid enrichment of active dechlorinating cultures via Rpf amendment, and this sheds light on massively enriching PCB dechlorinators in short periods of time. The enhanced in situ anaerobic bioremediation of PCBs could be expected by supplementing Rpf.
Collapse
|
7
|
Xu G, Ng HL, Chen C, Zhao S, He J. Efficient and Complete Detoxification of Polybrominated Diphenyl Ethers in Sediments Achieved by Bioaugmentation with Dehalococcoides and Microbial Ecological Insights. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8008-8019. [PMID: 35549250 DOI: 10.1021/acs.est.2c00914] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are prevalent environmental pollutants, but bioremediation of PBDEs remains to be reported. Here we report accelerated remediation of a penta-BDE mixture in sediments by bioaugmentation with Dehalococcoides mccartyi strains CG1 and TZ50. Bioaugmentation with different amounts of each Dehalococcoides strain enhanced debromination of penta-BDEs compared with the controls. The sediment microcosm spiked with 6.8 × 106 cells/mL strain CG1 showed the highest penta-BDEs removal (89.9 ± 7.3%) to diphenyl ether within 60 days. Interestingly, co-contaminant tetrachloroethene (PCE) improved bioaugmentation performance, resulting in faster and more extensive penta-BDEs debromination using less bioinoculants, which was also completely dechlorinated to ethene by introducing D. mccartyi strain 11a. The better bioaugmentation performance in sediments with PCE could be attributed to the boosted growth of the augmented Dehalococcoides and capability of the PCE-induced reductive dehalogenases to debrominate penta-BDEs. Finally, ecological analyses showed that bioaugmentation resulted in more deterministic microbial communities, where the augmented Dehalococcoides established linkages with indigenous microorganisms but without causing obvious alterations of the overall community diversity and structure. Collectively, this study demonstrates that bioaugmentation with Dehalococcoides is a feasible strategy to completely remove PBDEs in sediments.
Collapse
Affiliation(s)
- Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
- NUS Graduate School─Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore 119077
| | - Hung Liang Ng
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Chen Chen
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576
| |
Collapse
|
8
|
Yu W, Jiang H, Fang J, Song S. Designing an Electron-Deficient Pd/NiCo 2O 4 Bifunctional Electrocatalyst with an Enhanced Hydrodechlorination Activity to Reduce the Consumption of Pd. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10087-10096. [PMID: 34196544 DOI: 10.1021/acs.est.1c01922] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Reducing the Pd loading on electrodes is critical in the electrocatalytic hydrodechlorination (EHDC) of chlorinated organic compounds (COCs). The EHDC reaction of COCs on Pd involves three steps: H* formation, H* adsorption, and dechlorination. It has been established that the initial hydrogen evolution reaction (HER) occurs on Pd0 and the dechlorination steps occur on Pd2+. A strategy is proposed to design new electrodes by adding a reducible HER-active interlayer to replace Pd0, fulfilling the responsibility of producing hydrogen, and to facilitate the formation of more Pd2+ for following C-Cl bond cleavage. Keeping the atomic hydrogen adsorption energy on the Pd/interlayer similar to that on pure Pd is also necessary for H* adsorption as well as to maintain a high EHDC activity. For the first time, the NiCo2O4-interlayer-modified Pd/Ni-foam electrode was applied in the EHDC of COCs, which enhanced the EHDC efficiency to 100% within 90 min and reduced 88.6% of Pd consumption. The Pd/NiCo2O4/Ni-foam electrode with enhanced EHDC activity was also observed with almost 100% product selectivity and good stability. A synergistic mechanism is proposed for the enhanced EHDC activity on the Pd/NiCo2O4/Ni-foam. This work offers a simple and useful strategy to design robust electrocatalysts for the EHDC of COCs.
Collapse
Affiliation(s)
- Weiting Yu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - He Jiang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Jinhui Fang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, People's Republic of China
| |
Collapse
|
9
|
Shen R, Yu L, Xu P, Liang Z, Lu Q, Liang D, He Z, Wang S. Water content as a primary parameter determines microbial reductive dechlorination activities in soil. CHEMOSPHERE 2021; 267:129152. [PMID: 33316619 DOI: 10.1016/j.chemosphere.2020.129152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Organohalide-respiring bacteria (OHRB) remove halogens from a variety of organohalides, which have been utilized for in situ remediation of different contaminated sites, e.g., groundwater, sediment and soil. Nonetheless, dehalogenation activities of OHRB and consequent remediation efficiencies can be synergistically affected by water content, soil type and inoculated/indigenous OHRB, which need to be disentangled to identify the key driving parameter and to elucidate the underlying mechanism. In this study, we investigated the impacts of water content (0-100%), soil type (laterite, brown soil and black soil) and inoculated OHRB (Dehalococcoides mccartyi CG1 and a river sediment culture) on reductive dechlorination of perchloroethene (PCE) and polychlorinated biphenyls (PCBs), as well as on associated microbial communities. Results suggested that the water content as a primary rate-limiting parameter governed dechlorination activities in environmental matrices, particularly in the soil, possibly through mediation of cell-to-organohalide mobility of OHRB. By contrast, interestingly, organohalide-dechlorinating microbial communities were predominantly clustered based on soil types, rather than water contents or inoculated OHRB. This study provided knowledge on the impacts of major parameters on OHRB-mediated reductive dechlorination in groundwater, sediment and soil for future optimization of in situ bioremediation of organohalides.
Collapse
Affiliation(s)
- Rui Shen
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Ling Yu
- Analysis and Test Center, Guangdong University of Technology, Guangzhou, 510006, China
| | - Pan Xu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhiwei Liang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Qihong Lu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Dawei Liang
- Beijing Key Laboratory of Bio-inspired Energy Materials and Devices, School of Space & Environment, Beihang University, Beijing, 100191, China
| | - Zhili He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China
| | - Shanquan Wang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Pagnozzi G, Carroll S, Reible DD, Millerick K. Powdered activated carbon (PAC) amendment enhances naphthalene biodegradation under strictly sulfate-reducing conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115641. [PMID: 33045588 DOI: 10.1016/j.envpol.2020.115641] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
Capping represents an efficient and well-established practice to contain polycyclic aromatic hydrocarbons (PAHs) in sediments, reduce mobility, and minimize risks. Exposure to PAHs can encourage biodegradation, which can improve the performance of capping. This study investigates biodegradation of naphthalene (a model PAH) in highly reducing, sediment-like environments with amendment of different capping materials (PAC and sand). Microcosms were prepared with sediment enrichments, sulfate as an electron acceptor, and naphthalene. Results show that PAC stimulates naphthalene biodegradation and mineralization, as indicated by production of 14CO2 from radiolabeled naphthalene. Mineralization in PAC systems correlates with the enrichment of genera (Geobacter and Desulfovirga) previously identified to biodegrade naphthalene (Spearman's, p < 0.05). Naphthalene decay in sand and media-free systems was not linked to biodegradation activity (ANOVA, p > 0.05), and microbial communities were correlated to biomass yields rather than metabolites. Naphthalene decay in PAC systems consists of three stages with respect to time: latent (0-88 days), exponential decay (88-210 days), and inactive (210-480 days). This study shows that PAC amendment enhances naphthalene biodegradation under strictly sulfate-reducing conditions and provides a kinetic and metagenomic characterization of systems demonstrating naphthalene decay.
Collapse
Affiliation(s)
- Giovanna Pagnozzi
- Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Sean Carroll
- Haley and Aldrich, Inc., 100 Corporate Place, Suite 105, Rocky Hill, CT, 06067, USA
| | - Danny D Reible
- Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX, 79409, USA
| | - Kayleigh Millerick
- Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX, 79409, USA.
| |
Collapse
|
11
|
Jaglal K. Contaminated aquatic sediments. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1826-1832. [PMID: 32860296 DOI: 10.1002/wer.1443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
The remediation of contaminated aquatic sediments requires a range of expertise from assessment (investigation, risk evaluations, modeling, and remedy selection) to design and construction. Research in 2019 has added to knowledge on optimizing the use of passive samplers for assessing chemical concentrations in sediment porewater. The porewater and black carbon appear to be better predictors of contaminant bioaccumulation than total organic carbon alone. This has led to better characterization of potential risk at sediment sites. Tools to identify and model sources of chemicals have been developed and used particularly for some metals, polynuclear aromatic hydrocarbons and polychlorinated biphenyls. There is great emphasis on beneficially using dredged sediment, treating it as a resource rather than a waste. Amendments used in sediment caps continue to be refined including the use of activated carbon within the caps and by itself. A technique involving 16S rRNA has been established as a means of identifying microbiological composition that naturally degrade contaminants. © 2020 Water Environment Federation PRACTITIONER POINTS: Sediment capping technology continues to advance Sampling and testing methods continue to be refined Natural processes such as biodegradation are being better understood Beneficial use of dredged sediment continue to be emphasized.
Collapse
|
12
|
Hammershøj R, Birch H, Sjøholm KK, Mayer P. Accelerated Passive Dosing of Hydrophobic Complex Mixtures-Controlling the Level and Composition in Aquatic Tests. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:4974-4983. [PMID: 32142613 DOI: 10.1021/acs.est.9b06062] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Petroleum products and essential oils are complex mixtures of hydrophobic and volatile chemicals and are categorized as substances of unknown or variable composition, complex reaction products, or biological materials (UVCBs). In aquatic testing and research of such mixtures, it is challenging to establish initial concentrations without the addition of cosolvents, to maintain constant concentrations during the test, and to keep a constant mixture composition in dilution series and throughout test duration. Passive dosing was here designed to meet these challenges by maximizing the surface area (Adonor/Vmedium = 3.8 cm2/mL) and volume (Vdonor/Vmedium > 0.1 L/L) of the passive dosing donor in order to ensure rapid mass transfer and avoid donor depletion for all mixture constituents. Cracked gas oil, cedarwood Virginia oil, and lavender oil served as model mixtures. This study advances the field by (i) showing accelerated passive dosing kinetics for 68 cracked gas oil constituents with typical equilibration times of 5-10 min and for 21 cederwood Virginia oil constituents with typical equilibration times < 1 h, (ii) demonstrating how to control mixture concentration and composition in aquatic tests, and (iii) discussing the fundamental differences between solvent spiking, water-accommodated fractions, and passive dosing.
Collapse
Affiliation(s)
- Rikke Hammershøj
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kongens Lyngby, Denmark
| | - Heidi Birch
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kongens Lyngby, Denmark
| | - Karina K Sjøholm
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kongens Lyngby, Denmark
| | - Philipp Mayer
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet, Building 115, 2800 Kongens Lyngby, Denmark
| |
Collapse
|