1
|
He H, Zhang C, Yang X, Huang B, Zhe J, Lai C, Liao Z, Pan X. The efficient treatment of mature landfill leachate using tower bipolar electrode flocculation-oxidation combined with electrochemical biofilm reactors. WATER RESEARCH 2023; 230:119544. [PMID: 36603307 DOI: 10.1016/j.watres.2022.119544] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Mature landfill leachate contains high concentrations of organic and inorganic compounds that inhibit the performance of conventional biological treatment. Nowadays, few single treatment techniques could fulfill the requirements of cleaning mature landfill leachate. In this study, a tower bipolar electrode flocculation-oxidation (BEF-O) reactor and an electrochemical biofilm reactor (EBR) combine device was constructed to effectively treat mature landfill leachate. And the removal efficiency and mechanism of various pollutants using the BEF-O reactor were investigated. The BEF-O system with the current density of 100 mA/cm2 shows excellent treatment efficiency, which can roundly remove most pollutants (NH4+-N, COD and heavy metals, etc.), and increase the bioavailability of the effluent to facilitate subsequent EBR treatment. Benefiting from the metabolic stimulation and population selection effect of electric current on microorganisms, EBR has a denser biofilm, stronger anti-pollution load capacity, superior, and stable pollution treatment efficiency. More importantly, the combined device can reduce the concentrations of COD and NH4+-N from 6410 to 338 mg/L and 4065 to 4 mg/L, respectively, and has an economical energy consumption of 32.02 kWh/(kg COD) and 54.04 kWh/ (kg NH4+-N). To summarize, this research could provide an innovative and industrial application prospect technology for the mature landfill leachate treatment.
Collapse
Affiliation(s)
- Huan He
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Chen Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xiaoxia Yang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Bin Huang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming 650500, China.
| | - Jiangyun Zhe
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Chaochao Lai
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhicheng Liao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Provincial Key Laboratory of Carbon Sequestration and Pollution Control in Soils, Kunming 650500, China
| |
Collapse
|
2
|
Yan Z, Liu C, Liu Y, Tan X, Li X, Shi Y, Ding C. The interaction of ZnO nanoparticles, Cr(VI), and microorganisms triggers a novel ROS scavenging strategy to inhibit microbial Cr(VI) reduction. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130375. [PMID: 36444067 DOI: 10.1016/j.jhazmat.2022.130375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/20/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Cr(VI) contaminated water usually contains other contaminants like engineered nanomaterials (ENMs). During the process of microbial treatment, the inevitable interaction of Cr(VI), ENMs, and microorganisms probably determines the efficiency of Cr(VI) biotransformation, however, the corresponding information remains elusive. This study investigated the interaction of ZnO nanoparticles (NPs), Cr(VI), and Pannonibacter phragmitetus BB (hereafter BB), which changed the process of microbial Cr(VI) reduction. ZnO NPs inhibited Cr(VI) reduction, but had no effect on bacterial viability. In particular, Cr(VI) induced BB to produce organic acids and to drive Zn2+ dissolution from ZnO NPs inside and outside of cells. The dissolved Zn2+ not only promoted Cr(VI) reduction to Cr(V)/Cr(IV) by strengthening sugar metabolism and inducing increase in NAD(P)H production, but also hindered Cr(V)/Cr(IV) transformation to Cr(III) through down-regulating Cr(VI) reductase genes. A novel bacterial driven ROS scavenging mechanism leading to the inhibition of Cr(VI) reduction was elucidated. Specifically, the accumulated Cr(VI) and Cr(V)/Cr(IV) formed a redox dynamic equilibrium, which triggered the disproportionation of superoxide radicals mimicking superoxide dismutase through the flip-flop of Cr(VI) and Cr(V)/Cr(IV) in bacterial cells. This study provided a realistic insight into design the applicability of biological remediation technology for Cr(VI) contaminant and evaluating environmental risks of ENMs.
Collapse
Affiliation(s)
- Zhiyan Yan
- School of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Chenrui Liu
- School of Environment and Resources, Xiangtan University, Xiangtan 411105, China
| | - Yun Liu
- School of Environment and Resources, Xiangtan University, Xiangtan 411105, China.
| | - Xiaoqian Tan
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083 Changsha, China
| | - Xinyue Li
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083 Changsha, China
| | - Yan Shi
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, 410083 Changsha, China; National Engineering Research Center for Heavy Metals Pollution Control and Treatment, 410083 Changsha, China.
| | - Chunlian Ding
- College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
3
|
Gao H, Ye J, Zhao R, Zhan M, Yang G, Yu R. Pluripotency of endogenous AHL-mediated quorum sensing in adaptation and recovery of biological nitrogen removal system under ZnO nanoparticle long-term exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156911. [PMID: 35753480 DOI: 10.1016/j.scitotenv.2022.156911] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/09/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
The impacts of quorum sensing (QS) on nanoparticle (NP)-stressed biological nitrogen removal (BNR) system have seldom been addressed yet. In this study, the contributions of endogenous N-acyl-homoserine lactone (AHL)-based QS regulation to the BNR system's adaptation to the zinc oxide (ZnO) NP stress and its recovery potential were systematically investigated. Although 1 mg/L ZnO NPs exerted little impact on the BNR system, chronic exposure to 10 mg/L ones depressed the system's BNR performance which irreversibly impaired the nitrification process even when the system entered the recovery period with no NP added anymore. Meanwhile, ZnO NPs exhibited hormesis effects on the production of AHLs and extracellular polymeric substance (EPS), and activities of superoxide dismutase and catalase. During the ZnO NP exposure period, C4-HSL, C6-HSL, and C10-HSL were discovered to be positively associated with nitrogen removal efficiency, tightly-bound EPS production, and antioxidase activities. Besides, the shifts of Nitrospira, Dechloromonas, Aeromonas, Acinetobacter, Delftia, and Bosea were expected to determine the AHL's dynamic distribution. During the system's recovery stage, Dechloromonas replaced Candidatus_Competibacter as the dominant denitrification-related genus. Dechloromonas abundance elevated with the increased contents of C4-HSL in the aqueous and EPS phases and C10-HSL in EPS and sludge phases, and were expected to promote the activities of BNR-related and antioxidant enzymes, and the EPS production to assist in the recovery of the impaired system's BNR performance. The QS-related BNR genera exhibited higher resilience to ZnO NPs than quorum quenching-related ones, indicating their critical role in nitrogen removal in the restored system. This work provided an insight into the potential pluripotency of AHL-based QS regulation on the ZnO NP-stressed BNR system's adaptation and recovery.
Collapse
Affiliation(s)
- Huan Gao
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China
| | - Jinyu Ye
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China
| | - Runyu Zhao
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China
| | - Manjun Zhan
- Nanjing Research Institute of Environmental Protection, Nanjing Environmental Protection Bureau, Nanjing, Jiangsu 210013, China
| | - Guangping Yang
- Chinair Envir. Sci-Tech Co., Ltd., Nanjing, Jiangsu 210019, China
| | - Ran Yu
- Department of Environmental Science and Engineering, School of Energy and Environment, Wuxi Engineering Research Center of Taihu Lake Water Environment, Southeast University, Nanjing, Jiangsu 210096, China; Key Laboratory of Environmental Medicine Engineering, Ministry of Education, Southeast University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
4
|
Kalwani M, Chakdar H, Srivastava A, Pabbi S, Shukla P. Effects of nanofertilizers on soil and plant-associated microbial communities: Emerging trends and perspectives. CHEMOSPHERE 2022; 287:132107. [PMID: 34492409 DOI: 10.1016/j.chemosphere.2021.132107] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/05/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Modern agricultural practices are relying excessively upon the use of synthetic fertilizers to supply essential nutrients to promote crop productivity. Though useful in the short term, their prolonged and persistent applications are harmful to soil fertility and nutrient dynamics of the rhizospheric microbiome. The application of nanotechnology in form of nanofertilizer provides an innovative, efficient, and eco-friendly alternative to synthetic fertilizers. The nanofertilizers allow a slow and sustained release of nutrients that not only supports plant growth but also conserve the diversity of the beneficial microbiome. Such attributes may help the phytomicrobiome to efficiently mitigate both biotic and abiotic stress conditions. Unfortunately, despite, exceptional efficiency and ease of applications, certain limitations are also associated with the nanofertilizers such as their complicated production process, tenuous transport and dosage-sensitive efficiency. These bottlenecks are causing a delay in the large-scale applications of nanofertilizers in agriculture. This review aims to highlight the current trends and perspectives on the use of nanofertilizers for improving soil fertility with a special focus on their effects on beneficial phyromicrobiome.
Collapse
Affiliation(s)
- Mohneesh Kalwani
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India; Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Maunath Bhanjan, Uttar Pradesh, 275103, India
| | - Amit Srivastava
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, United States
| | - Sunil Pabbi
- Centre for Conservation and Utilisation of Blue Green Algae (CCUBGA), Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Pratyoosh Shukla
- School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India; Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
5
|
Jiang J, Zhou Z, Jiang L, Zheng Y, Zhao X, Chen G, Wang M, Huang J, An Y, Wu Z. Bacterial and Microfauna Mechanisms for Sludge Reduction in Carrier-Enhanced Anaerobic Side-Stream Reactors Revealed by Metagenomic Sequencing Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6257-6269. [PMID: 33856183 DOI: 10.1021/acs.est.0c07880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Packing carriers into the anaerobic side-stream reactor (ASSR) can enhance sludge reduction and save footprint by investigating ASSR-coupled membrane bioreactors (AP-MBRs) under different hydraulic residence times of the ASSR (HRTSR). Three AP-MBRs and an anoxic-aerobic MBR (AO-MBR) showed efficient chemical oxygen demand (>94.2%) and ammonium nitrogen removal (>99.3%). AP-MBRs have higher (p < 0.05) total nitrogen (61.4-67.7%) and total phosphorus (57.5-63.8%) removal than AO-MBRs (47.8 and 47.7%). AP-MBRs achieved sludge reduction efficiencies of 11.8, 31.8, and 36.2% at HRTSR values of 2.5, 5.0, and 6.7 h. Packing carriers greatly improved sludge reduction under low HRTSR and is promising for accelerating sludge reduction in compact space. Metagenomic sequencing analysis showed that genes responsible for metabolism were enriched in AO-MBRs, while genes related to cellular motility and cell signaling were more abundant in the AP-MBRs. A longevity-regulating pathway showed that long lifespan provided more opportunities for worms to prey bacteria. Microscopic examination revealed that some specific protozoa (Arcella, Clathrulina, Aspidisca, Litonotus, Chiloclonella, and Vorticella) and metazoa (Rotaria and Aeolosoma hemprichi) were enriched in ASSRs. Aeolosoma hemprichi was only detected in ASSRs, and unique Cylops appeared on carriers. These results contribute to growing understanding of micrometabolic mechanisms including functional genes and microfauna-driving sludge reduction.
Collapse
Affiliation(s)
- Jie Jiang
- Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhen Zhou
- Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Lingyan Jiang
- Shanghai Chengtou Wastewater Treatment Co., Ltd, Shanghai 201203, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yue Zheng
- Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Xiaodan Zhao
- Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Guang Chen
- Shanghai Chengtou Wastewater Treatment Co., Ltd, Shanghai 201203, China
| | - Mengyu Wang
- Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Jing Huang
- Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Ying An
- Shanghai Engineering Research Center of Energy-Saving in Heat Exchange Systems, Shanghai University of Electric Power, Shanghai 200090, China
| | - Zhichao Wu
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
6
|
Mittal K, Rahim AA, George S, Ghoshal S, Basu N. Characterizing the effects of titanium dioxide and silver nanoparticles released from painted surfaces due to weathering on zebrafish ( Danio rerio). Nanotoxicology 2021; 15:527-541. [PMID: 33756094 DOI: 10.1080/17435390.2021.1897173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Silver (nAg) and titanium dioxide nanoparticles (nTiO2) are common engineered nanoparticles (ENPs) added into paint for their antimicrobial and whitening properties, respectively. Weathering of outdoor painted surfaces can release such ENPs, though little is known about the potential effects of released ENPs on aquatic species. The objective of this study was to characterize the toxicity of nAg and nTiO2 released from painted panels using fish liver cells (CRL2643) and zebrafish embryos (OECD 236 embryotoxicity test). Cells and embryos were exposed to suspensions of pristine nAg or nTiO2, panels (unpainted or painted with nAg or nTiO2) or base paint, after sonication. Cell viability and gene expression were assessed using resazurin assay and qPCR, respectively, while embryo mortality and deformities were scored visually via microscopic examination. In the cell studies, both paint-released nanoparticles did not affect viability, but paint-released nAg resulted in differential expression of a few genes including gclc and ncf1. In embryos, paint-released nAg increased mortality and incidence of deformities, whereas paint-released nTiO2 resulted in differential expression of several genes including gclc, ncf1, txnrd1, gpx1b, and cyp1c1 but without major phenotypic abnormalities. Comparing the two types of exposures, paint-released exposures affected both molecular (gene expression) and apical (embryotoxicity) endpoints, while pristine exposures affected the expression of some genes but had no apical effects. The differing effects of paint-released and pristine nanoparticle exposures suggest that further research is needed to further understand how paint coatings (and the products of their weathering and aging) may influence nanoparticle toxicity to aquatic organisms.
Collapse
Affiliation(s)
- Krittika Mittal
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | | | - Saji George
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| | - Subhasis Ghoshal
- Department of Civil Engineering, McGill University, Montreal, Canada
| | - Niladri Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Canada
| |
Collapse
|