1
|
Jiao Q, Zhong C, Xie B, Gao W, Tian S, Wen J, Yan Z, Liu J. Enhancing Urea Recovery and Hydrolysis Inhibition from Source-Separated Urine through a Novel Urea Electric-Assisted Forward Osmosis System: Insights from Reaction Kinetics and Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40392179 DOI: 10.1021/acs.est.5c01031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
The efficient recovery of urea from human urine, where it is abundant, not only facilitates resource utilization but also mitigates potential environmental pollution. This study developed a novel urea electro-assisted forward osmosis (UEFO) system to recover urea from source-separated urine, aiming to enhance urea recovery efficiency and suppress urea hydrolysis through the synergistic interaction between the electric field and FO. The UEFO leveraged the application of an electric field to facilitate ion migration and in situ OH- generation, enabling dynamic regulation of the osmotic pressure difference. This enhanced the urea recovery and stabilized alkaline conditions. Compared with the open-circuit system, the UEFO significantly improved urea recovery efficiency and transport kinetics. Meanwhile, the UEFO significantly enhanced the alkalinity of the feed solution through the in situ OH- generation, thereby reducing urease activity by 34.73%. Additionally, partial least squares path modeling revealed that the electric field was the critical driving factor for urea recovery in the UEFO. Contribution distribution revealed that the electric field contributed 59.41% to urea recovery and 79.29% to hydrolysis inhibition, highlighting its key role as the core driving force in UEFO. Mechanistic exploration revealed that the electric field dynamically regulated the osmotic pressure difference across the FO membrane by modulating ion migration and the chemical environment, thereby promoting efficient urea migration and inhibiting its hydrolysis. Furthermore, an economic assessment demonstrated that the use of UEFO could generate a net profit of $0.34 per ton of urine treated, achieving a positive economic return. This study provides an innovative solution for urea recovery from source-separated urine, offering critical scientific and technological support for the development of sustainable nitrogen resource recycling technologies.
Collapse
Affiliation(s)
- Qiangqiang Jiao
- School ofEnvironmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Chenkai Zhong
- School ofEnvironmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Biyue Xie
- School ofEnvironmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Wenyu Gao
- School ofEnvironmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Shujie Tian
- School ofEnvironmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Junkai Wen
- School ofEnvironmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Zhenyu Yan
- School ofEnvironmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| | - Jia Liu
- School ofEnvironmental Science and Engineering, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin 300072, China
| |
Collapse
|
2
|
Kim HH, Choi B, Ullah Z, Jeong N, Cho KH, Park S, Baek SS, Son M. Decoupling ion concentrations from effluent conductivity profiles in capacitive and battery electrode deionizations using an artificial intelligence model. WATER RESEARCH 2024; 262:122092. [PMID: 39032339 DOI: 10.1016/j.watres.2024.122092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 06/18/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
Owing to its simplicity of measurement, effluent conductivity is one of the most studied factors in evaluations of desalination performance based on the ion concentrations in various ion adsorption processes such as capacitive deionization (CDI) or battery electrode deionization (BDI). However, this simple conversion from effluent conductivity to ion concentration is often incorrect, thereby necessitating a more congruent method for performing real-time measurements of effluent ion concentrations. In this study, a random forest (RF)-based artificial intelligence (AI) model was developed to address this shortcoming. The proposed RF model showed an excellent prediction accuracy when it was first validated in predicting the effluent conductivity for both CDI (R2 = 0.86) and BDI (R2 = 0.95) data. Moreover, the RF model successfully predicted the concentration of each ion (Na⁺, K⁺, Ca2⁺, and Cl⁻) from the conductivity values. The accuracy of the ion concentration prediction was even higher than that of the effluent conductivity prediction, likely owing to the linear correlation between the input and output variables of the dataset. The effect of the sampling interval was also evaluated for conductivity and ion concentrations, and there was no significant difference up to sampling intervals of <80 s based on the error value of the model. These findings suggest that an RF model can be used to predict ion concentrations in CDI/BDI, which may be used as core indicators in evaluating desalination performance.
Collapse
Affiliation(s)
- Hoo Hugo Kim
- Center for Water Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Byeongwook Choi
- Center for Water Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Zahid Ullah
- Center for Water Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Seoul 02792, Republic of Korea
| | - Nahyeon Jeong
- Center for Water Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Kyung Hwa Cho
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Sanghun Park
- Division of Earth Environmental System Science (Major in Environmental Engineering), Pukyong National University, Busan 48513, Republic of Korea
| | - Sang-Soo Baek
- Department of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan-Si, Gyeongbuk 38541, Republic of Korea.
| | - Moon Son
- Center for Water Cycle Research, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea; Division of Energy and Environment Technology, KIST-School, University of Science and Technology, Seoul 02792, Republic of Korea.
| |
Collapse
|
3
|
He J, Zhou J, Yang K, Luo L, Wang P, Wang Z, Ma J. Pulsed electric field drives chemical-free membrane stripping for high ammonia recovery from urine. WATER RESEARCH 2024; 251:121129. [PMID: 38237457 DOI: 10.1016/j.watres.2024.121129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/30/2023] [Accepted: 01/10/2024] [Indexed: 02/12/2024]
Abstract
Recovering ammonia from waste streams (e.g., urine) is highly desirable to reduce natural gas-based NH3 production and nitrogen discharge into the water environment. Electrochemical membrane stripping is an attractive alternative because it can drive NH4+ transformation to NH3 via cathodic OH- production; however, the conventional configurations suffer from relatively low ammonia recovery (<80 %) and significant acid/material usage for ammonia adsorption. To this end, we develop a novel stack system that simply uses an oxygen evolution reaction to in-situ produce acid from water, enabling chemical-free ammonia recovery from synthetic urine. In batch mode, the percentage removal and recovery increased respectively from 74.5 % to 97.9 % and 81.8 % to 92.7 % when the electrode pairs increased from 2 to 4 in the stack system. To address the gas-sparging issue that deteriorated ammonia recovery in continuous operation, pulsed electric field (PEF) mode was applied, resulting in ∼100 % recovery under optimized conditions. At an ammonia removal rate of 35.1 g-N m-2 h-1 and electrical energy consumption of 28.9 kWh kg-N-1, our chemical-free system in PEF mode has achieved significantly higher ammonia recovery (>90 %) from synthetic urine. The total cost to recover 1 kg of NH3-N from real human urine was $15.9 in the proposed system. Results of this study demonstrate that this novel approach holds great promise for high ammonia recovery from waste streams, opening a new pathway toward sustainable nitrogen management.
Collapse
Affiliation(s)
- Jiazhou He
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jieqin Zhou
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Kui Yang
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| | - Liang Luo
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Pan Wang
- Shanghai Municipal Engineering Design Institute Group Co., Ltd., Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Advanced Membrane Technology Center of Tongji University, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jinxing Ma
- Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
4
|
Song J, Yan M, Ye J, Zheng S, Ee LY, Wang Z, Li J, Huang M. Research progress in external field intensification of forward osmosis process for water treatment: A critical review. WATER RESEARCH 2022; 222:118943. [PMID: 35952439 DOI: 10.1016/j.watres.2022.118943] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Forward osmosis (FO) is an emerging permeation-driven membrane technology that manifests advantages of low energy consumption, low operating pressure, and uncomplicated engineering compared to conventional membrane processes. The key issues that need to be addressed in FO are membrane fouling, concentration polarization (CP) and reverse solute diffusion (RSD). They can lead to problems about loss of draw solutes and reduced membrane lifetime, which not only affect the water treatment effectiveness of FO membranes, but also increase the economic cost. Current research has focused on FO membrane preparation and modification strategies, as well as on the selection of draw solutions. Unfortunately, these intrinsic solutions had limited success in unraveling these phenomena. In this paper, we provide a brief review of the current state of research on existing external field-assisted FO systems (including electric-, pressure-, magnetic-, ultrasonic-, light- and flow-assisted FO system), analyze their mitigation mechanisms for the above key problems, and explore potential research directions to aid in the further development of FO systems. This review aims to reveal the feasibility of the development of external field-assisted FO technology to achieve a more economical and efficient FO treatment process.
Collapse
Affiliation(s)
- Jialing Song
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Mengying Yan
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Jingling Ye
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Shengyang Zheng
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Liang Ying Ee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhiwei Wang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jun Li
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Manhong Huang
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China.
| |
Collapse
|
5
|
Salehi H, Shakeri A, Lammertink RG. Thermo-responsive graft copolymer PSf-g-PNIPM: Reducing the structure parameter via morphology control of forward osmosis membrane substrates. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
6
|
Son M, Cho KH, Jeong K, Park J. Membrane and Electrochemical Processes for Water Desalination: A Short Perspective and the Role of Nanotechnology. MEMBRANES 2020; 10:E280. [PMID: 33053773 PMCID: PMC7600412 DOI: 10.3390/membranes10100280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 11/16/2022]
Abstract
In the past few decades, membrane-based processes have become mainstream in water desalination because of their relatively high water flux, salt rejection, and reasonable operating cost over thermal-based desalination processes. The energy consumption of the membrane process has been continuously lowered (from >10 kWh m-3 to ~3 kWh m-3) over the past decades but remains higher than the theoretical minimum value (~0.8 kWh m-3) for seawater desalination. Thus, the high energy consumption of membrane processes has led to the development of alternative processes, such as the electrochemical, that use relatively less energy. Decades of research have revealed that the low energy consumption of the electrochemical process is closely coupled with a relatively low extent of desalination. Recent studies indicate that electrochemical process must overcome efficiency rather than energy consumption hurdles. This short perspective aims to provide platforms to compare the energy efficiency of the representative membrane and electrochemical processes based on the working principle of each process. Future water desalination methods and the potential role of nanotechnology as an efficient tool to overcome current limitations are also discussed.
Collapse
Affiliation(s)
- Moon Son
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Korea; (M.S.); (K.H.C.)
| | - Kyung Hwa Cho
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Korea; (M.S.); (K.H.C.)
| | - Kwanho Jeong
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, UNIST-gil 50, Ulsan 44919, Korea; (M.S.); (K.H.C.)
| | - Jongkwan Park
- School of Civil, Environmental and Chemical Engineering, Changwon National University, Changwon, Gyeongsangnamdo 51140, Korea
| |
Collapse
|
7
|
Son M, Pothanamkandathil V, Yang W, Vrouwenvelder JS, Gorski CA, Logan BE. Improving the Thermodynamic Energy Efficiency of Battery Electrode Deionization Using Flow-Through Electrodes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:3628-3635. [PMID: 32092271 DOI: 10.1021/acs.est.9b06843] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ion intercalation electrodes are being investigated for use in mixed capacitive deionization (CDI) and battery electrode deionization (BDI) systems because they can achieve selective ion removal and low energy deionization. To improve the thermodynamic energy efficiency (TEE) of these systems, flow-through electrodes were developed by coating porous carbon felt electrodes with a copper hexacyanoferrate composite mixture. The TEE for ion separation using flow-through electrodes was compared to a system using flow-by electrodes with the same materials. The flow-through BDI system increased the recoverable energy nearly 3-fold (0.009 kWh m-3, compared to a 0.003 kWh m-3), which increased the TEE from ∼6% to 8% (NaCl concentration reduction from 50 to 42 mM; 10 A m-2, 50% water recovery, and 0.5 mL min-1). The TEE was further increased to 12% by decreasing the flow rate from 0.50 to 0.25 mL min-1. These findings suggest that, under similar operational conditions and materials, flow-through battery electrodes could achieve better energy recovery and TEE for desalination than flow-by electrodes.
Collapse
Affiliation(s)
- Moon Son
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Vineeth Pothanamkandathil
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Wulin Yang
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Johannes S Vrouwenvelder
- Water Desalination and Reuse Center (WDRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Christopher A Gorski
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bruce E Logan
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|