1
|
Momeni A, McQuillan RV, Anisi H, Alivand MS, Zavabeti A, Stevens GW, Kim S, Mumford KA. Catalytic Membrane Vacuum Regeneration: Enhancing Energy Efficiency and Renewable Compatibility in Direct Air Capture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2503023. [PMID: 40289516 DOI: 10.1002/smll.202503023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/10/2025] [Indexed: 04/30/2025]
Abstract
Liquid-based CO2 direct air capture (DAC) is a pivotal technology for mitigating climate change. Energy-intensive CO2 desorption, high regeneration temperatures, and solvent degradation are key challenges. Here, low-temperature catalytic membrane vacuum regeneration (C-MVR) as a promising approach for sustainable and energy-efficient DAC is developed and evaluated. Noncatalytic experiments are conducted using three commercial membrane modules and four green amino acid salts under varying conditions (e.g., temperatures and flowrates). Based on CO2 transfer rates, ultra-thin dense composite membranes and aqueous potassium taurinate (TauK) are the most promising for MVR in DAC applications. For C-MVR trials, commercial ion-exchange resin improves CO2 desorption fluxes by up to 64.4% and reduces thermal energy requirements by up to 39.1%. TauK demonstrates the highest CO2 flux and lowest thermal energy consumption. Parametric analysis of catalyst performance for varying temperatures, catalyst amount, and solvent concentrations is also performed. To minimize any potential precipitation in TauK, potassium carbonate (K2CO3) is added, showing minimal impact on CO2 desorption kinetics and catalyst improvement. The findings of this study highlight the practical applicability of C-MVR using green amino acid salts as a sustainable approach to boost CO2 desorption rate and reduce thermal energy input.
Collapse
Affiliation(s)
- Arash Momeni
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Rebecca V McQuillan
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Hossein Anisi
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Masood S Alivand
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Geoffrey W Stevens
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Seungju Kim
- Department of Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Kathryn A Mumford
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
2
|
Sun Q, Gao H, Xiao M, Sema T, Liang Z. Cerium-MOF-Derived Composite Hierarchical Catalyst Enables Energy-Efficient and Green Amine Regeneration for CO 2 Capture. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10052-10059. [PMID: 38818669 DOI: 10.1021/acs.est.4c01684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
The excessive energy consumed restricts the application of traditional postcombustion CO2 capture technology and limits the achievement of carbon-neutrality goals. Catalytic-rich CO2 amine regeneration has the potential to accelerate proton transfer and increase the energy efficiency in the CO2 separation process. Herein, we reported a Ce-metal-organic framework (MOF)-derived composite catalyst named HZ-Ni@UiO-66 with a hierarchical structure, which can increase the CO2 desorbed amount by 57.7% and decrease the relative heat duty by 36.5% in comparison with the noncatalytic monoethanolamine (MEA) regeneration process. The composite catalyst of the CeO2 coating from the UiO-66 precursor on the HZ-Ni carrier shows excellent stability with a long lifespan. The HZ-Ni@UiO-66 catalyst also shows a universal catalytic effect in typical blended amine systems with a large cyclic capacity. The HZ-Ni@UiO-66 catalyst effectively decreases the energy barrier of the CO2 desorption reaction to reduce the time required to reach thermodynamics, consequently saving the energy consumption generated by water evaporation. This research provides a new avenue for advancing amine regeneration with less heat duty at low temperatures.
Collapse
Affiliation(s)
- Qiang Sun
- Joint International Center for CO2 Capture and Storage (iCCS), Provincial Hunan Key Laboratory for Cost-effective Utilization of Fossil Fuel Aimed at Reducing CO2 Emissions, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Hongxia Gao
- Joint International Center for CO2 Capture and Storage (iCCS), Provincial Hunan Key Laboratory for Cost-effective Utilization of Fossil Fuel Aimed at Reducing CO2 Emissions, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Min Xiao
- Joint International Center for CO2 Capture and Storage (iCCS), Provincial Hunan Key Laboratory for Cost-effective Utilization of Fossil Fuel Aimed at Reducing CO2 Emissions, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Teerawat Sema
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Zhiwu Liang
- Joint International Center for CO2 Capture and Storage (iCCS), Provincial Hunan Key Laboratory for Cost-effective Utilization of Fossil Fuel Aimed at Reducing CO2 Emissions, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
3
|
Li X, Xu Q, Qi M, Chen J, Liu J, Xie HB, He N, Chen S. Synergistic Catalysis of SO 42-/TiO 2-CNT for the CO 2 Desorption Process with Low Energy Consumption. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26057-26065. [PMID: 38722302 DOI: 10.1021/acsami.4c01064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
To address the issue of high energy consumption associated with monoethanolamine (MEA) regeneration in the CO2 capture process, solid acid catalysts have been widely investigated due to their performance in accelerating carbamate decomposition. The recently discovered carbon nanotube (CNT) catalyst presents efficient catalytic activity for bicarbonate decomposition. In this paper, bifunctional catalysts SO42-/TiO2-CNT (STC) were prepared, which could simultaneously catalyze carbamate and bicarbonate decomposition, and outstanding catalytic performance has been exhibited. STC significantly increased the CO2 desorption amount by 82.3% and decreased the relative heat duty by 46% compared to the MEA-CO2 solution without catalysts. The excellent stability of STC was confirmed by 15 cyclic absorption-desorption experiments, showing good practical feasibility for decreasing energy consumption in an industrial CO2 capture process. Furthermore, associated with the results of experimental characterization and theoretical calculations, the synergistic catalysis of STC catalysts via proton and charge transfer was proposed. This work demonstrated the potential of STC catalysts in improving the efficiency of amine regeneration processes and reducing energy consumption, contributing to the design of more effective and economical catalysts for carbon capture.
Collapse
Affiliation(s)
- Xiaojing Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qian Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Meijuan Qi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiaxu Liu
- State Key Laboratory of Fine Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ning He
- Shanxi Research Institute of Huairou Laboratory, Taiyuan 030032, China
| | - Shaoyun Chen
- State Key Laboratory of Fine Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
4
|
Xing L, Chen Z, Zhan G, Huang Z, Li M, Li Y, Wang L, Li J. Sulfur Migration Enhanced Proton-Coupled Electron Transfer for Efficient CO 2 Desorption with Core-Shelled C@Mn 3O 4. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4606-4616. [PMID: 38427797 DOI: 10.1021/acs.est.3c09875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Transforming hazardous species into active sites by ingenious material design was a promising and positive strategy to improve catalytic reactions in industrial applications. To synergistically address the issue of sluggish CO2 desorption kinetics and SO2-poisoning solvent of amine scrubbing, we propose a novel method for preparing a high-performance core-shell C@Mn3O4 catalyst for heterogeneous sulfur migration and in situ reconstruction to active -SO3H groups, and thus inducing an enhanced proton-coupled electron transfer (PCET) effect for CO2 desorption. As anticipated, the rate of CO2 desorption increases significantly, by 255%, when SO2 is introduced. On a bench scale, dynamic CO2 capture experiments reveal that the catalytic regeneration heat duty of SO2-poisoned solvent experiences a 32% reduction compared to the blank case, while the durability of the catalyst is confirmed. Thus, the enhanced PCET of C@Mn3O4, facilitated by sulfur migration and simultaneous transformation, effectively improves the SO2 resistance and regeneration efficiency of amine solvents, providing a novel route for pursuing cost-effective CO2 capture with an amine solvent.
Collapse
Affiliation(s)
- Lei Xing
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Zhen Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Guoxiong Zhan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Zhoulan Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Mingyue Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yuchen Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Lidong Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
5
|
Li M, Xing L, Xu Z, Liang Z, Qi T, Li Y, Zhang S, Wang L. Embedded Mo/Mn Atomic Regulation for Durable Acidity-Reinforced HZSM-5 Catalyst toward Energy-Efficient Amine Regeneration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15465-15474. [PMID: 37782821 DOI: 10.1021/acs.est.3c04916] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Metal-molecular sieve composites with high acidity are promising solid acid catalysts (SACs) for accelerating sluggish CO2 desorption processes and reducing the energy consumption of CO2 chemisorption systems. However, the production of such SACs through conventional approaches such as loading or ion-exchange methods often leads to uncontrolled and unstable metal distribution on the catalysts, which limits their pore structure regulation and catalytic performance. In this study, we demonstrated a feasible strategy for improving the durability, surface chemical activity, and pore structure of metal-doped HZSM-5 through bimetallic Mo/Mn modification. This strategy involves the immobilization of Mo-O-Mn species confined in an MFI structure by regulating MoO42- anions and Mn2+ cations. The embedded Mn/Mo species of low valence can strongly induce electron transfer and increase the density of compensatory H+ on the MoMn@H catalyst, thereby reducing the CO2 desorption temperature by 8.27 °C and energy consumption by 37% in comparison to a blank. The durability enhancement and activity regulation method used in this study is expected to advance the rational synthesis of metal-molecular sieve composites for energy-efficient CO2 capture using amine regeneration technology.
Collapse
Affiliation(s)
- Mingyue Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, People's Republic of China
| | - Lei Xing
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, People's Republic of China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, People's Republic of China
| | - Zhongfei Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, People's Republic of China
| | - Zhengwei Liang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, People's Republic of China
| | - Tieyue Qi
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, People's Republic of China
| | - Yuchen Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, People's Republic of China
| | - Shihan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China
| | - Lidong Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, People's Republic of China
| |
Collapse
|
6
|
Li X, Xu Q, Liu Z, Chen J, Xie HB, Chen S, Liu J. Nonacid Carbon Materials as Catalysts for Monoethanolamine Energy-Efficient Regeneration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37378414 DOI: 10.1021/acs.est.3c01459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
In the CO2 capture process, solid acid catalysts have been widely adopted to decrease energy consumption in the amine regeneration process owing to abundant acid sites. However, acid sites unavoidably degenerate in the basic amine solution. To address the challenge, nonacid carbon materials including carbon molecular sieves, porous carbon, carbon nanotubes, and graphene are first proposed to catalyze amine regeneration. It is found that carbon materials can significantly increase the CO2 desorption amount by 47.1-72.3% and reduce energy consumption by 32-42%. In 20 stability experiments, CO2 loading was stable with the max difference value of 0.01 mol CO2/mol monoethanolamine (MEA), and no obvious increase in the relative heat duty (the maximum difference is 4%) occurred. The stability of carbon materials is superior to excellent solid acid catalysts, and the desorption performance is comparable. According to the results of theoretical calculation and experimental characterization, the electron-transfer mechanism of nonacid carbon materials is proposed, which is not only beneficial for MEA regeneration but also the probable reason for the stable catalytic activity. Owing to the excellent catalytic performance of carbon nanotube (CNT) in the HCO3- decomposition, nonacid carbon materials are quite promising to enhance the desorption performance of novel blend amines, which will further reduce the cost of carbon capture in the industry. This study provides a new strategy to develop stable catalysts used for amine energy-efficient regeneration.
Collapse
Affiliation(s)
- Xiaojing Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qian Xu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Zhishan Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shaoyun Chen
- State Key Laboratory of Fine Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jiaxu Liu
- State Key Laboratory of Fine Chemistry, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
7
|
Alivand MS, McQuillan RV, Momeni A, Zavabeti A, Stevens GW, Mumford KA. Facile Fabrication of Monodispersed Carbon Sphere: A Pathway Toward Energy-Efficient Direct Air Capture (DAC) Using Amino Acids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2300150. [PMID: 37058083 DOI: 10.1002/smll.202300150] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Direct removal of carbon dioxide (CO2 ) from the atmosphere, known as direct air capture (DAC) is attracting worldwide attention as a negative emission technology to control atmospheric CO2 concentrations. However, the energy-intensive nature of CO2 absorption-desorption processes has restricted deployment of DAC operations. Catalytic solvent regeneration is an effective solution to tackle this issue by accelerating CO2 desorption at lower regeneration temperatures. This work reports a one-step synthesis methodology to prepare monodispersed carbon nanospheres (MCSs) using trisodium citrate as a structure-directing agent with acidic sites. The assembly of citrate groups on the surface of MCSs enables consistent spherical growth morphology, reduces agglomeration and enhances water dispersibility. The functionalization-assisted synthesis produces uniform, hydrophilic nanospheres of 100-600 nm range. This work also demonstrates that the prepared MCSs can be further functionalized with strong Brønsted acid sites, providing high proton donation ability. Furthermore, the materials can be effectively used in a wide range of amino acid solutions to substantially accelerate CO2 desorption (25.6% for potassium glycinate and 41.1% for potassium lysinate) in the DAC process. Considering the facile synthesis of acidic MCSs and their superior catalytic efficiency, these findings are expected to pave a new path for energy-efficient DAC.
Collapse
Affiliation(s)
- Masood S Alivand
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
- Department of Chemical Engineering, Monash University, Parkville, Victoria, 3800, Australia
| | - Rebecca V McQuillan
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Arash Momeni
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Geoffrey W Stevens
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Kathryn A Mumford
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|
8
|
Xiong W, Liu L, Guo A, Chen D, Shan Y, Fu M, Wu J, Ye D, Chen P. Economical and Sustainable Synthesis of Small-Pore Chabazite Catalysts for NO x Abatement by Recycling Organic Structure-Directing Agents. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:655-665. [PMID: 36563090 DOI: 10.1021/acs.est.2c07239] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The application of small-pore chabazite-type SSZ-13 zeolites, key materials for the reduction of nitrogen oxides (NOx) in automotive exhausts and the selective conversion of methane, is limited by the use of expensive N,N,N-trimethyl-1-ammonium adamantine hydroxide (TMAdaOH) as an organic structure-directing agent (OSDA) during hydrothermal synthesis. Here, we report an economical and sustainable route for SSZ-13 synthesis by recycling and reusing the OSDA-containing waste liquids. The TMAdaOH concentration in waste liquids, determined by a bromocresol green colorimetric method, was found to be a key factor for SSZ-13 crystallization. The SSZ-13 zeolite synthesized under optimized conditions demonstrates similar physicochemical properties (surface area, porosity, crystallinity, Si/Al ratio, etc.) as that of the conventional synthetic approach. We then used the waste liquid-derived SSZ-13 as the parent zeolite to synthesize Cu ion-exchanged SSZ-13 (i.e., Cu-SSZ-13) for ammonia-mediated selective catalytic reduction of NOx (NH3-SCR) and observed a higher activity as well as better hydrothermal stability than Cu-SSZ-13 by conventional synthesis. In situ infrared and ultraviolet-visible spectroscopy investigations revealed that the superior NH3-SCR performance of waste liquid-derived Cu-SSZ-13 results from a higher density of Cu2+ sites coordinated to paired Al centers on the zeolite framework. The technoeconomic analysis highlights that recycling OSDA-containing waste liquids could reduce the raw material cost of SSZ-13 synthesis by 49.4% (mainly because of the higher utilization efficiency of TMAdaOH) and, meanwhile, the discharging of wastewater by 45.7%.
Collapse
Affiliation(s)
- Wuwan Xiong
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou510006, China
| | - Linhui Liu
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou510006, China
| | - Anqi Guo
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou510006, China
| | - Dongdong Chen
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou510006, China
| | - Yulong Shan
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing100085, China
| | - Mingli Fu
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou510006, China
| | - Junliang Wu
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou510006, China
| | - Daiqi Ye
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou510006, China
| | - Peirong Chen
- National Engineering Laboratory for VOCs Pollution Control Technology and Equipment, Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, School of Environment and Energy, South China University of Technology, Guangzhou510006, China
| |
Collapse
|
9
|
Li Y, Chen Z, Yuan B, Xing L, Zhan G, Peng Y, Wang L, Li J. Synergistic promotion for CO2 absorption and solvent regeneration by fine waste red mud particles on in amine-based carbon capture: Performance and mechanism. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
10
|
Shen Y, Gong Y, Sun L, Chen P, Zhang Q, Ye J, Wang L, Zhang S. Machine learning-driven assessment of relationship between activator properties in phase change solvent and its absorption performance for CO2 capture. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.123092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
11
|
Xing L, Li M, Li M, Xu T, Li Y, Qi T, Li H, Hu Z, Hao GP, Zhang S, James TD, Mao B, Wang L. MOF-Derived Robust and Synergetic Acid Sites Inducing C-N Bond Disruption for Energy-Efficient CO 2 Desorption. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:17936-17945. [PMID: 36482675 DOI: 10.1021/acs.est.2c06842] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Amine-based scrubbing technique is recognized as a promising method of capturing CO2 to alleviate climate change. However, the less stability and poor acidity of solid acid catalysts (SACs) limit their potential to further improve amine regeneration activity and reduce the energy penalty. To address these challenges, here, we introduce two-dimensional (2D) cobalt-nitrogen-doped carbon nanoflakes (Co-N-C NSs) driven by a layered metal-organic framework that work as SACs. The designed 2D Co-N-C SACs can exhibit promising stability, superhydrophilic surface, and acidity. Such 2D structure also contains well-confined Co-N4 Lewis acid sites and -OH Brønsted acid sites to have a synergetic effect on C-N bond disruption and significantly increase CO2 desorption rate by 281% and reduce the reaction temperatures to 88 °C, minimizing water evaporation by 20.3% and subsequent regeneration energy penalty by 71.7% compared to the noncatalysis.
Collapse
Affiliation(s)
- Lei Xing
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing102206, P. R. China
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing100084, P. R. China
| | - Meng Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing102206, P. R. China
| | - Mingyue Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing102206, P. R. China
| | - Teng Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing102206, P. R. China
| | - Yuchen Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing102206, P. R. China
| | - Tieyue Qi
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing102206, P. R. China
| | - Huanxin Li
- Department of Engineering, University of Cambridge, CambridgeCB3 0FA, U.K
| | - Zhigang Hu
- Department of Engineering, University of Cambridge, CambridgeCB3 0FA, U.K
| | - Guang-Ping Hao
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion, Carbon Resources, College of Environment, School of Chemical Engineering, Dalian University of Technology, Dalian116024, P. R. China
| | - Shihan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou310014, P. R. China
| | - Tony David James
- Prof. Tony David James, Department of Chemistry, University of Bath, BathBA2 7AY, U.K
| | - Boyang Mao
- Department of Engineering, University of Cambridge, CambridgeCB3 0FA, U.K
| | - Lidong Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing102206, P. R. China
| |
Collapse
|
12
|
Ji L, Li J, Zhai R, Wang J, Wang X, Yan S, Hua M. Metal Oxyhydroxide Catalysts Promoted CO 2 Absorption and Desorption in Amine-Based Carbon Capture: A Feasibility Study. ACS OMEGA 2022; 7:44620-44630. [PMID: 36530248 PMCID: PMC9753188 DOI: 10.1021/acsomega.2c02851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 09/12/2022] [Indexed: 06/17/2023]
Abstract
The huge energy penalty of CO2 desorption is the greatest challenge impeding the commercial application of amine-based CO2 capture. To deal with this problem, a series of metal oxide and oxyhydroxide catalysts were synthesized in this study to kinetically facilitate the CO2 desorption from 5.0 M monoethanolamine (MEA). The effects of selected catalysts on CO2 absorption kinetics, CO2 absorption capacity, CO2 reaction enthalpy, and desorption duty reduction of 2.0 M MEA were investigated by a true heat flow reaction calorimeter to access the practical feasibility of the catalytic CO2 desorption. The kinetic study of catalytic CO2 desorption was also carried out. CO2 desorption chemistry, catalyst characterization, and structure-function relationships were investigated to reveal the underlying mechanisms. Results show that addition of the catalyst had slight effects on the CO2 absorption kinetics and CO2 reaction enthalpy of MEA. In contrast, the CO2 desorption efficiency greatly increased from 28% in reference MEA to 52% in ZrO(OH)2-aided MEA. Compared to the benchmark catalyst HZSM-5, ZrO(OH)2 exhibited a 13% improvement in CO2 desorption efficiency. More importantly, compared to the reference MEA, the CO2 desorption duties of ZrO(OH)2 and FeOOH-aided MEA significantly reduced by 45 and 47% respectively, which are better than those of most other reported catalysts. The large surface area, pore volume, pore diameter, and amount of surface hydroxyl groups of ZrO(OH)2 and FeOOH afforded the catalytic performance by promoting the adsorption of alkaline speciation (e.g., MEA and HCO3 -) onto the particle surface.
Collapse
Affiliation(s)
- Long Ji
- State
Key Laboratory of Pollution Control and Resource Reuse, School of
the Environment, Nanjing University, Nanjing 210023, China
- College
of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiabi Li
- State
Key Laboratory of Pollution Control and Resource Reuse, School of
the Environment, Nanjing University, Nanjing 210023, China
| | - Rongrong Zhai
- School
of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
| | - Jinyi Wang
- Huaneng
Clean Energy Research Institute, Beijing 102209, China
| | - Xiaolong Wang
- Huaneng
Clean Energy Research Institute, Beijing 102209, China
| | - Shuiping Yan
- College
of Engineering, Huazhong Agricultural University, Wuhan 430070, China
| | - Ming Hua
- State
Key Laboratory of Pollution Control and Resource Reuse, School of
the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
13
|
Absorption of carbon dioxide in mixture of N-Methyl-2-Pyrrolidone and six different chemical solvents. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Li Y, Chen Z, Zhan G, Yuan B, Wang L, Li J. Inducing efficient proton transfer through Fe/Ni@COF to promote amine-based solvent regeneration for achieving low-cost capture of CO2 from industrial flue gas. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Tan Z, Zhang S, Yue X, Zhao F, Xi F, Yan D, Ling H, Zhang R, Tang F, You K, Luo H, Zhang X. Attapulgite as a cost-effective catalyst for low-energy consumption amine-based CO2 capture. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
16
|
Qi L, Yang W, Zhang L, Liu Q, Fei Z, Chen X, Zhang Z, Tang J, Cui M, Qiao X. Reinforced CO 2 Capture on Amine-Impregnated Organosilica with Double Brush-like Additives Modified. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Luming Qi
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road(S), Nanjing 211816, P. R. China
| | - Wanyong Yang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road(S), Nanjing 211816, P. R. China
| | - Linlin Zhang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road(S), Nanjing 211816, P. R. China
| | - Qing Liu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road(S), Nanjing 211816, P. R. China
| | - Zhaoyang Fei
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road(S), Nanjing 211816, P. R. China
| | - Xian Chen
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road(S), Nanjing 211816, P. R. China
| | - Zhuxiu Zhang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road(S), Nanjing 211816, P. R. China
| | - Jihai Tang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road(S), Nanjing 211816, P. R. China
| | - Mifen Cui
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road(S), Nanjing 211816, P. R. China
| | - Xu Qiao
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 Puzhu South Road(S), Nanjing 211816, P. R. China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), No. 5 Xinmofan Road(S), Nanjing 210009, P. R. China
| |
Collapse
|
17
|
Zhou C, Khalil I, Rammal F, Dusselier M, Kumar P, Lacroix M, Makshina E, Liao Y, Sels BF. A Critical Revisit of Zeolites for CO 2 Desorption in Primary Amine Solution Argues Its Genuine Catalytic Function. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Cheng Zhou
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Ibrahim Khalil
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Fatima Rammal
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Michiel Dusselier
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Parveen Kumar
- TotalEnergies OneTech Belgium, Zone industrielle C, 7181 Feluy, Belgium
| | - Maxime Lacroix
- Total Research & Technology, Gonfreville BP 27, 76700 Harfleur, France
| | - Ekaterina Makshina
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Yuhe Liao
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P. R. China
| | - Bert F. Sels
- Center for Sustainable Catalysis and Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| |
Collapse
|
18
|
CuO modified KIT-6 as a high-efficiency catalyst for energy-efficient amine solvent regeneration. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
19
|
Wei K, Xing L, Li Y, Xu T, Li Q, Wang L. Heteropolyacid modified Cerium-based MOFs catalyst for amine solution regeneration in CO2 capture. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Evaluating CO2 Desorption Activity of Tri-Solvent MEA + EAE + AMP with Various Commercial Solid Acid Catalysts. Catalysts 2022. [DOI: 10.3390/catal12070723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
The Paris Agreement and one of its goals, “carbon neutrality,” require intensive studies on CO2 absorption and desorption processes. When searching for ways of reducing the huge energy cost of CO2 desorption in the amine scrubbing process, the combination of blended amine with solid acid catalysts turned out to be a powerful solution in need of further investigation. In this study, the tri-solvent MEA (monoethanolamine) + EAE(2-(ethylamino)ethanol) + AMP(2-amino-2-methyl-1-propanol) was prepared at: 0.2 + 2 + 2, 0.5 + 2 + 2, 0.3 + 1.5 + 2.5 and 0.2 + 1 + 3 mol/L. The heterogeneous catalytic CO2 desorptions were tested with five commercial catalysts: blended γ-Al2O3/H-ZSM-5, H-beta, H-mordenite, HND-8 and HND-580. Desorption experiments were conducted via a recirculation process with direct heating at 363 K or using temperature programming method having a range of 303–363 K. Then, the average CO2 desorption rate, heat duty and desorption factors were studied. After comparison, the order of CO2 desorption performance was found to be HND-8 > HND-580 > H-mordenite > Hβ > blended γ-Al2O3/H-ZSM-5 > no catalyst. Among the other combinations, the 0.2 + 1 + 3 mol/L MEA + EAE + AMP with HND-8 had a minimized heat duty (HD) of 589.3 kJ/mol CO2 and the biggest desorption factor (DF) of 0.0277 × (10−3 mol CO2)3/L2 kJ min. This study provided a kind of tri-solvent with catalysts as an energy-efficient solution for CO2 absorption and desorption in industrial CO2 capture pilot plants.
Collapse
|
21
|
Chen G, Chen G, Peruzzini M, Zhang R, Barzagli F. Understanding the potential benefits of blended ternary amine systems for CO2 capture processes through 13C NMR speciation study and energy cost analysis. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120939] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Gao G, Li X, Jiang W, Zhao Z, Xu Y, Wu F, Luo C, Zhang L. Improved quasi-cycle capacity method based on microcalorimetry strategy for the fast screening of amino acid salt absorbents for CO2 capture. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
A Review on Enhancing Solvent Regeneration in CO2 Absorption Process Using Nanoparticles. SUSTAINABILITY 2022. [DOI: 10.3390/su14084750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The employment of nanoparticles in solvents is a promising method to reduce the energy consumption during solvent regeneration. Numerous experimental and theoretical studies have been conducted to investigate the remarkable enhancement of nanoparticles. Yet, there are limited reviews on the mechanistic role of nanoparticles in enhancing the solvent regeneration performance. This review addresses the recent development on the employment of various nanoparticles, which include metals oxides, zeolites and mesoporous silicas, to enhance the mass and heat transfer, which subsequently minimize the solvent regeneration energy. The enhancement mechanisms of the nanoparticles are elaborated based on their physical and chemical effects, with a comprehensive comparison on each nanoparticle along with its enhancement ratio. This review also provides the criteria for selecting or synthesizing nanoparticles that can provide a high regeneration enhancement ratio. Furthermore, the future research prospects for the employment of nanoparticles in solvent regeneration are also recommended.
Collapse
|
24
|
Alivand MS, Mazaheri O, Wu Y, Zavabeti A, Christofferson AJ, Meftahi N, Russo SP, Stevens GW, Scholes CA, Mumford KA. Engineered assembly of water-dispersible nanocatalysts enables low-cost and green CO 2 capture. Nat Commun 2022; 13:1249. [PMID: 35273166 PMCID: PMC8913730 DOI: 10.1038/s41467-022-28869-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 01/31/2022] [Indexed: 12/03/2022] Open
Abstract
Catalytic solvent regeneration has attracted broad interest owing to its potential to reduce energy consumption in CO2 separation, enabling industry to achieve emission reduction targets of the Paris Climate Accord. Despite recent advances, the development of engineered acidic nanocatalysts with unique characteristics remains a challenge. Herein, we establish a strategy to tailor the physicochemical properties of metal-organic frameworks (MOFs) for the synthesis of water-dispersible core-shell nanocatalysts with ease of use. We demonstrate that functionalized nanoclusters (Fe3O4-COOH) effectively induce missing-linker deficiencies and fabricate mesoporosity during the self-assembly of MOFs. Superacid sites are created by introducing chelating sulfates on the uncoordinated metal clusters, providing high proton donation capability. The obtained nanomaterials drastically reduce the energy consumption of CO2 capture by 44.7% using only 0.1 wt.% nanocatalyst, which is a ∽10-fold improvement in efficiency compared to heterogeneous catalysts. This research represents a new avenue for the next generation of advanced nanomaterials in catalytic solvent regeneration. Catalytic solvent regeneration is of interest to reduce energy consumption in CO2 separation, however, the development of engineered nanocatalysts remains a challenge. Here, a new avenue is presented for the next generation of advanced metal-organic frameworks (MOFs) in energy-efficient CO2 capture.
Collapse
Affiliation(s)
- Masood S Alivand
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Vic, 3010, Australia
| | - Omid Mazaheri
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Vic, 3010, Australia.,School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Melbourne, Vic, 3010, Australia
| | - Yue Wu
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Vic, 3010, Australia
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Vic, 3010, Australia.,School of Science, RMIT University, Melbourne, Vic, 3001, Australia
| | - Andrew J Christofferson
- School of Science, RMIT University, Melbourne, Vic, 3001, Australia.,ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Vic, 3000, Australia
| | - Nastaran Meftahi
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Vic, 3000, Australia
| | - Salvy P Russo
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, Vic, 3000, Australia
| | - Geoffrey W Stevens
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Vic, 3010, Australia
| | - Colin A Scholes
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Vic, 3010, Australia
| | - Kathryn A Mumford
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Vic, 3010, Australia.
| |
Collapse
|
25
|
Alivand MS, Mazaheri O, Wu Y, Zavabeti A, Stevens GW, Scholes CA, Mumford KA. Water-Dispersible Nanocatalysts with Engineered Structures: The New Generation of Nanomaterials for Energy-Efficient CO 2 Capture. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57294-57305. [PMID: 34812613 DOI: 10.1021/acsami.1c17678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The high energy demand of CO2 absorption-desorption technologies has significantly inhibited their industrial utilization and implementation of the Paris Climate Accord. Catalytic solvent regeneration is of considerable interest due to its low operating temperature and high energy efficiency. Of the catalysts available, heterogeneous catalysts have exhibited relatively poor performances and are hindered by other challenges, which have slowed their large-scale deployment. Herein, we report a facile and eco-friendly approach for synthesizing water-dispersible Fe3O4 nanocatalysts coated with a wide range of amino acids (12 representative molecules) in aqueous media. The acidic properties of water-dispersible nanocatalysts can be easily tuned by introducing different functional groups during the hydrothermal synthesis procedure. We demonstrate that the prepared nanocatalysts can be used in energy-efficient CO2 capture plants with ease-of-use, at very low concentrations (0.1 wt %) and with extra-high efficiencies (up to ∼75% energy reductions). They can be applied in a range of solutions, including amino acids (i.e., short-chain, long-chain, and cyclic) and amines (i.e., primary, tertiary, and primary-tertiary mixture). Considering the superiority of the presented water-dispersible nanocatalysts, this technology is expected to provide a new pathway for the development of energy-efficient CO2 capture technologies.
Collapse
Affiliation(s)
- Masood S Alivand
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Omid Mazaheri
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yue Wu
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Geoffrey W Stevens
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Colin A Scholes
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kathryn A Mumford
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
26
|
Bhatti UH, Kazmi WW, Min GH, Haider J, Nam S, Baek IH. Facilely Synthesized M-Montmorillonite (M = Cr, Fe, and Co) as Efficient Catalysts for Enhancing CO 2 Desorption from Amine Solution. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Umair H. Bhatti
- Korea Institute of Energy Research, 217 Gajeong-ro Yuseong-gu, Daejeon 34129, South Korea
- University of Science and Technology, 217 Gajeong-ro Yuseong-gu, Daejeon 34113, South Korea
| | - Wajahat W. Kazmi
- Korea Institute of Energy Research, 217 Gajeong-ro Yuseong-gu, Daejeon 34129, South Korea
- University of Science and Technology, 217 Gajeong-ro Yuseong-gu, Daejeon 34113, South Korea
| | - Gwan Hong Min
- Korea Institute of Energy Research, 217 Gajeong-ro Yuseong-gu, Daejeon 34129, South Korea
- University of Science and Technology, 217 Gajeong-ro Yuseong-gu, Daejeon 34113, South Korea
| | - Junaid Haider
- School of Energy and Chemical Engineering Department, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulju-gun, Ulsan 44919, South Korea
| | - Sungchan Nam
- Korea Institute of Energy Research, 217 Gajeong-ro Yuseong-gu, Daejeon 34129, South Korea
- University of Science and Technology, 217 Gajeong-ro Yuseong-gu, Daejeon 34113, South Korea
| | - Il Hyun Baek
- Korea Institute of Energy Research, 217 Gajeong-ro Yuseong-gu, Daejeon 34129, South Korea
- University of Science and Technology, 217 Gajeong-ro Yuseong-gu, Daejeon 34113, South Korea
| |
Collapse
|
27
|
Xing L, Wei K, Li Y, Fang Z, Li Q, Qi T, An S, Zhang S, Wang L. TiO 2 Coating Strategy for Robust Catalysis of the Metal-Organic Framework toward Energy-Efficient CO 2 Capture. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11216-11224. [PMID: 34324324 DOI: 10.1021/acs.est.1c02452] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
High energy duty restricts the application of amine-based absorption in CO2 capture and limits the achievement of carbon neutrality. Although regenerating the amine solvent with solid acid catalysts can increase energy efficiency, inactivation of the catalyst must be addressed. Here, we report a robust metal-organic framework (MOF)-derived hybrid solid acid catalyst (SO42-/ZIF-67-C@TiO2) with improved acidity for promoting amine regeneration. The TiO2 coating effectively prevented the active components stripping from the surface of the catalyst, thus prolonging its lifespan. The well-protected Co-Nx sites and protonated groups introduced onto the TiO2 surface increased the amount and rate of CO2 desorption by more than 64.5 and 153%, respectively. Consequently, the energy consumption decreased by approximately 36%. The catalyzed N-C bond rupture and proton transfer mechanisms are proposed. This work provides an effective protection strategy for robust acid catalysts, thus advancing the CO2 capture with less energy duty.
Collapse
Affiliation(s)
- Lei Xing
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Kexin Wei
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Yuchen Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Zhimo Fang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Qiangwei Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Tieyue Qi
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Shanlong An
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Shihan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lidong Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| |
Collapse
|
28
|
Shi H, Yang X, Feng H, Fu J, Zou T, Yao J, Wang Z, Jiang L, Tontiwachwuthikul P. Evaluating Energy-Efficient Solutions of CO 2 Capture within Tri-solvent MEA+BEA+AMP within 0.1+2+2–0.5+2+2 mol/L Combining Heterogeneous Acid–Base Catalysts. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00545] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Huancong Shi
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P.R. China
- Huzhou Institute of Zhejiang University, Huzhou, Zhejiang 31300, P.R. China
- Clean Energy Technology Research Institute (CETRI), Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada
| | - Xuan Yang
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P.R. China
| | - Hongliang Feng
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P.R. China
| | - Junxing Fu
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P.R. China
| | - Ting Zou
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P.R. China
| | - Jiayue Yao
- Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P.R. China
| | - Zimeng Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, P.R. China
| | - Linhua Jiang
- Engineering Research Center of AI & Robotics, Ministry of Education, Academy for Engineering & Technology, Fudan University, Shanghai 200433, P.R. China
| | - Paitoon Tontiwachwuthikul
- Clean Energy Technology Research Institute (CETRI), Faculty of Engineering and Applied Science, University of Regina, 3737 Wascana Parkway, Regina, Saskatchewan S4S 0A2, Canada
| |
Collapse
|
29
|
Ibrahim AA, Salama RS, El-Hakam SA, Khder AS, Ahmed AI. Synthesis of sulfated zirconium supported MCM-41 composite with high-rate adsorption of methylene blue and excellent heterogeneous catalyst. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126361] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
30
|
Shen X, Yan F, Li C, Qu F, Wang Y, Zhang Z. Biogas Upgrading via Cyclic CO 2 Adsorption: Application of Highly Regenerable PEI@nano-Al 2O 3 Adsorbents with Anti-Urea Properties. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5236-5247. [PMID: 33779159 DOI: 10.1021/acs.est.0c07973] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Solid amine adsorbents are among the most promising CO2 adsorption technologies for biogas upgrading due to their high selectivity toward CO2, low energy consumption, and easy regeneration. However, in most cases, these adsorbents undergo severe chemical inactivation due to urea formation when regenerated under a realistic CO2 atmosphere. Herein, we demonstrated a facile and efficient synthesis route, involving the synthesis of nano-Al2O3 support derived from coal fly ash with a CO2 flow as the precipitant and the preparation of polyethylenimine (PEI)-impregnated Al2O3-supported adsorbent. The optimal 55%PEI@2%Al2O3 adsorbent showed a high CO2 uptake of 139 mg·g-1 owing to the superior pore structure of synthesized nano-Al2O3 support and exhibited stable cyclic stability with a mere 0.29% decay per cycle even under the realistic regenerated CO2 atmosphere. The stabilizing mechanism of PEI@nano-Al2O3 adsorbent was systematically demonstrated, namely, the cross-linking reaction between the amidogen of a PEI molecule and nano-Al2O3 support, owing to the abundant Lewis acid sites of nano-Al2O3. This cross-linking process promoted the conversion of primary amines into secondary amines in the PEI molecule and thus significantly enhanced the cyclic stability of PEI@nano-Al2O3 adsorbents by markedly inhibiting the formation of urea compounds. Therefore, this facile and efficient strategy for PEI@nano-Al2O3 adsorbents with anti-urea properties, which can avoid active amine content dilution from PEI chemical modification, is promising for practical biogas upgrading and various CO2 separation processes.
Collapse
Affiliation(s)
- Xuehua Shen
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China
- School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Feng Yan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China
- Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen City, Shenzhen 518055, China
| | - Chunyan Li
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fan Qu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yingqing Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zuotai Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, Southern University of Science and Technology, Shenzhen 518055, China
- Key Laboratory of Municipal Solid Waste Recycling Technology and Management of Shenzhen City, Shenzhen 518055, China
| |
Collapse
|
31
|
Promotional Effects of Rare-Earth Praseodymium (Pr) Modification over MCM-41 for Methyl Mercaptan Catalytic Decomposition. Processes (Basel) 2021. [DOI: 10.3390/pr9020400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Praseodymium (Pr)-promoted MCM-41 catalyst was investigated for the catalytic decomposition of methyl mercaptan (CH3SH). Various characterization techniques, such as X-ray diffraction (XRD), N2 adsorption–desorption, temperature-programmed desorption of ammonia (NH3-TPD) and carbon dioxide (CO2-TPD), hydrogen temperature-programmed reduction (H2-TPR), and X-ray photoelectron spectrometer (XPS), were carried out to analyze the physicochemical properties of material. XPS characterization results showed that praseodymium was presented on the modified catalyst in the form of praseodymium oxide species, which can react with coke deposit to prolong the catalytic stability until 120 h. Meanwhile, the strong acid sites were proved to be the main active center over the 10% Pr/MCM-41 catalyst by NH3-TPD results during the catalytic elimination of methyl mercaptan. The possible reaction mechanism was proposed by analyzing the product distribution results. The final products were mainly small-molecule products, such as methane (CH4) and hydrogen sulfide (H2S). Dimethyl sulfide (CH3SCH3) was a reaction intermediate during the reaction. Therefore, this work contributes to the understanding of the reaction process of catalytic decomposition methyl mercaptan and the design of anti-carbon deposition catalysts.
Collapse
|
32
|
Xing L, Wei K, Li Q, Wang R, Zhang S, Wang L. One-Step Synthesized SO 42-/ZrO 2-HZSM-5 Solid Acid Catalyst for Carbamate Decomposition in CO 2 Capture. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13944-13952. [PMID: 33054187 DOI: 10.1021/acs.est.0c04946] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Amine-based CO2 capture technology requires high-energy consumption because the desorption temperature required for carbamate breakdown during absorbent regeneration is higher than 110 °C. In this study, we report a stable solid acid catalyst, namely, SO42-/ZrO2-HZSM-5 (SZ@H), which has improved Lewis acid sites (LASs) and Bronsted acid sites (BASs). The improved LASs and BASs enabled the CO2 desorption temperature to be decreased to less than 98 °C. The BASs and LASs of SZ@H preferred to donate or accept protons; thus, the amount and rate of CO2 desorption from spent monoethanolamine were more than 40 and 37% higher, respectively, when using SZ@H than when not using any catalyst. Consequently, the energy consumption was reduced by approximately 31%. A catalyzed proton-transfer mechanism is proposed for SZ@H-catalyzed CO2 regeneration through experimental characterization and theoretical calculations. The results reveal the role of proton transfer during CO2 desorption, which enables the feasibility of catalysts for CO2 capture in industrial applications.
Collapse
Affiliation(s)
- Lei Xing
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Kexin Wei
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Qiangwei Li
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Rujie Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| | - Shihan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lidong Wang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
| |
Collapse
|
33
|
Shi H, Fu J, Wu Q, Huang M, Jiang L, Cui M, Idem R, Tontiwachwuthikul P. Studies of the coordination effect of DEA-MEA blended amines (within 1 + 4 to 2 + 3 M) under heterogeneous catalysis by means of absorption and desorption parameters. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2019.116179] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Zhang R, Zhang Y, Cheng Y, Yu Q, Luo X, Li C, Li J, Zeng Z, Liu Y, Jiang X, Hu XE. New Approach with Universal Applicability for Evaluating the Heat Requirements in the Solvent Regeneration Process for Postcombustion CO 2 Capture. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b05247] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Rui Zhang
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan 411105, P.R. China
- Hunan Provincal Engineerging Research Center of Sepiolite Resource for Efficient Utilization, Xiangtan, Hunan 411100, P. R. China
| | - Yiming Zhang
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan 411105, P.R. China
| | - Yi Cheng
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan 411105, P.R. China
| | - Qian Yu
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan 411105, P.R. China
| | - Xiao Luo
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, P.R. China
| | - Chao’en Li
- CSIRO Energy, 71 Normanby Road, Clayton North, Victoria 3169, Australia
| | - Junhui Li
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan 411105, P.R. China
| | - Zhaogang Zeng
- Xiangtan Sepiolite Technology Company, Ltd, Xiangtan, Hunan 411100, P. R. China
- Hunan Provincal Engineerging Research Center of Sepiolite Resource for Efficient Utilization, Xiangtan, Hunan 411100, P. R. China
| | - Yang Liu
- Hunan BG Well-point Environmental Science & Technology Company, Ltd, Changsha, Hunan 410000, P. R. China
| | - Xiaowen Jiang
- School of Accounting, Capital University of Economics and Business, Beijing 100070, P. R. China
| | - Xiayi Eric Hu
- College of Chemical Engineering, Xiangtan University, Xiangtan, Hunan 411105, P.R. China
- Institute for Materials and Processes, School of Engineering, University of Edinburgh, Mayfield Road, Edinburgh EH93JL, U.K
- Hunan Provincal Engineerging Research Center of Sepiolite Resource for Efficient Utilization, Xiangtan, Hunan 411100, P. R. China
| |
Collapse
|
35
|
Singh G, Lee J, Karakoti A, Bahadur R, Yi J, Zhao D, AlBahily K, Vinu A. Emerging trends in porous materials for CO2 capture and conversion. Chem Soc Rev 2020; 49:4360-4404. [DOI: 10.1039/d0cs00075b] [Citation(s) in RCA: 255] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This review highlights the recent progress in porous materials (MOFs, zeolites, POPs, nanoporous carbons, and mesoporous materials) for CO2 capture and conversion.
Collapse
Affiliation(s)
- Gurwinder Singh
- Global Innovative Centre for Advanced Nanomaterials
- Faculty of Engineering & Built Environment
- University of Newcastle
- Callaghan
- Australia
| | - Jangmee Lee
- Global Innovative Centre for Advanced Nanomaterials
- Faculty of Engineering & Built Environment
- University of Newcastle
- Callaghan
- Australia
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials
- Faculty of Engineering & Built Environment
- University of Newcastle
- Callaghan
- Australia
| | - Rohan Bahadur
- Global Innovative Centre for Advanced Nanomaterials
- Faculty of Engineering & Built Environment
- University of Newcastle
- Callaghan
- Australia
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials
- Faculty of Engineering & Built Environment
- University of Newcastle
- Callaghan
- Australia
| | - Dongyuan Zhao
- Department of Chemistry
- Laboratory of Advanced Nanomaterials
- iChEM (Collaborative Innovation Center of Chemistry for Energy materials)
- Fudan University
- Shanghai 200433
| | - Khalid AlBahily
- SABIC Corporate Research and Development Centre at KAUST
- Saudi Basic Industries Corporation
- Thuwal
- Saudi Arabia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials
- Faculty of Engineering & Built Environment
- University of Newcastle
- Callaghan
- Australia
| |
Collapse
|
36
|
Gao W, Liang S, Wang R, Jiang Q, Zhang Y, Zheng Q, Xie B, Toe CY, Zhu X, Wang J, Huang L, Gao Y, Wang Z, Jo C, Wang Q, Wang L, Liu Y, Louis B, Scott J, Roger AC, Amal R, He H, Park SE. Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chem Soc Rev 2020; 49:8584-8686. [DOI: 10.1039/d0cs00025f] [Citation(s) in RCA: 272] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review covers the sustainable development of advanced improvements in CO2 capture and utilization.
Collapse
|
37
|
Wang L, Liu S, Wang R, Li Q, Zhang S. Regulating Phase Separation Behavior of a DEEA-TETA Biphasic Solvent Using Sulfolane for Energy-Saving CO 2 Capture. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12873-12881. [PMID: 31446756 DOI: 10.1021/acs.est.9b02787] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Biphasic solvents containing mixed amines have a phase separation behavior and energy-efficient regeneration for CO2 capture. However, the trade-off between the CO2 absorption capacity and the volume ratio of the CO2-rich phase presents a critical challenge to the reducing potential in regeneration energy consumption. In this study, sulfolane was proposed to regulate the phase separation behavior of a N,N-diethylethanolamine (DEEA)-triethylenetetramine (TETA) biphasic absorbent by simultaneously decreasing the volume ratio and increasing the CO2 loading of the rich phase, without sacrificing the high CO2 capacity. In the DEEA-TETA-sulfolane biphasic absorbent, sulfolane acted as a phase splitter and physical activator. The replacement of a part of H2O by hydrophobic sulfolane contributed to a substantial decrease in the volume ratio of the rich phase from 83 to 39% and an increase in CO2 loading of the rich phase from 3.10 to 4.92 mol/L. The regeneration heat decreased to 1.81 GJ/t CO2, 26.4% less than DEEA-TETA, and 54.6% less than the 5 M monoethanolamine system. Moreover, by promoting the mass transfer coefficient of CO2 in DEEA-TETA-sulfolane to 1.8 times the original DEEA-TETA system, sulfolane was validated as a physical activator. Our study provides a promising strategy for regulating the phase separation behavior of biphasic solvents and enhancing the regeneration energy efficiency for CO2 capture.
Collapse
Affiliation(s)
- Lidong Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering , North China Electric Power University , Baoding 071003 , PR China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering , North China Electric Power University , Beijing 102206 , PR China
| | - Shanshan Liu
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering , North China Electric Power University , Baoding 071003 , PR China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering , North China Electric Power University , Beijing 102206 , PR China
| | - Rujie Wang
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering , North China Electric Power University , Baoding 071003 , PR China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering , North China Electric Power University , Beijing 102206 , PR China
| | - Qiangwei Li
- Hebei Key Lab of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering , North China Electric Power University , Baoding 071003 , PR China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering , North China Electric Power University , Beijing 102206 , PR China
| | - Shihan Zhang
- College of Environment , Zhejiang University of Technology , Hangzhou 310014 , China
| |
Collapse
|