1
|
Raes B, Wang J, Horemans B, Dirckx L, Waldherr S, Kohler HPE, Springael D. The Growth Yield of Aminobacter niigataensis MSH1 on the Micropollutant 2,6-Dichlorobenzamide Decreases Substantially at Trace Substrate Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2859-2869. [PMID: 38289638 DOI: 10.1021/acs.est.3c06883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
2,6-Dichlorobenzamide (BAM) is an omnipresent micropollutant in European groundwaters. Aminobacter niigataensis MSH1 is a prime candidate for biologically treating BAM-contaminated groundwater since this organism is capable of utilizing BAM as a carbon and energy source. However, detailed information on the BAM degradation kinetics by MSH1 at trace concentrations is lacking, while this knowledge is required for predicting and optimizing the degradation process. Contaminating assimilable organic carbon (AOC) in media makes the biodegradation experiment a mixed-substrate assay and hampers exploration of pollutant degradation at trace concentrations. In this study, we examined how the BAM concentration affects MSH1 growth and BAM substrate utilization kinetics in a AOC-restricted background to avoid mixed-substrate conditions. Conventional Monod kinetic models were unable to predict kinetic parameters at low concentrations from kinetics determined at high concentrations. Growth yields on BAM were concentration-dependent and decreased substantially at trace concentrations; i.e., growth of MSH1 diminished until undetectable levels at BAM concentrations below 217 μg-C/L. Nevertheless, BAM degradation continued. Decreasing growth yields at lower BAM concentrations might relate to physiological adaptations to low substrate availability or decreased expression of downstream steps of the BAM catabolic pathway beyond 2,6-dichlorobenzoic acid (2,6-DCBA) that ultimately leads to Krebs cycle intermediates for growth and energy conservation.
Collapse
Affiliation(s)
- Bart Raes
- Division of Soil and Water Management, KU Leuven, Heverlee B-3001, Belgium
| | - Jinsong Wang
- Division of Soil and Water Management, KU Leuven, Heverlee B-3001, Belgium
| | - Benjamin Horemans
- Division of Soil and Water Management, KU Leuven, Heverlee B-3001, Belgium
| | - Lode Dirckx
- Division of Soil and Water Management, KU Leuven, Heverlee B-3001, Belgium
| | - Steffen Waldherr
- Chemical Reactor Engineering and Safety (CREaS), KU Leuven, Heverlee B-3001, Belgium
| | - Hans-Peter E Kohler
- Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), 8600 Dübendorf, Switzerland
| | - Dirk Springael
- Division of Soil and Water Management, KU Leuven, Heverlee B-3001, Belgium
| |
Collapse
|
2
|
Aldas-Vargas A, Poursat BAJ, Sutton NB. Potential and limitations for monitoring of pesticide biodegradation at trace concentrations in water and soil. World J Microbiol Biotechnol 2022; 38:240. [PMID: 36261779 PMCID: PMC9581840 DOI: 10.1007/s11274-022-03426-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022]
Abstract
Pesticides application on agricultural fields results in pesticides being released into the environment, reaching soil, surface water and groundwater. Pesticides fate and transformation in the environment depend on environmental conditions as well as physical, chemical and biological degradation processes. Monitoring pesticides biodegradation in the environment is challenging, considering that traditional indicators, such as changes in pesticides concentration or identification of pesticide metabolites, are not suitable for many pesticides in anaerobic environments. Furthermore, those indicators cannot distinguish between biotic and abiotic pesticide degradation processes. For that reason, the use of molecular tools is important to monitor pesticide biodegradation-related genes or microorganisms in the environment. The development of targeted molecular (e.g., qPCR) tools, although laborious, allowed biodegradation monitoring by targeting the presence and expression of known catabolic genes of popular pesticides. Explorative molecular tools (i.e., metagenomics & metatranscriptomics), while requiring extensive data analysis, proved to have potential for screening the biodegradation potential and activity of more than one compound at the time. The application of molecular tools developed in laboratory and validated under controlled environments, face challenges when applied in the field due to the heterogeneity in pesticides distribution as well as natural environmental differences. However, for monitoring pesticides biodegradation in the field, the use of molecular tools combined with metadata is an important tool for understanding fate and transformation of the different pesticides present in the environment.
Collapse
Affiliation(s)
- Andrea Aldas-Vargas
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 EV, Wageningen, The Netherlands
| | - Baptiste A J Poursat
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 EV, Wageningen, The Netherlands
| | - Nora B Sutton
- Environmental Technology, Wageningen University & Research, P.O. Box 17, 6700 EV, Wageningen, The Netherlands.
| |
Collapse
|
3
|
Senn S, Bhattacharyya S, Presley G, Taylor AE, Nash B, Enke RA, Barnard-Kubow KB, Ford J, Jasinski B, Badalova Y. The Functional Biogeography of eDNA Metacommunities in the Post-Fire Landscape of the Angeles National Forest. Microorganisms 2022; 10:microorganisms10061218. [PMID: 35744735 PMCID: PMC9229275 DOI: 10.3390/microorganisms10061218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
Wildfires have continued to increase in frequency and severity in Southern California due in part to climate change. To gain a further understanding of microbial soil communities’ response to fire and functions that may enhance post-wildfire resilience, soil fungal and bacterial microbiomes were studied from different wildfire areas in the Gold Creek Preserve within the Angeles National Forest using 16S, FITS, 18S, 12S, PITS, and COI amplicon sequencing. Sequencing datasets from December 2020 and June 2021 samplings were analyzed using QIIME2, ranacapa, stats, vcd, EZBioCloud, and mixomics. Significant differences were found among bacterial and fungal taxa associated with different fire areas in the Gold Creek Preserve. There was evidence of seasonal shifts in the alpha diversity of the bacterial communities. In the sparse partial least squares analysis, there were strong associations (r > 0.8) between longitude, elevation, and a defined cluster of Amplicon Sequence Variants (ASVs). The Chi-square test revealed differences in fungi−bacteria (F:B) proportions between different trails (p = 2 × 10−16). sPLS results focused on a cluster of Green Trail samples with high elevation and longitude. Analysis revealed the cluster included the post-fire pioneer fungi Pyronema and Tremella. Chlorellales algae and possibly pathogenic Fusarium sequences were elevated. Bacterivorous Corallococcus, which secretes antimicrobials, and bacterivorous flagellate Spumella were associated with the cluster. There was functional redundancy in clusters that were differently composed but shared similar ecological functions. These results implied a set of traits for post-fire resiliency. These included photo-autotrophy, mineralization of pyrolyzed organic matter and aromatic/oily compounds, potential pathogenicity and parasitism, antimicrobials, and N-metabolism.
Collapse
Affiliation(s)
- Savanah Senn
- Department of Agriculture Sciences, Los Angeles Pierce College, 6201 Winnetka Avenue, PMB 553, Woodland Hills, CA 91304, USA; (J.F.); (B.J.); (Y.B.)
- Environmental Sciences Graduate Program, Oregon State University, Corvallis, OR 97331, USA; (S.B.); (G.P.); (A.E.T.)
- Correspondence:
| | - Sharmodeep Bhattacharyya
- Environmental Sciences Graduate Program, Oregon State University, Corvallis, OR 97331, USA; (S.B.); (G.P.); (A.E.T.)
- Department of Statistics, Oregon State University, Corvallis, OR 97331, USA
| | - Gerald Presley
- Environmental Sciences Graduate Program, Oregon State University, Corvallis, OR 97331, USA; (S.B.); (G.P.); (A.E.T.)
- Department of Wood Science & Engineering, Oregon State University, Corvallis, OR 97331, USA
| | - Anne E. Taylor
- Environmental Sciences Graduate Program, Oregon State University, Corvallis, OR 97331, USA; (S.B.); (G.P.); (A.E.T.)
- Department of Crop and Soil Sciences, Oregon State University, Corvallis, OR 97331, USA
| | - Bruce Nash
- DNA Learning Center, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA;
| | - Ray A. Enke
- Department of Biology, Center for Genome & Metagenome Studies, James Madison University, Harrisonburg, VA 22807, USA; (R.A.E.); (K.B.B.-K.)
| | - Karen B. Barnard-Kubow
- Department of Biology, Center for Genome & Metagenome Studies, James Madison University, Harrisonburg, VA 22807, USA; (R.A.E.); (K.B.B.-K.)
| | - Jillian Ford
- Department of Agriculture Sciences, Los Angeles Pierce College, 6201 Winnetka Avenue, PMB 553, Woodland Hills, CA 91304, USA; (J.F.); (B.J.); (Y.B.)
| | - Brandon Jasinski
- Department of Agriculture Sciences, Los Angeles Pierce College, 6201 Winnetka Avenue, PMB 553, Woodland Hills, CA 91304, USA; (J.F.); (B.J.); (Y.B.)
| | - Yekaterina Badalova
- Department of Agriculture Sciences, Los Angeles Pierce College, 6201 Winnetka Avenue, PMB 553, Woodland Hills, CA 91304, USA; (J.F.); (B.J.); (Y.B.)
| |
Collapse
|
4
|
Schostag MD, Gobbi A, Fini MN, Ellegaard-Jensen L, Aamand J, Hansen LH, Muff J, Albers CN. Combining reverse osmosis and microbial degradation for remediation of drinking water contaminated with recalcitrant pesticide residue. WATER RESEARCH 2022; 216:118352. [PMID: 35358881 DOI: 10.1016/j.watres.2022.118352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Groundwater contamination by recalcitrant organic micropollutants such as pesticide residues poses a great threat to the quality of drinking water. One way to remediate drinking water containing micropollutants is to bioaugment with specific pollutant degrading bacteria. Previous attempts to augment sand filters with the 2,6-dichlorobenzamide (BAM) degrading bacterium Aminobacter niigataensis MSH1 to remediate BAM-polluted drinking water initially worked well, but the efficiency rapidly decreased due to loss of degrader bacteria. Here, we use pilot-scale augmented sand filters to treat retentate of reverse osmosis treatment, thus increasing residence time in the biofilters and potentially nutrient availability. In a first pilot-scale experiment, BAM and most of the measured nutrients were concentrated 5-10 times in the retentate. This did not adversely affect the abundances of inoculated bacteria and the general prokaryotic community of the sand filter presented only minor differences. On the other hand, the high degradation activity was not prolonged compared to the filter receiving non-concentrated water at the same residence time. Using laboratory columns, it was shown that efficient BAM degradation could be achieved for >100 days by increasing the residence time in the sand filter. A slower flow may have practical implications for the treatment of large volumes of water, however this can be circumvented when treating only the retentate water equalling 10-15% of the volume of inlet water. We therefore conducted a second pilot-scale experiment with two inoculated sand filters receiving membrane retentate operated with different residence times (22 versus 133 min) for 65 days. While the number of MSH1 in the biofilters was not affected, the effect on degradation was significant. In the filter with short residence time, BAM degradation decreased from 86% to a stable level of 10-30% degradation within the first two weeks. The filter with the long residence time initially showed >97% BAM degradation, which only slightly decreased with time (88% at day 65). Our study demonstrates the advantage of combining membrane filtration with bioaugmented filters in cases where flow rate is of high importance.
Collapse
Affiliation(s)
- Morten D Schostag
- Department of Geochemistry, Geological Survey of Denmark & Greenland (GEUS), Copenhagen, Denmark
| | - Alex Gobbi
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Mahdi Nikbakht Fini
- Center for Membrane Technology, Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | | | - Jens Aamand
- Department of Geochemistry, Geological Survey of Denmark & Greenland (GEUS), Copenhagen, Denmark
| | - Lars Hestbjerg Hansen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jens Muff
- Center for Membrane Technology, Department of Chemistry and Bioscience, Aalborg University, Esbjerg, Denmark
| | - Christian N Albers
- Department of Geochemistry, Geological Survey of Denmark & Greenland (GEUS), Copenhagen, Denmark.
| |
Collapse
|
5
|
Kang J, Yin Z, Pei F, Ye Z, Song G, Ling H, Gao D, Jiang X, Zhang C, Ge J. Aerobic composting of chicken manure with penicillin G: Community classification and quorum sensing mediating its contribution to humification. BIORESOURCE TECHNOLOGY 2022; 352:127097. [PMID: 35367602 DOI: 10.1016/j.biortech.2022.127097] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Chicken manure containing antibiotics is a hazardous biological waste. The purpose of our study was to investigate how different concentrations of penicillin G alter the bacterial community to affect humification during aerobic composting of chicken manure. The effect of quorum sensing on the bacterial community was also evaluated. Penicillin G mainly affects low fold changes (within 4) for low-abundance (within 200) microbial genera. We found that the bacterial community cooperated to regulate humus and humic acid synthesis. The microbial genera that make up the bacterial community are different, but each bacterial community may have the same ecological function. Quorum sensing affects humic acid synthesis by regulating carbohydrate metabolism and amino acid metabolism in bacterial communities through mechanisms such as the pentose phosphate pathway and the shikimate pathway. This work presents an understanding of the impact of quorum sensing on the collaboration between bacterial communities during composting.
Collapse
Affiliation(s)
- Jie Kang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Ziliang Yin
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Fangyi Pei
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Zeming Ye
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Gang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Hongzhi Ling
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Dongni Gao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Xueyong Jiang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Chi Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
6
|
Sun F, Mellage A, Wang Z, Bakkour R, Griebler C, Thullner M, Cirpka OA, Elsner M. Toward Improved Bioremediation Strategies: Response of BAM-Degradation Activity to Concentration and Flow Changes in an Inoculated Bench-Scale Sediment Tank. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4050-4061. [PMID: 35263099 PMCID: PMC8988295 DOI: 10.1021/acs.est.1c05259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/24/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Compound-specific isotope analysis (CSIA) can reveal mass-transfer limitations during biodegradation of organic pollutants by enabling the detection of masked isotope fractionation. Here, we applied CSIA to monitor the adaptive response of bacterial degradation in inoculated sediment to low contaminant concentrations over time. We characterized Aminobacter sp. MSH1 activity in a flow-through sediment tank in response to a transient supply of elevated 2,6-dichlorobenzamide (BAM) concentrations as a priming strategy and took advantage of an inadvertent intermittence to investigate the effect of short-term flow fluctuations. Priming and flow fluctuations yielded improved biodegradation performance and increased biodegradation capacity, as evaluated from bacterial activity and residual concentration time series. However, changes in isotope ratios in space and over time evidenced that mass transfer became increasingly limiting for degradation of BAM at low concentrations under such stimulated conditions, and that activity decreased further due to bacterial adaptation at low BAM (μg/L) levels. Isotope ratios, in conjunction with residual substrate concentrations, therefore helped identifying underlying limitations of biodegradation in such a stimulated system, offering important insight for future optimization of remediation schemes.
Collapse
Affiliation(s)
- Fengchao Sun
- Institute
of Groundwater Ecology, Helmholtz Zentrum München, Ingolstadter Landstrasse 1 85764 Neuherberg, Germany
- Chair
of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Adrian Mellage
- Center
for Applied Geoscience, University of Tübingen, Schnarrenbergstraße 94, 72076, Tübingen, Germany
| | - Zhe Wang
- Institute
of Groundwater Ecology, Helmholtz Zentrum München, Ingolstadter Landstrasse 1 85764 Neuherberg, Germany
- Chair
of Ecological Microbiology, University of
Bayreuth, Dr.-Hans-Frisch-Straße 1-3, 95448 Bayreuth, Germany
- School
of Life Sciences, Technical University of
Munich, Alte Akademie 8, 85354 Freising, Germany
| | - Rani Bakkour
- Chair
of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Christian Griebler
- Department
of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Martin Thullner
- Department
of Environmental Microbiology, UFZ—Helmholtz
Centre for Environmental Research, Permoserstr. 15, 30418 Leipzig, Germany
| | - Olaf A. Cirpka
- Center
for Applied Geoscience, University of Tübingen, Schnarrenbergstraße 94, 72076, Tübingen, Germany
| | - Martin Elsner
- Institute
of Groundwater Ecology, Helmholtz Zentrum München, Ingolstadter Landstrasse 1 85764 Neuherberg, Germany
- Chair
of Analytical Chemistry and Water Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| |
Collapse
|
7
|
Zhu Y, Sheng Y, Liu Y, Chen J, He X, Wang W, Hu B. Stable immobilization of uranium in iron containing environments with microbial consortia enriched via two steps accumulation method. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 294:118591. [PMID: 34863888 DOI: 10.1016/j.envpol.2021.118591] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/25/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
The stable stabilization of uranium (U) in iron (Fe) containing environments is restricted by the reoxidation of UO2. In the current study, based on air reoxidation tests, we propose a novel two steps accumulation method to enrich microbial consortia from paddy soil. The constructed microbial consortia, denoted as the Fe-U bacteria, can co-precipitate U and Fe to form stable Fe-U solids. Column experiments running for 4 months demonstrated the production of U(IV)-O-Fe(II) precipitates containing maximum of 39.51% uranium in the presence of Fe-U bacteria. The reoxidation experiments revealed the U(IV)-O-Fe(II) precipitates were more stable than UO2. 16S rDNA high throughput sequencing analysis demonstrated that Acinetobacter and Stenotrophomonas were responsible for Fe and U precipitation, while, Caulobacteraceae and Aminobacter were crucial for the formation of U(VI)-PO4 chemicals. The proposed two steps accumulation method has an extraordinary application potential in stable immobilization of uranium in iron containing environments.
Collapse
Affiliation(s)
- Yuling Zhu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China.
| | - Yating Sheng
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China
| | - Yuxin Liu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China
| | - Jiemin Chen
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China
| | - Xiaoyun He
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China
| | - Wenzhong Wang
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China
| | - Baowei Hu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing, 312000, PR China
| |
Collapse
|
8
|
Nielsen TK, Horemans B, Lood C, T'Syen J, van Noort V, Lavigne R, Ellegaard-Jensen L, Hylling O, Aamand J, Springael D, Hansen LH. The complete genome of 2,6-dichlorobenzamide (BAM) degrader Aminobacter sp. MSH1 suggests a polyploid chromosome, phylogenetic reassignment, and functions of plasmids. Sci Rep 2021; 11:18943. [PMID: 34556718 PMCID: PMC8460812 DOI: 10.1038/s41598-021-98184-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/03/2021] [Indexed: 11/14/2022] Open
Abstract
Aminobacter sp. MSH1 (CIP 110285) can use the pesticide dichlobenil and its recalcitrant transformation product, 2,6-dichlorobenzamide (BAM), as sole source of carbon, nitrogen, and energy. The concentration of BAM in groundwater often exceeds the threshold limit for drinking water, requiring additional treatment in drinking water treatment plants or closure of the affected abstraction wells. Biological treatment with MSH1 is considered a potential sustainable alternative to remediate BAM-contamination in drinking water production. We present the complete genome of MSH1, which was determined independently in two institutes at Aarhus University and KU Leuven. Divergences were observed between the two genomes, i.e. one of them lacked four plasmids compared to the other. Besides the circular chromosome and the two previously described plasmids involved in BAM catabolism, pBAM1 and pBAM2, the genome of MSH1 contained two megaplasmids and three smaller plasmids. The MSH1 substrain from KU Leuven showed a reduced genome lacking a megaplasmid and three smaller plasmids and was designated substrain MK1, whereas the Aarhus variant with all plasmids was designated substrain DK1. A plasmid stability experiment indicate that substrain DK1 may have a polyploid chromosome when growing in R2B medium with more chromosomes than plasmids per cell. Finally, strain MSH1 is reassigned as Aminobacter niigataensis MSH1.
Collapse
Affiliation(s)
- Tue Kjærgaard Nielsen
- Section for Microbiology and Biotechnology, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Copenhagen, Denmark
| | - Benjamin Horemans
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 20 bus 2459, 3001, Leuven, Belgium.,Sustainable Materials Unit, BAT Knowledge Centre, Vlaams Instituut voor Technologisch Onderzoek, Mol, Belgium
| | - Cédric Lood
- Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering, Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.,Laboratory of Gene Technology, Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Jeroen T'Syen
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 20 bus 2459, 3001, Leuven, Belgium
| | - Vera van Noort
- Department of Microbial and Molecular Systems (M2S), Faculty of Bioscience Engineering, Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, Faculty of Bioscience Engineering, KU Leuven, Leuven, Belgium
| | - Lea Ellegaard-Jensen
- Section of Environmental Microbiology and Circular Resource Flow, Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Ole Hylling
- Section of Environmental Microbiology and Circular Resource Flow, Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Jens Aamand
- Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark
| | - Dirk Springael
- Division of Soil and Water Management, Department of Earth and Environmental Sciences, Faculty of Bioscience Engineering, KU Leuven, Kasteelpark Arenberg 20 bus 2459, 3001, Leuven, Belgium.
| | - Lars Hestbjerg Hansen
- Section for Microbiology and Biotechnology, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Copenhagen, Denmark.
| |
Collapse
|