1
|
Tang Y, Wang M, Venkatesan AK, Gobler CJ, Mao X. Biologically active filtration (BAF) for metabolic 1,4-dioxane removal from contaminated groundwater. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137827. [PMID: 40048785 DOI: 10.1016/j.jhazmat.2025.137827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/26/2025] [Accepted: 03/01/2025] [Indexed: 04/16/2025]
Abstract
1,4-Dioxane is a persistent contaminant that is not effectively removed by conventional water treatment processes. In this study, bench-scale granular activated carbon (GAC)-based biologically active filtration (BAF) systems were developed to metabolically degrade 1,4-dioxane at environmentally relevant levels (<1000 μg L-1). BAF was established using predeveloped biologically activated carbon particles by mixing a 1,4-dioxane-degrading microbial community with granular activated carbon. 1,4-Dioxane removal performance was examined at a range of 1,4-dioxane concentrations (100-1000 μg L-1), hydraulic loading rates (3.6-14 cm h-1), and with the presence of co-contaminants (natural organic matter (NOM) and 1,1-DCE). BAFs achieved 69 ± 7 % removal with an influent 1,4-dioxane concentration of 100 μg L-1 and hydraulic loading rates of 3.6-14 cm h-1, with the lowest effluent concentration of 21 μg L-1. The presence of NOM and 1,1-DCE negatively and irreversibly impacted 1,4-dioxane removal performance of BAF, and pretreatment processes to remove co-contaminants are crucial to maintain the 1,4-dioxane removal efficiency. Microbial analysis revealed the enrichment of 1,4-dioxane degrading species (CB1190-like bacteria) and functional genes responsible for 1,4-dioxane biodegradation (dxmB and aldh) at the top 12 cm of the columns, suggesting the effectiveness of biological 1,4-dioxane removal within short column lengths. This study demonstrated effective metabolic 1,4-dioxane removal at environmentally relevant concentrations by the BAFs, and can provide insights into designing better 1,4-dioxane remediation strategies.
Collapse
Affiliation(s)
- Yuyin Tang
- Department of Civil Engineering, Stony Brook University, Stony Brook, NY 11794, United States; New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Mian Wang
- Department of Civil Engineering, Stony Brook University, Stony Brook, NY 11794, United States; New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Arjun K Venkatesan
- Department of Civil & Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Christopher J Gobler
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY 11794, United States; School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, United States
| | - Xinwei Mao
- Department of Civil Engineering, Stony Brook University, Stony Brook, NY 11794, United States; New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY 11794, United States.
| |
Collapse
|
2
|
Yao X, Zhang Y, Qiu Y, Jiang W, Chen H, Zeng T, Wei L, Jiang S, Zhao Y, Ma Y, Zhang YB. A Phototautomeric 3D Covalent Organic Framework for Ratiometric Fluorescence Humidity Sensing. J Am Chem Soc 2025; 147:9665-9675. [PMID: 40048296 DOI: 10.1021/jacs.4c17776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Photoinduced proton transfer is an essential photochemical process for designing photocatalysts, white light emitters, bioimaging, and fluorescence sensing materials. However, deliberate control of the excited/ground states and meticulous manipulation of the excited state intramolecular proton transfer (ESIPT) pathway constitute a significant challenge in liquids and dense solids. Here, we present the integration of a hydronaphthoquinone fluorophore into a crystalline, porous, phototautomeric dynamic 3D covalent organic framework (COF) to show guest-induced fluorescence turn-on, emission redshift enhancement, and shortened lifetimes for ratiometric fluorescence humidity sensing. Theoretical and spectroscopic studies provide mechanistic insights into the conformational dynamics, charge transfer coupled with local excitation, and ground-state uphill regulation for the multiple tautomers. We illustrate the sensitive, rapid, steady, and self-calibrated ratiometric fluorescence sensing for a wide range of humidity benefiting from the architectural and chemical robustness and crystallinity of such a phototautomeric 3D COF. These findings provide molecular insights into the design of functional porous materials that integrate host-guest mutual recognition and photoelectronic response for multiplex molecular sensing for environmental monitoring and biomedical diagnostics applications.
Collapse
Affiliation(s)
- Xuan Yao
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Youchang Zhang
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yu Qiu
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Wentao Jiang
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Hao Chen
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Tengwu Zeng
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Lei Wei
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Shan Jiang
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yingbo Zhao
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yanhang Ma
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yue-Biao Zhang
- School of Physical Science and Technology, Shanghai Key Laboratory of High-Resolution Electron Microscopy, State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
3
|
Fischer M. Molecular Simulation Study of All-Silica Zeolites for the Adsorptive Removal of Airborne Chloroethenes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1344-1355. [PMID: 39761079 PMCID: PMC11755781 DOI: 10.1021/acs.langmuir.4c03947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 01/07/2025]
Abstract
Chloroethenes (C2H4-xClx with x = 1, 2, 3, 4) are produced and consumed in various industrial processes. As the release of these compounds into air, water, and soils can pose significant risks to human health and the environment, different techniques have been exploited to prevent or remediate chloroethene pollution. Although several previous experimental and computational studies investigated the removal of chloroethenes using zeolite adsorbents, their structural diversity in terms of pore size and pore topology has hardly been explored so far. In this work, molecular simulations using validated empirical force field parameters were used to study the gas-phase adsorption of chloroethenes in 16 structurally distinct zeolite frameworks. As all of these frameworks are synthetically accessible in high-silica form, the simulations used purely siliceous zeolite models. In the most relevant concentration range (0.1 to 10 ppm by volume), substantial uptakes of tri- and tetrachloroethene were computed for several zeolite frameworks, prominently EUO, IFR, MTW, MOR, and BEA. In contrast, vinyl chloride uptakes were always too low to be of practical relevance for adsorptive removal. For selected frameworks, simulation snapshots were analyzed to investigate the impact of pore shape and, at higher uptakes, guest-guest interactions on the adsorption behavior. Hence, this study not only identifies zeolites that should be prioritized in future investigations but also contributes to the microscopic understanding of chloroethene adsorption in crystalline microporous materials.
Collapse
Affiliation(s)
- Michael Fischer
- Faculty of
Geosciences, University of Bremen, Klagenfurter Straße 2-4, Bremen 28359, Germany
- Bremen Center
for Computational Materials Science (BCCMS) and MAPEX Center for Materials
and Processes, University of Bremen, Bremen 28359, Germany
| |
Collapse
|
4
|
Abaie E, Kumar M, Garza-Rubalcava U, Rao B, Sun Y, Shen Y, Reible D. Chlorinated volatile organic compounds (CVOCs) and 1,4-dioxane kinetics and equilibrium adsorption studies on selective macrocyclic adsorbents. ENVIRONMENTAL ADVANCES 2024; 16:100520. [PMID: 39119617 PMCID: PMC11309091 DOI: 10.1016/j.envadv.2024.100520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Chlorinated volatile organic compounds (CVOCs) are often found in combination with 1,4-dioxane which has been used as a solvent stabilizer. It would be desirable to separate these compounds since biodegradation of 1,4-dioxane follows an aerobic pathway while anaerobic conditions are needed for biodegrading CVOCs. Conventional adsorbents such as activated carbon (AC) and carbonaceous resins have high adsorption capacities for 1,4-dioxane and CVOCs but lack selectivity, limiting their use for separation (Liu et al., 2019). In the current work, two macrocyclic adsorbents, β-CD-TFN and Res-TFN, were examined for selective adsorption of chlorinated ethenes in the presence of 1,4-dioxane. Both adsorbents exhibited rapid adsorption of the CVOCs and minimal adsorption of 1,4-dioxane. Res-TFN had a higher adsorption capacity for CVOCs than β-CD-TFN (measured linear partition coefficient, Kd 2140 -9750 L⋅kg-1 versus 192-918 L⋅kg-1 for 1,1, DCE, cis-1,2-DCE and TCE, respectively) and was highly selective for CVOCs(TCE Kd ~117 Kd for 1,4-dioxane). By comparison, TCE and 1,4-dioxane adsorption on AC was approximately equal at 100 µg⋅L-1 and approximately 1/3 of the adsorption of TCE on the Res-TFN. The greater adsorption and selectivity of Res-TFN suggest that it can be used as a selective adsorbent to separate CVOCs from 1,4-dioxane to allow separate biodegradation.
Collapse
Affiliation(s)
- Elham Abaie
- Department of Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, TX 79409, United States
| | - Manish Kumar
- Department of Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, TX 79409, United States
| | - Uriel Garza-Rubalcava
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States
| | - Balaji Rao
- Department of Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, TX 79409, United States
| | - Yilang Sun
- Department of Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, TX 79409, United States
| | - Yuexiao Shen
- Department of Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, TX 79409, United States
| | - Danny Reible
- Department of Civil, Environmental and Construction Engineering, Texas Tech University, Lubbock, TX 79409, United States
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409, United States
| |
Collapse
|
5
|
Tian K, Pan J, Liu Y, Wang P, Zhong M, Dong Y, Wang M. Fe-ZSM-5 zeolite catalyst for heterogeneous Fenton oxidation of 1,4-dioxane: effect of Si/Al ratios and contributions of reactive oxygen species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:19738-19752. [PMID: 38363503 DOI: 10.1007/s11356-024-32287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/27/2024] [Indexed: 02/17/2024]
Abstract
Heterogeneous Fenton oxidation using traditional catalysts with H2O2 for the degradation of 1,4-dioxane (1,4-DX) still presents challenge. In this study, we explored the potential of Fe-ZSM-5 zeolites (Fe-zeolite) with three Si/Al ratios (25, 100, 300) as heterogeneous Fenton catalysts for the removal of 1,4-DX from aqueous solution. Fe2O3 or ZSM-5 alone provided ineffective in degrading 1,4-DX when combined with H2O2. However, the efficient removal of 1,4-DX using H2O2 was observed when Fe2O3 was loaded on ZSM-5. Notably, the Brønsted acid sites of Fe-zeolite played a crucial role during the degradation of 1,4-DX. Fe-zeolites, in combination with H2O2, effectively removed 1,4-DX via a combination of adsorption and oxidation. Initially, Fe-zeolites demonstrated excellent affinity for 1,4-DX, achieving adsorption equilibrium rapidly in about 10 min, followed by effective catalytic oxidative degradation. Among the Fe-ZSM-5 catalysts, Fe-ZSM-5 (25) exhibited the highest catalytic activity and degraded 1,4-DX the fastest. We identified hydroxyl radicals (·OH) and singlet oxygen (1O2) as the primary reactive oxygen species (ROS) responsible for 1,4-DX degradation, with superoxide anions (HO2·/O2·-) mainly converting into 1O2 and ·OH. The degradation primarily occurred at the Fe-zeolite interface, with the degradation rate constants proportional to the amount of Brønsted acid sites on the Fe-zeolite. Fe-zeolites were effective over a wide working pH range, with alkaline pH conditions favoring 1,4-DX degradation. Overall, our study provides valuable insights into the selection of suitable catalysts for effective removal of 1,4-DX using a heterogeneous Fenton technology.
Collapse
Affiliation(s)
- Kun Tian
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100000, China
| | - Jie Pan
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Yun Liu
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
- University of Chinese Academy of Sciences, Beijing, 100000, China.
| | - Ping Wang
- Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Ming Zhong
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yuanhua Dong
- State Key Laboratory of Soil & Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of Chinese Academy of Sciences, Beijing, 100000, China
| | - Meng Wang
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
6
|
Lu T, Huang H, Lv G, Li F, Song RJ, Cai Y. Adsorption Behavior and Kinetics of 1,4-Dioxane by Carbon Aerogel. TOXICS 2024; 12:145. [PMID: 38393240 PMCID: PMC10893410 DOI: 10.3390/toxics12020145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/27/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
1,4-dioxane is a potential carcinogen in water and is difficult to deal with due to its robust cycloether bond and complete miscibility with water. To remove 1,4-dioxane in an economically viable and environmentally friendly way, a series of carbon aerogels were synthesized as adsorbents for 1,4-dioxane. The experiment results showed that adsorption performances were closely related to the preparation conditions of carbon aerogels, such as the molar ratio, heating rate, pyrolysis temperature and residence time, which were carefully controlled. Scanning electron microscope analysis revealed the presence of a three-dimensional porous network structure in carbon aerogels. Brunauer-Emmett-Teller analysis results demonstrated an increase in specific surface area (673.89 m2/g) and total pore volume after carbonization, with an increase in mesoporous porosity and a decrease in microporosity. When considering each variable individually, the highest specific surface area of prepared carbon aerogels was achieved at a pyrolysis temperature of 800 °C, a holding time of 1 h, and a heating rate of 2 °C/min. Under optimal experimental conditions, the adsorption removal of 1,4-dioxane by carbon aerogels exceeded 95%, following quasi-second-order kinetics and Langmuir isothermal adsorption isotherms, indicating that monolayer adsorption on the surface of carbon aerogels occurred. The maximum adsorption capacity obtained was 67.28 mg/g at a temperature of 318 K, which was attributed to the presence of a large proportion of mesopores and abundant micropores simultaneously in carbon aerogels. Furthermore, with the interference of chlorinated solvents such as trichloroethylene (TCE), the removal efficiency of 1,4-dioxane had no obvious inhibition effect. Regeneration experiments showed that after five continuous cycles, the carbon aerogels still kept a comparable adsorption capacity, which illustrates its potential application in 1,4-dioxane-polluted water purification.
Collapse
Affiliation(s)
- Tianyu Lu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; (T.L.); (H.H.); (Y.C.)
| | - Huihui Huang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; (T.L.); (H.H.); (Y.C.)
| | - Guifen Lv
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; (T.L.); (H.H.); (Y.C.)
| | - Fei Li
- Beijing Construction Engineering Group Environmental Remediation Co., Ltd., Beijing 100015, China;
- National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, China
| | - Ren-jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; (T.L.); (H.H.); (Y.C.)
| | - Yuting Cai
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China; (T.L.); (H.H.); (Y.C.)
| |
Collapse
|
7
|
Mousavi SZ, Shadman HR, Habibi M, Didandeh M, Nikzad A, Golmohammadi M, Maleki R, Suwaileh WA, Khataee A, Zargar M, Razmjou A. Elucidating the Sorption Mechanisms of Environmental Pollutants Using Molecular Simulation. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c02333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Seyedeh Zahra Mousavi
- Department of Chemical Engineering, Tarbiat Modares University, Tehran, 1411944961, Iran
| | - Hamid Reza Shadman
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran, 6351713178, Iran
| | - Meysam Habibi
- Department of Chemical Engineering, University of Tehran, Tehran, 6718773654, Iran
| | - Mohsen Didandeh
- Department of Chemical Engineering, Tarbiat Modares University, Tehran, 1411944961, Iran
| | - Arash Nikzad
- Mechanical Engineering Department, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mahsa Golmohammadi
- Department of Polymer Engineering & Color Technology, Amirkabir University of Technology, Tehran, 6351713178, Iran
| | - Reza Maleki
- Department of Chemical Technologies, Iranian Research Organization for Science and Technology (IROST), P.O. Box 33535111, Tehran, 3313193685, Iran
| | - Wafa Ali Suwaileh
- Chemical Engineering Program, Texas A&M University at Qatar, Education City, Doha 23874, Qatar
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
- Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, Mersin 10 Turkey
| | - Masoumeh Zargar
- Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth WA 6027, Australia
| | - Amir Razmjou
- Mineral Recovery Research Center (MRRC), School of Engineering, Edith Cowan University, Joondalup, Perth WA 6027, Australia
- UNESCO Centre for Membrane Science and Technology, School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
8
|
Tang Y. A Review of Challenges and Opportunities for Microbially Removing 1,4-Dioxane to Meet Drinking-Water and Groundwater Guidelines. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2023; 31:100419. [PMID: 36582465 PMCID: PMC9794176 DOI: 10.1016/j.coesh.2022.100419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
1,4-Dioxane is an emerging contaminant in drinking-water sources and contaminated sites. Microbial removal of 1,4-dioxane has attracted a lot of attention, but faces a challenge: being not able to continuously metabolize 1,4-dioxane to below most drinking-water and groundwater guidelines. The 1,4-dioxane concentrations in most drinking-water sources and contaminated sites are too low to sustain biomass growth. This minireview discusses strategies that may potentially address the challenge. The strategies include: 1) finding oligotrophs for which the minimum 1,4-dioxane concentrations to sustain biomass are low, 2) determining conditions that maximize 1,4-dioxane co-metabolism or co-oxidation, 3) creating novel materials as biomass carriers and contaminant concentrators, and 4) lowering the life-cycle costs of technologies that combine biodegradation with (electro)chemical oxidation or phytoremediation.
Collapse
Affiliation(s)
- Youneng Tang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street Suite A130, Tallahassee, Florida 32310, USA
| |
Collapse
|
9
|
Zhao C, Luan J, Zhai Q, Liu W, Ge H, Ke X, Yan Z. Releasing SiO tetrahedron and AlO octahedron from montmorillonite to enhance the adsorption performance of carbon@chitosan@montmorillonite nanosheet for cationic dyes: Coupling quantum chemistry simulations with experiments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158174. [PMID: 35995157 DOI: 10.1016/j.scitotenv.2022.158174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/29/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
A novel adsorbent of carbon@chitosan@montmorillonite nanosheet (C@CS@ MTN) was successfully fabricated layer-by-layer assembly method to deal with cationic dye wastewater. Batch adsorption experiments showed that the adsorption capacities of MB and RhB were higher than 325 mg·g-1 and 236 mg·g-1, respectively, indicating that C@CS@MTN exhibited an excellent adsorption performance. Through quantum chemistry simulations, the molecular electrostatic potential, electron density, differential charge density, molecular orbital distribution and adsorption binding energy were analyzed to reveal the adsorption reaction mechanism between C@CS@MTN and cationic dyes. The results indicated that SiO tetrahedron ring and AlO octahedron ring released from montmorillonite with inherent periodic structure was beneficial to electrostatic attraction, while cation-π interaction benefitted from the interaction between Al atoms of AlO octahedron ring and benzene ring. It was noteworthy that the electron transfer direction of electrostatic attraction was from O atoms of SiO tetrahedron ring to the benzene ring of dye molecules, but the electron transfer direction of cation-π interaction was from benzene ring of dye molecules to Al atoms of AlO octahedron ring. These results provide fundamental theoretical support for the functional design of mineral-based adsorbents and the efficient removal of cationic dyes.
Collapse
Affiliation(s)
- Chen Zhao
- College of Energy and Environment, Shenyang Aerospace University, No.37 Daoyi South Avenue, Shenbei New Area, Shenyang 110136, China
| | - Jingde Luan
- College of Energy and Environment, Shenyang Aerospace University, No.37 Daoyi South Avenue, Shenbei New Area, Shenyang 110136, China.
| | - Qian Zhai
- College of Energy and Environment, Shenyang Aerospace University, No.37 Daoyi South Avenue, Shenbei New Area, Shenyang 110136, China
| | - Wengang Liu
- School of Resources and Civil Engineering, Northeastern University, 11 Wenhua Road, Heping District, Shenyang 110819, China
| | - Hao Ge
- College of Energy and Environment, Shenyang Aerospace University, No.37 Daoyi South Avenue, Shenbei New Area, Shenyang 110136, China.
| | - Xin Ke
- College of Energy and Environment, Shenyang Aerospace University, No.37 Daoyi South Avenue, Shenbei New Area, Shenyang 110136, China
| | - Zheng Yan
- College of Energy and Environment, Shenyang Aerospace University, No.37 Daoyi South Avenue, Shenbei New Area, Shenyang 110136, China
| |
Collapse
|
10
|
Li W, Xiao R, Xu J, Lin H, Yang K, Li W, He K, Tang L, Chen J, Wu Y, Lv S. Interface engineering strategy of a Ti 4O 7 ceramic membrane via graphene oxide nanoparticles toward efficient electrooxidation of 1,4-dioxane. WATER RESEARCH 2022; 216:118287. [PMID: 35334338 DOI: 10.1016/j.watres.2022.118287] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Although Ti4O7 ceramic membrane has been recognized as one of the most promising anode materials for electrochemical advanced oxidation process (EAOP), it suffers from relatively low hydroxyl radical (•OH) production rate and high charge-transfer resistance that restricted its oxidation performance of organic pollutants. Herein, we reported an effective interface engineering strategy to develop a Ti4O7 reactive electrochemical membrane (REM) doped by graphene oxide nanoparticles (GONs), GONs@Ti4O7 REM, via strong GONs-O-Ti bonds. Results showed that 1% (wt%) GON doping on Ti4O7 REM significantly reduced the charge-transfer resistance from 73.87 to 8.42 Ω compared with the pristine Ti4O7 REM, and yielded •OH at 2.5-2.8 times higher rate. The 1,4-dioxane (1,4-D) oxidation rate in batch experiments by 1%GONs@Ti4O7 REM was 1.49×10-2 min-1, 2 times higher than that of the pristine Ti4O7 REM (7.51×10-3 min-1) and similar to that of BDD (1.79×10-2 min-1). The 1%GONs@Ti4O7 REM exhibited high stability after a polarization test of 90 h at 80 mA/cm2, and within 15 consecutive cycles, its oxidation performance was stable (95.1-99.2%) with about 1% of GONs lost on the REM. In addition, REM process can efficiently degrade refractory organic matters in the groundwater and landfill leachate, the total organic carbon was removed by 54.5% with a single-pass REM. A normalized electric energy consumption per log removal of 1,4-D (EE/O) was observed at only 0.2-0.6 kWh/m3. Our results suggested that chemical-bonded interface engineering strategy using GONs can facilitate the EAOP performance of Ti4O7 ceramic membrane with outstanding reactivity and stability.
Collapse
Affiliation(s)
- Wei Li
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Runlin Xiao
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Jiale Xu
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ 85721, United States
| | - Hui Lin
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
| | - Kui Yang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Wei Li
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Kuanchang He
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Longxiang Tang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Jie Chen
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yiping Wu
- Department of Earth and Environmental Science, School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Sihao Lv
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
| |
Collapse
|
11
|
Sun X, Chen M, Lei J, Liu X, Ke X, Liu W, Wang J, Gao X, Liu X, Zhang Y. How β-cyclodextrin- loaded mesoporous SiO 2 nanospheres ensure efficient adsorption of rifampicin. Front Chem 2022; 10:1040435. [PMID: 36583155 PMCID: PMC9794459 DOI: 10.3389/fchem.2022.1040435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/24/2022] [Indexed: 12/15/2022] Open
Abstract
In this study, β-CD@mesoporous SiO2 nanospheres (β-CD@mSi) were prepared by loading β-cyclodextrin (β-CD) onto mesoporous silica nanospheres through an in situ synthesis. This not only solved the defect of β-CD being easily soluble in water, but also changed the physical structure of the mesoporous silica nanospheres. FTIR and XPS results showed that β-CD was successfully loaded onto mesoporous silica nanospheres (mSi), while enhancing the adsorption effect. β-CD@mSi with a monomer diameter of about 150 nm were prepared. At a temperature of 298k, the removal efficiency of a 100 mg/L solution of rifampicin can reach 90% in 4 h and the adsorption capacity was 275.42 mg g-1 at high concentration. Through the calculation and analysis of adsorption kinetics, adsorption isotherms and adsorption thermodynamics based on the experimental data, the reaction is a spontaneous endothermic reaction dominated by chemical adsorption. The electron transfer pathway, structure-activity relationship and energy between β-CD@mSi and rifampicin were investigated by quantum chemical calculations. The accuracy of the characterization test results to judge the adsorption mechanism was verified, to show the process of rifampicin removal by β-CD@mSi more clearly and convincingly. The simulation results show that π-π interaction plays a major interaction in the reaction process, followed by intermolecular hydrogen bonding and electrostatic interactions.
Collapse
Affiliation(s)
- Xun Sun
- Northeast Key Laboratory of Arable Land Conservation and Improvement, Ministry of Agriculture, College of Land and Environment, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Clean Energy and College of Energy and Environmental, Shenyang Aerospace University, Shenyang, China
| | - Mingming Chen
- Liaoning Key Laboratory of Clean Energy and College of Energy and Environmental, Shenyang Aerospace University, Shenyang, China
| | - Jiayu Lei
- Liaoning Key Laboratory of Clean Energy and College of Energy and Environmental, Shenyang Aerospace University, Shenyang, China
| | - Xinran Liu
- Liaoning Key Laboratory of Clean Energy and College of Energy and Environmental, Shenyang Aerospace University, Shenyang, China
| | - Xin Ke
- Liaoning Key Laboratory of Clean Energy and College of Energy and Environmental, Shenyang Aerospace University, Shenyang, China
| | - Wengang Liu
- School of Resources and Civil Engineering, Northeastern University, Shenyang, China
| | - Jingkuan Wang
- Northeast Key Laboratory of Arable Land Conservation and Improvement, Ministry of Agriculture, College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Xiaodan Gao
- Northeast Key Laboratory of Arable Land Conservation and Improvement, Ministry of Agriculture, College of Land and Environment, Shenyang Agricultural University, Shenyang, China
| | - Xin Liu
- Liaoning Key Laboratory of Clean Energy and College of Energy and Environmental, Shenyang Aerospace University, Shenyang, China
| | - Yun Zhang
- Northeast Key Laboratory of Arable Land Conservation and Improvement, Ministry of Agriculture, College of Land and Environment, Shenyang Agricultural University, Shenyang, China
- *Correspondence: Yun Zhang,
| |
Collapse
|
12
|
Chandra Bhoumick M, Roy S, Mitra S. Enrichment of 1, 4-dioxane from water by sweep gas membrane distillation on nano-carbon immobilized membranes. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119360] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
13
|
Yu J, Di S, Yu H, Ning T, Yang H, Zhu S. Insights into the structure-performance relationships of extraction materials in sample preparation for chromatography. J Chromatogr A 2020; 1637:461822. [PMID: 33360779 DOI: 10.1016/j.chroma.2020.461822] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 12/13/2020] [Accepted: 12/14/2020] [Indexed: 01/23/2023]
Abstract
Sample preparation is one of the most crucial steps in analytical processes. Commonly used methods, including solid-phase extraction, dispersive solid-phase extraction, dispersive magnetic solid-phase extraction, and solid-phase microextraction, greatly depend on the extraction materials. In recent decades, a vast number of materials have been studied and used in sample preparation for chromatography. Due to the unique structural properties, extraction materials significantly improve the performance of extraction devices. Endowing extraction materials with suitable structural properties can shorten the pretreatment process and improve the extraction efficiency and selectivity. To understand the structure-performance relationships of extraction materials, this review systematically summarizes the structural properties, including the pore size, pore shape, pore volume, accessibility of active sites, specific surface area, functional groups and physicochemical properties. The mechanisms by which the structural properties influence the extraction performance are also elucidated in detail. Finally, three principles for the design and synthesis of extraction materials are summarized. This review can provide systematic guidelines for synthesizing extraction materials and preparing extraction devices.
Collapse
Affiliation(s)
- Jing Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Siyuan Di
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Hao Yu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Tao Ning
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Hucheng Yang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China
| | - Shukui Zhu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, P. R. China.
| |
Collapse
|
14
|
Non-Thermal Plasma-Modified Ru-Sn-Ti Catalyst for Chlorinated Volatile Organic Compound Degradation. Catalysts 2020. [DOI: 10.3390/catal10121456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chlorinated volatile organic compounds (CVOCs) are vital environmental concerns due to their low biodegradability and long-term persistence. Catalytic combustion technology is one of the more commonly used technologies for the treatment of CVOCs. Catalysts with high low-temperature activity, superior selectivity of non-toxic products, and resistance to chlorine poisoning are desirable. Here we adopted a plasma treatment method to synthesize a tin-doped titania loaded with ruthenium dioxide (RuO2) catalyst, possessing enhanced activity (T90%, the temperature at which 90% of dichloromethane (DCM) is decomposed, is 262 °C) compared to the catalyst prepared by the conventional calcination method. As revealed by transmission electron microscopy, X-ray diffraction, N2 adsorption, X-ray photoelectron spectroscopy, and hydrogen temperature-programmed reduction, the high surface area of the tin-doped titania catalyst and the enhanced dispersion and surface oxidation of RuO2 induced by plasma treatment were found to be the main factors determining excellent catalytic activities.
Collapse
|
15
|
Effects of Additional Carbon Sources in the Biodegradation of 1,4-Dioxane by a Mixed Culture. WATER 2020. [DOI: 10.3390/w12061718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A mixed culture utilizing 1,4-dioxane as a sole carbon and energy source was obtained from the activated sludge at a textile wastewater treatment plant. The biodegradation of 1,4-dioxane was characterized by a model based on the Monod equation. The effects of the presence of easily degradable carbon sources other than 1,4-dioxane were investigated using dextrose. Structural analogs commonly found in 1,4-dioxane-containing wastewater such as tetrahydrofuran (THF), 2-methyl-1,3-dioxolane, and 1,4-dioxene were also evaluated for their potential effects on 1,4-dioxane biodegradation. The presence of dextrose did not show any synergetic or antagonistic effects on 1,4-dioxane biodegradation, while the structural analogs showed significant competitive inhibition effects. The inhibitory effects were relatively strong with heptagonal cyclic ethers such as THF and 2-methyl-1,3-dioxolane, and mild with hexagonal cyclic ethers such as 1,4-dioxene. It was also shown that the treatment of 1,4-dioxane in the raw textile wastewater required 170% more time to remove 1,4-dioxane due to the co-presence of 2-methyl-1,3-dioxolane, and the extent of delay depended on the initial concentration of 1,3-doxolane.
Collapse
|