1
|
Karimian N, Pownceby MI, Burton ED, Wells M, Frierdich AJ. Fe(II)-Catalyzed Recrystallization Drives Phosphorus and Aluminum Release from Goethite. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19016-19026. [PMID: 39390686 DOI: 10.1021/acs.est.4c03574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Goethite often harbors impurities, such as phosphorus (P) and aluminum (Al), which are incorporated into its structure through direct substitution or coprecipitation with nanocrystalline phases. Understanding the processes that drive the release of P and Al from goethite is of paramount importance for the iron ore industry and for managing nutrient and pollutant behavior in the environment. This study investigates the impact of Fe(II)-catalyzed recrystallization on the release of P and Al from goethite. We evaluated the solubility and extractability of P and Al in suspensions of Al- and P-coprecipitated goethite, treated with 57Fe-enriched Fe(II)aq under oxygen-free conditions for 30 days at neutral pH and room temperatures. The addition of Fe(II)aq induced the recrystallization of goethite dominant initial synthetic phases (i.e., low P- and Al-containing phases) and the transformation of higher P- and/or Al-bearing starting material that was actually a mixture of goethite and minor amounts of lepidocrocite and feroxyhyte. Our results reveal that Fe(II)-catalyzed mineral and structural evolution led to the repartitioning of P and, to a lesser extent, Al throughout the crystal structure, mineral surface, and aqueous solution. Following a 30 day reaction with Fe(II)aq, we extracted approximately 80, 68.8, 73.9, and 83.2% of P from P-only, low, medium, and high P + Al goethite, respectively. Additionally, we observed total Al removals of approximately 17, 27, and 25% from low, medium, and high P + Al goethite, respectively. The results demonstrate that treating both P-only and P + Al goethite with Fe(II) at room temperature, followed by a 24 h extraction using 1 M NaOH, significantly enhances the overall extractability of P and Al, including both aqueous and surface-adsorbed fractions, compared to Fe(II)-free controls. These findings advance our understanding of the recrystallization process and impurity substitution in goethite, offering promising avenues for developing new environmentally friendly methods to extract P and other impurities from goethitic iron ores at lower temperatures.
Collapse
Affiliation(s)
- Niloofar Karimian
- CSIRO, Mineral Resources, Clayton South, VIC 3169, Australia
- School of Earth, Atmosphere & Environment, Monash University, Clayton, VIC 3800, Australia
- Faculty of Science & Engineering, Southern Cross University, Lismore, NSW 2480, Australia
| | - Mark I Pownceby
- CSIRO, Mineral Resources, Clayton South, VIC 3169, Australia
| | - Edward D Burton
- Faculty of Science & Engineering, Southern Cross University, Lismore, NSW 2480, Australia
| | - Martin Wells
- John de Laeter Centre (JdLC), Curtin University, Perth, WA 6102, Australia
| | - Andrew J Frierdich
- School of Earth, Atmosphere & Environment, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
2
|
Sheng H, Liu W, Wang Y, Ye L, Jing C. Incorporation of Shewanella oneidensis MR-1 and goethite stimulates anaerobic Sb(III) oxidation by the generation of labile Fe(III) intermediate. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124008. [PMID: 38641038 DOI: 10.1016/j.envpol.2024.124008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Dissimilatory iron-reducing bacteria (DIRB) affect the geochemical cycling of redox-sensitive pollutants in anaerobic environments by controlling the transformation of Fe morphology. The anaerobic oxidation of antimonite (Sb(III)) driven by DIRB and Fe(III) oxyhydroxides interactions has been previously reported. However, the oxidative species and mechanisms involved remain unclear. In this study, both biotic phenomenon and abiotic verification experiments were conducted to explore the formed oxidative intermediates and related processes that lead to anaerobic Sb(III) oxidation accompanied during dissimilatory iron reduction. Sb(V) up to 2.59 μmol L-1 combined with total Fe(II) increased to 188.79 μmol L-1 when both Shewanella oneidensis MR-1 and goethite were present. In contrast, no Sb(III) oxidation or Fe(III) reduction occurred in the presence of MR-1 or goethite alone. Negative open circuit potential (OCP) shifts further demonstrated the generation of interfacial electron transfer (ET) between biogenic Fe(II) and goethite. Based on spectrophotometry, electron spin resonance (ESR) test and quenching experiments, the active ET production labile Fe(III) was confirmed to oxidize 94.12% of the Sb(III), while the contribution of other radicals was elucidated. Accordingly, we proposed that labile Fe(III) was the main oxidative species during anaerobic Sb(III) oxidation in the presence of DIRB and that the toxicity of antimony (Sb) in the environment was reduced. Considering the prevalence of DIRB and Fe(III) oxyhydroxides in natural environments, our findings provide a new perspective on the transformation of redox sensitive substances and build an eco-friendly bioremediation strategy for treating toxic metalloid pollution.
Collapse
Affiliation(s)
- Huamin Sheng
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Wenjing Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Yingjun Wang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Li Ye
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Chuanyong Jing
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
3
|
Vorlaufer N, Josten J, Carl S, Göbel E, Søgaard A, Taccardi N, Spiecker E, Felfer P. Preparation of atom probe tips from (nano)particles in dispersion using (di)electrophoresis and electroplating. Microsc Res Tech 2024; 87:476-483. [PMID: 37921114 DOI: 10.1002/jemt.24448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/15/2023] [Accepted: 10/17/2023] [Indexed: 11/04/2023]
Abstract
The behavior of catalytic particles depends on their chemical structure and morphology. To reveal this information, the characterization with atom probe tomography has huge potential. Despite progresses and papers proposing various approaches towards the incorporation of particles inside atom probe tips, no single approach has been broadly applicable to date. In this paper, we introduce a workflow that allowed us to prepare atom probe specimens from Ga particles in suspension in the size range of 50 nm up to 2 μm. By combining dielectrophoresis and electrodeposition in a suitable way, we achieve a near-tip shape geometry, without a time-consuming FIB lift-out. This workflow is a simple and quick method to prepare atom probe tips and allows for a high preparation throughput. Also, not using a lift-out allowed us to use a cryo-stage, avoiding melting of the Ga particles, while ensuring a mechanical stable atom probe tip. The specimen prepared by this workflow enable a stable measurement and low fracture rates. RESEARCH HIGHLIGHTS: Enabling cryo-preparation of (nano)particles for the atom probe. Characterization of surface and bulk elemental distribution of GaPt model SCALMS.
Collapse
Affiliation(s)
- Nora Vorlaufer
- Institute I, Materials Science & Engineering Department, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jan Josten
- Institute I, Materials Science & Engineering Department, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Simon Carl
- Institute of Micro- and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM), Materials Science & Engineering Department, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Erik Göbel
- Institute I, Materials Science & Engineering Department, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alexander Søgaard
- Institute of Chemical Reaction Engineering, Department Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- CHEC Research Centre, Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Nicola Taccardi
- Institute of Chemical Reaction Engineering, Department Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research (IMN) and Center for Nanoanalysis and Electron Microscopy (CENEM), Materials Science & Engineering Department, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Peter Felfer
- Institute I, Materials Science & Engineering Department, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
4
|
Fang L, Hong Z, Borch T, Shi Q, Li F. Iron Vacancy Accelerates Fe(II)-Induced Anoxic As(III) Oxidation Coupled to Iron Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2175-2185. [PMID: 36693009 DOI: 10.1021/acs.est.2c07833] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Chemical oxidation of As(III) by iron (Fe) oxyhydroxides has been proposed to occur under anoxic conditions and may play an important role in stabilization and detoxification of As in subsurface environments. However, this reaction remains controversial due to lack of direct evidence and poorly understood mechanisms. In this study, we show that As(III) oxidation can be facilitated by Fe oxyhydroxides (i.e., goethite) under anoxic conditions coupled with the reduction of structural Fe(III). An excellent electron balance between As(V) production and Fe(III) reduction is obtained. The formation of an active metastable Fe(III) phase at the defective surface of goethite due to atom exchange is responsible for the oxidation of As(III). Furthermore, the presence of defects (i.e., Fe vacancies) in goethite can noticeably enhance the electron transfer (ET) and atom exchange between the surface-bound Fe(II) and the structural Fe(III) resulting in a two time increase in As(III) oxidation. Atom exchange-induced regeneration of active goethite sites is likely to facilitate As(III) coordination and ET with structural Fe(III) based on electrochemical analysis and theoretical calculations showing that this reaction pathway is thermodynamically and kinetically favorable. Our findings highlight the synergetic effects of defects in the Fe crystal structure and Fe(II)-induced catalytic processes on anoxic As(III) oxidation, shedding a new light on As risk management in soils and subsurface environments.
Collapse
Affiliation(s)
- Liping Fang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou510650, China
| | - Zebin Hong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou510650, China
| | - Thomas Borch
- Department of Soil and Crop Sciences and Department of Chemistry, Colorado State University, 1170 Campus Delivery, Fort Collins, Colorado80523, United States
| | - Qiantao Shi
- Center for Environmental Systems, Stevens Institute of Technology, Hoboken, New Jersey07030, United States
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou510650, China
| |
Collapse
|
5
|
Pan W, Catalano JG, Giammar DE. Redox-Driven Recrystallization of PbO 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:7864-7872. [PMID: 35654758 DOI: 10.1021/acs.est.1c08767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lead(IV) oxide (PbO2) is one of the lead corrosion products that forms on the inner surface of lead pipes used for drinking water supply. It can maintain low dissolved Pb(II) concentrations when free chlorine is present. When free chlorine is depleted, PbO2 and soluble Pb(II) will co-occur in these systems. This study used a stable lead isotope (207Pb) as a tracer to examine the interaction between aqueous Pb(II) and solid PbO2 at conditions with no net change in dissolved Pb concentration. While the dissolved Pb(II) concentration remained unchanged, significant isotope exchange occurred that indicated that substantial amounts (24.3-35.0% based on the homogeneous recrystallization model) of the Pb atoms in the PbO2 solids had been exchanged with those in solution over 264 h. Neither α-PbO2 nor β-PbO2 displayed a change in mineralogy, particle size, or oxidation state after reaction with aqueous Pb(II). The combined isotope exchange and solid characterization results indicate that redox-driven recrystallization of PbO2 had occurred. Such redox-driven recrystallization is likely to occur in water that stagnates in lead pipes that contain PbO2, and this recrystallization may alter the reactivity of PbO2 with respect to its stability and susceptibility to reductive dissolution.
Collapse
Affiliation(s)
- Weiyi Pan
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, Campus Box 1180, One Brookings Drive, St. Louis, Missouri 63130, United States
| | - Jeffrey G Catalano
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Daniel E Giammar
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, Campus Box 1180, One Brookings Drive, St. Louis, Missouri 63130, United States
| |
Collapse
|
6
|
Schulz K, ThomasArrigo LK, Kaegi R, Kretzschmar R. Stabilization of Ferrihydrite and Lepidocrocite by Silicate during Fe(II)-Catalyzed Mineral Transformation: Impact on Particle Morphology and Silicate Distribution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:5929-5938. [PMID: 35435661 PMCID: PMC9069687 DOI: 10.1021/acs.est.1c08789] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Interactions between aqueous ferrous iron (Fe(II)) and secondary Fe oxyhydroxides catalyze mineral recrystallization and/or transformation processes in anoxic soils and sediments, where oxyanions, such as silicate, are abundant. However, the effect and the fate of silicate during Fe mineral recrystallization and transformation are not entirely understood and especially remain unclear for lepidocrocite. In this study, we reacted (Si-)ferrihydrite (Si/Fe = 0, 0.05, and 0.18) and (Si-)lepidocrocite (Si/Fe = 0 and 0.08) with isotopically labeled 57Fe(II) (Fe(II)/Fe(III) = 0.02 and 0.2) at pH 7 for up to 4 weeks. We followed Fe mineral transformations with X-ray diffraction and tracked Fe atom exchange by measuring aqueous and solid phase Fe isotope fractions. Our results show that the extent of ferrihydrite transformation in the presence of Fe(II) was strongly influenced by the solid phase Si/Fe ratio, while increasing the Fe(II)/Fe(III) ratio (from 0.02 to 0.2) had only a minor effect. The presence of silicate increased the thickness of newly formed lepidocrocite crystallites, and elemental distribution maps of Fe(II)-reacted Si-ferrihydrites revealed that much more Si was associated with the remaining ferrihydrite than with the newly formed lepidocrocite. Pure lepidocrocite underwent recrystallization in the low Fe(II) treatment and transformed to magnetite at the high Fe(II)/Fe(III) ratio. Adsorbed silicate inactivated the lepidocrocite surfaces, which strongly reduced Fe atom exchange and inhibited mineral transformation. Collectively, the results of this study demonstrate that Fe(II)-catalyzed Si-ferrihydrite transformation leads to the redistribution of silicate in the solid phase and the formation of thicker lepidocrocite platelets, while lepidocrocite transformation can be completely inhibited by adsorbed silicate. Therefore, silicate is an important factor to include when considering Fe mineral dynamics in soils under reducing conditions.
Collapse
Affiliation(s)
- Katrin Schulz
- Soil
Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics,
Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16, CHN, 8092 Zürich, Switzerland
| | - Laurel K. ThomasArrigo
- Soil
Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics,
Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16, CHN, 8092 Zürich, Switzerland
| | - Ralf Kaegi
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, 8060 Dübendorf, Switzerland
| | - Ruben Kretzschmar
- Soil
Chemistry Group, Institute of Biogeochemistry and Pollutant Dynamics,
Department of Environmental Systems Science, ETH Zürich, Universitätstrasse 16, CHN, 8092 Zürich, Switzerland
| |
Collapse
|
7
|
Pan W, Ledingham GJ, Catalano JG, Giammar DE. Effects of Cu(II) and Zn(II) on PbO 2 Reductive Dissolution under Drinking Water Conditions: Short-term Inhibition and Long-term Enhancement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:14397-14406. [PMID: 34517703 DOI: 10.1021/acs.est.1c04887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lead oxide (PbO2) has the lowest solubility with free chlorine among Pb corrosion products, but depletion of free chlorine or a switch from free chlorine to monochloramine can cause its reductive dissolution. We previously reported that Cu(II) and Zn(II) inhibited PbO2 reductive dissolution within 12 h. Here, we expanded on this work by performing longer duration experiments and further exploring the underlying mechanisms. Between 12 and 48 h, Cu(II) and Zn(II) had no discernible effect on PbO2 reductive dissolution. From 48 to 192 h, Cu(II) and Zn(II) enhanced PbO2 reductive dissolution. Dissolved oxygen (DO) concentrations followed the same trends as PbO2 reductive dissolution, indicating that the DO was produced by PbO2 reductive dissolution. On the basis of extended X-ray absorption fine structure spectra, we hypothesize that the inhibitory effect of Cu(II) and Zn(II) on PbO2 reductive dissolution (<12 h) is caused by decreasing abundance of protonated sites on the PbO2 surface. The enhanced dissolution (>48 h) may be caused by competitive adsorption of Cu(II) and Zn(II) with Pb(II), which could limit the adsorption of Pb(II) onto PbO2 that could otherwise inhibit reductive dissolution. This study indicates that stagnation time plays a vital role in determining cations' effects on the stability of Pb corrosion products.
Collapse
Affiliation(s)
- Weiyi Pan
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Greg J Ledingham
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Jeffrey G Catalano
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Daniel E Giammar
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
8
|
Josten JP, Felfer PJ. Atom Probe Analysis of Nanoparticles Through Pick and Coat Sample Preparation. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2021; 28:1-10. [PMID: 34099073 DOI: 10.1017/s1431927621000465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The ability to analyze nanoparticles in the atom probe has often been limited by the complexity of the sample preparation. In this work, we present a method to lift–out single nanoparticles in the scanning electron microscope. First, nanoparticles are dispersed on a lacey carbon grid, then positioned on a sharp substrate tip and coated on all sides with a metallic matrix by physical vapor deposition. Compositional and structural insights are provided for spherical gold nanoparticles and a segregation of silver and copper in silver copper oxide nanorods is shown in 3D atom maps. Using the standard atom probe reconstruction algorithm, data quality is limited by typical standard reconstruction artifacts for heterogeneous specimens (trajectory aberrations) and the choice of suitable coatings for the particles. This approach can be applied to various unsupported free-standing nanoparticles, enables preselection of particles via correlative techniques, and reliably produces well-defined structured samples. The only prerequisite is that the nanoparticles must be large enough to be manipulated, which was done for sizes down to ~50 nm.
Collapse
Affiliation(s)
- Jan P Josten
- Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Institute I, Martensstraße 5, 91058Erlangen, Germany
| | - Peter J Felfer
- Department of Materials Science and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Institute I, Martensstraße 5, 91058Erlangen, Germany
| |
Collapse
|
9
|
Mosiman DS, Chen YS, Yang L, Hawkett B, Ringer SP, Mariñas BJ, Cairney JM. Atom Probe Tomography of Encapsulated Hydroxyapatite Nanoparticles. SMALL METHODS 2021; 5:e2000692. [PMID: 34927889 DOI: 10.1002/smtd.202000692] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/19/2020] [Indexed: 06/14/2023]
Abstract
Hydroxyapatite nanoparticles (HAP NPs) are important for medicine, bioengineering, catalysis, and water treatment. However, current understanding of the nanoscale phenomena that confer HAP NPs their many useful properties is limited by a lack of information about the distribution of the atoms within the particles. Atom probe tomography (APT) has the spatial resolution and chemical sensitivity for HAP NP characterization, but difficulties in preparing the required needle-shaped samples make the design of these experiments challenging. Herein, two techniques are developed to encapsulate HAP NPs and prepare them into APT tips. By sputter-coating gold or the atomic layer deposition of alumina for encapsulation, partially fluoridated HAP NPs are successfully characterized by voltage- or laser-pulsing APT, respectively. Analyses reveal that significant tradeoffs exist between encapsulant methods/materials for HAP characterization and that selection of a more robust approach will require additional technique development. This work serves as an essential starting point for advancing knowledge about the nanoscale spatiochemistry of HAP NPs.
Collapse
Affiliation(s)
- Daniel S Mosiman
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales, 2006, Australia
- Safe Global Water Institute, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yi-Sheng Chen
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales, 2006, Australia
- School of Aerospace Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Limei Yang
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Brian Hawkett
- Key Centre for Polymer Colloids School of Chemistry, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Simon P Ringer
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales, 2006, Australia
- School of Aerospace Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| | - Benito J Mariñas
- Safe Global Water Institute, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Julie M Cairney
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, Sydney, New South Wales, 2006, Australia
- School of Aerospace Mechanical and Mechatronic Engineering, The University of Sydney, Sydney, New South Wales, 2006, Australia
| |
Collapse
|
10
|
Biswakarma J, Kang K, Schenkeveld WDC, Kraemer SM, Hering JG, Hug SJ. Linking Isotope Exchange with Fe(II)-Catalyzed Dissolution of Iron(hydr)oxides in the Presence of the Bacterial Siderophore Desferrioxamine-B. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:768-777. [PMID: 31846315 PMCID: PMC6978810 DOI: 10.1021/acs.est.9b04235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 12/15/2019] [Accepted: 12/17/2019] [Indexed: 05/27/2023]
Abstract
Dissolution of Fe(III) phases is a key process in making iron available to biota and in the mobilization of associated trace elements. Recently, we have demonstrated that submicromolar concentrations of Fe(II) significantly accelerate rates of ligand-controlled dissolution of Fe(III) (hydr)oxides at circumneutral pH. Here, we extend this work by studying isotope exchange and dissolution with lepidocrocite (Lp) and goethite (Gt) in the presence of 20 or 50 μM desferrioxamine-B (DFOB). Experiments with Lp at pH 7.0 were conducted in carbonate-buffered suspensions to mimic environmental conditions. We applied a simple empirical model to determine dissolution rates and a more complex kinetic model that accounts for the observed isotope exchange and catalytic effect of Fe(II). The fate of added tracer 57Fe(II) was strongly dependent on the order of addition of 57Fe(II) and ligand. When DFOB was added first, tracer 57Fe remained in solution. When 57Fe(II) was added first, isotope exchange between surface and solution could be observed at pH 6.0 but not at pH 7.0 and 8.5 where 57Fe(II) was almost completely adsorbed. During dissolution of Lp with DFOB, ratios of released 56Fe and 57Fe were largely independent of DFOB concentrations. In the absence of DFOB, addition of phenanthroline 30 min after tracer 57Fe desorbed predominantly 56Fe(II), indicating that electron transfer from adsorbed 57Fe to 56Fe of the Lp surface occurs on a time scale of minutes to hours. In contrast, comparable experiments with Gt desorbed predominantly 57Fe(II), suggesting a longer time scale for electron transfer on the Gt surface. Our results show that addition of 1-5 μM Fe(II) leads to dynamic charge transfer between dissolved and adsorbed species and to isotope exchange at the surface, with the dissolution of Lp by ligands accelerated by up to 60-fold.
Collapse
Affiliation(s)
- Jagannath Biswakarma
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
- Swiss
Federal Institute of Technology (ETH) Zurich, IBP, CH-8092 Zürich, Switzerland
| | - Kyounglim Kang
- Dept.
of Environmental Geosciences, University
of Vienna, 1090 Vienna, Austria
| | | | - Stephan M. Kraemer
- Dept.
of Environmental Geosciences, University
of Vienna, 1090 Vienna, Austria
| | - Janet G. Hering
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
- Swiss
Federal Institute of Technology (ETH) Zurich, IBP, CH-8092 Zürich, Switzerland
- Swiss
Federal Institute of Technology Lausanne (EPFL), ENAC, CH-1015 Lausanne, Switzerland
| | - Stephan J. Hug
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| |
Collapse
|