1
|
Feng P, Liu J, Bao LJ, Zeng EY, Ma C, Wang L, Zhang G, Gong X. Adaptive Escape of Pseudomonas aeruginosa by Application of Low-Amplitude Electric Pulses. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14281-14290. [PMID: 38967331 DOI: 10.1021/acs.langmuir.4c00753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Marine antibiofouling using low-amplitude electric pulses (EP) is an energy-efficient and eco-friendly approach, but potential mechanisms for preventing biofouling remain unclear. In the present study, the 3D adhesion dynamics of a model microorganism─Pseudomonas aeruginosa (PAO1)─under low-amplitude cathodic EP were examined as a function of applying voltage and its duration (td). The results demonstrated that adhered bacteria escaped from the electrode surface even when EP was removed. The escaped bacteria ratio, induction period of escape, and duration of the detachment were influenced profoundly by EP amplitude but slightly by td when td ≥ 5 min. The acceleration of escaped PAO1 from the surface indicated that their flagellar motor was powered by EP. Particularly, EP enabled swimming bacteria to have adaptive motions that were sustainable and regulated by the gene rsmA. As a result, they had less accumulation near the surface. The propulsion of adhered bacteria and adaptive escape of swimming bacteria were enhanced in response to low-amplitude EP. Hence, low-amplitude and short-duration EP is promising for sustainable antibiofouling applications.
Collapse
Affiliation(s)
- Pu Feng
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou 510641, China
| | - Jun Liu
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Lian-Jun Bao
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Eddy Y Zeng
- Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou 511443, China
| | - Chunfeng Ma
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Lingling Wang
- State Key Laboratory of Applied Microbiology Southern China, Institute of Micrology, Academy of Sciences, Guangdong 510070, China
| | - Guangzhao Zhang
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xiangjun Gong
- Faculty of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
2
|
Lin TE, Darvishi S. A Brief Review of In Situ and Operando Electrochemical Analysis of Bacteria by Scanning Probes. BIOSENSORS 2023; 13:695. [PMID: 37504094 PMCID: PMC10377567 DOI: 10.3390/bios13070695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 06/23/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
Bacteria are similar to social organisms that engage in critical interactions with one another, forming spatially structured communities. Despite extensive research on the composition, structure, and communication of bacteria, the mechanisms behind their interactions and biofilm formation are not yet fully understood. To address this issue, scanning probe techniques such as atomic force microscopy (AFM), scanning electrochemical microscopy (SECM), scanning electrochemical cell microscopy (SECCM), and scanning ion-conductance microscopy (SICM) have been utilized to analyze bacteria. This review article focuses on summarizing the use of electrochemical scanning probes for investigating bacteria, including analysis of electroactive metabolites, enzymes, oxygen consumption, ion concentrations, pH values, biofilms, and quorum sensing molecules to provide a better understanding of bacterial interactions and communication. SECM has been combined with other techniques, such as AFM, inverted optical microscopy, SICM, and fluorescence microscopy. This allows a comprehensive study of the surfaces of bacteria while also providing more information on their metabolic activity. In general, the use of scanning probes for the detection of bacteria has shown great promise and has the potential to provide a powerful tool for the study of bacterial physiology and the detection of bacterial infections.
Collapse
Affiliation(s)
- Tzu-En Lin
- Institute of Biomedical Engineering, Department of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Sorour Darvishi
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
- Berkeley Sensor and Actuator Center, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
3
|
Wei R, Tong H, Zhang J, Sun B, You S. Flow electrochemical inactivation of waterborne bacterial endospores. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130505. [PMID: 36463735 DOI: 10.1016/j.jhazmat.2022.130505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/21/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Waterborne pathogens have the risk of spreading waterborne diseases and even pandemics. Some Gram-positive bacteria can form endospores, the hardiest known life form that can withstand heat, radiation, and chemicals. Electrochemical inactivation may offer a promising solution, but is hindered by low inactivation efficiencies resulting from limitation of electrode/endospores interaction in terms of electrochemical reaction selectivity and mass transfer. Herein, these issues were addressed through modifying selectivity of active species formation using electroactive ceramic membrane with high oxygen evolution potential, improving mass transfer property by flow-through operation. In this way, inactivation (6.0-log) of Bacillus atrophaeus endospores was achieved. Theoretical and experimental results demonstrated synergistic inactivation to occur through fragmentation of coat via interfacial electron transfer and electro-produced transient radicals (•OH primarily, •Cl and Cl2•- secondarily), thereby increasing cell permeability to facilitate penetration of electro-produced persistent active chlorine for subsequent rupture of intracellular structures. Numbering-up electrode module strategy was proposed to scale up the system, achieving average 5.3-log inactivation of pathogenic Bacillus anthracis endospores for 30 days. This study demonstrates a proof-of-concept manner for effective inactivation of waterborne bacterial endospores, which may provide an appealing strategy for wide-range applications like water disinfection, bio-safety control and defense against biological warfare.
Collapse
Affiliation(s)
- Rui Wei
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Hailong Tong
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China; State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Jinna Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Baiming Sun
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, PR China
| | - Shijie You
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
4
|
Ma Q, Chu Y, Ni X, Zhang J, Chen H, Xu F, Wang Y. CeO 2 modified carbon nanotube electrified membrane for the removal of antibiotics. CHEMOSPHERE 2023; 310:136771. [PMID: 36241109 DOI: 10.1016/j.chemosphere.2022.136771] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/15/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Electrified carbon nanotube membranes (ECM) are used as electroactive porous materials for the degradation of micropollutants. It integrated design of both electrochemical processes and filtration functions. In this study, CeO2 modified carbon nanotube electrified membrane (CeO2@CNT membrane) was prepared and activate NaClO towards degradation of antibiotics. As CeO2 with face-centered cubic (Fcc) fluorite structure was loaded onto the CNT sidewalls, the CeO2@CNT membrane showed a higher over potential and a smaller equivalent polarization resistance compared to ECM. More reactive oxygen species (ROS) and reactive chlorine species (RCS) were generated by CeO2@CNT membrane due to faster electron transfer at the solid-liquid interface. Thus, the removal efficiencies of DCF, SMX, CIP, TC and CBZ were more than 91.2%, 91.3%, 94.4%, 99.3% and 89.4% by the CeO2@CNT membrane with NaClO, respetively. And the apparent reaction rate constant (k) of the CeO2@CNT membrane was 2.9 times of that of ECM. The selective capping experiments and density functional theory (DFT) calculation showed that the oxygen vacancies of CeO2 contributed to the generation of ‧OH, and the generation of ClO‧ and ‧O2- would mainly occur on Lewis acid sites of CeO2. In addition, the CeO2@CNT membrane showed a reasonable stability to treat actual water samples and reduced disinfection byproducts (DBPs) formation, suggesting that it can potentially be combined with the conventional chlorine disinfection to degrade antibiotics in water.
Collapse
Affiliation(s)
- Qingfeng Ma
- School of Environmental and Safety Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Yongbao Chu
- School of Environmental and Safety Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China.
| | - Xiaoyu Ni
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jingyi Zhang
- School of Environmental and Safety Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Haoze Chen
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Fei Xu
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Yan Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
5
|
Ying XB, Huang JJ, Shen DS, Feng HJ, Jia YF, Guo QQ. Fouling behaviors are different at various negative potentials in electrochemical anaerobic membrane bioreactors with conductive ceramic membranes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143199. [PMID: 33234267 DOI: 10.1016/j.scitotenv.2020.143199] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 10/17/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
Membrane fouling remains a critical challenge to the practical application of anaerobic membrane bioreactor (AnMBR). To address this challenge, a conductive ceramic membrane was prepared for fouling control in AnMBR. By using the conductive membranes, the anti-fouling performances were enhanced about 3 times at potentials below -1.0 V vs Ag/AgCl compared to the conventional AnMBR. The particle size distributions and the electric field calculations suggest that such an enhancement was mainly attributed to the increased particle sizes of foulants in the supernatant and the electric field forces. Moreover, the scanning electron microscope and confocal laser scanning microscope results show that the conductive membrane at -1.0 V could increase the porosity of the gel layer on the surface, whereas the conductive membrane at -2.0 V could inhibit the activity of adhering bacteria. Surprisingly, membrane fouling of electrically-assisted AnMBR (AnEMBR) at -0.5 V was increased, which was attributed to a dense biofilm-like structure formation. Such a result is contrary to the conventional cognition that negative potential could mitigate the membrane fouling. Overall, this work supplements the understanding of the anti-fouling effects of the electric field in AnEMBR, and provides supplementary information for the engineering application of AnEMBR.
Collapse
Affiliation(s)
- Xian-Bin Ying
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China
| | - Jing-Jing Huang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China
| | - Dong-Sheng Shen
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China; Instrument Analysis Center, Zhejiang Gongshang University, Hangzhou 310012, PR China
| | - Hua-Jun Feng
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China; Instrument Analysis Center, Zhejiang Gongshang University, Hangzhou 310012, PR China.
| | - Yu-Feng Jia
- Key Laboratory for Solid Waste Management and Environment Safety, School of Environment, Tsinghua University, PR China
| | - Qiao-Qi Guo
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, PR China; Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, PR China
| |
Collapse
|
6
|
Radjenovic J, Duinslaeger N, Avval SS, Chaplin BP. Facing the Challenge of Poly- and Perfluoroalkyl Substances in Water: Is Electrochemical Oxidation the Answer? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14815-14829. [PMID: 33191730 DOI: 10.1021/acs.est.0c06212] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Electrochemical treatment systems have the unique ability to completely mineralize poly- and perfluoroalkyl substances (PFASs) through potential-driven electron transfer reactions. In this review, we discuss the state-of-the-art on electrooxidation of PFASs in water, aiming at elucidating the impact of different operational and design parameters, as well as reported mechanisms of PFAS degradation at the anode surface. We have identified several shortcomings of the existing studies that are largely limited to small-scale laboratory batch systems and unrealistic synthetic solutions, which makes extrapolation of the obtained data to real-world applications difficult. PFASs are surfactant molecules, which display significant concentration-dependence on adsorption, electrosorption, and dissociation. Electrooxidation experiments conducted with high initial PFAS concentration and/or in high conductivity supporting electrolytes likely overestimate process performance. In addition, the formation of organohalogen byproducts, chlorate and perchlorate, was seldom considered. Nevertheless, the first step toward advancing from laboratory-scale to industrial-scale applications is recognizing both the strengths and limitations of electrochemical water treatment systems. More comprehensive and rigorous evaluation of novel electrode materials, application of scalable proof-of-concept studies, and acknowledgment of all treatment outputs (not just the positive ones) are imperative. The presence of PFASs in drinking water and in the environment is an urgent global public health issue. Developments made in material science and application of novel three-dimensional, porous electrode materials and nanostructured coatings are forging a path toward more sustainable water treatment technologies and potential chemical-free treatment of PFAS-contaminated water.
Collapse
Affiliation(s)
- Jelena Radjenovic
- Catalan Institute for Water Research (ICRA), c/Emili Grahit 101, 17003 Girona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| | - Nick Duinslaeger
- Catalan Institute for Water Research (ICRA), c/Emili Grahit 101, 17003 Girona, Spain
- University of Girona, 17004 Girona, Spain
| | - Shirin Saffar Avval
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| | - Brian P Chaplin
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, United States
| |
Collapse
|