1
|
Khan J. Optical Chemosensors Synthesis and Appplication for Trace Level Metal Ions Detection in Aqueous Media: A Review. J Fluoresc 2025; 35:561-582. [PMID: 38175458 DOI: 10.1007/s10895-023-03559-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
In recent years, the development of optical chemosensors for the sensitive and selective detection of trace level metal ions in aqueous media has garnered significant attention within the scientific community. This review article provides a comprehensive overview of the synthesis strategies and applications of optical chemosensors dedicated to the detection of metal ions at low concentrations in water-based environments. The discussion encompasses a wide range of metal ions, including but not limited to heavy metals, transition metals, and rare earth elements, emphasizing their significance in environmental monitoring, industrial processes, and biological systems. The review explores into the synthesis methodologies employed for designing optical chemosensors, discovering diverse materials like organic dyes, nanoparticles, polymers, and hybrid materials. Special attention is given to the design principles that enable the selective recognition of specific metal ions, highlighting the role of ligand chemistry, coordination interactions, and structural modifications. Furthermore, the article thoroughly surveys the analytical performance of optical chemosensors in terms of sensitivity, selectivity, response time, and detection limits. Real-world applications, including water quality assessment, environmental monitoring, and biomedical diagnostics, are extensively covered to underscore the practical relevance of these sensing platforms. Additionally, the review sheds light on emerging trends, challenges, and future prospects in the field, providing insights into potential advancements and innovations. By synthesizing the current state of knowledge on optical chemosensors for trace level metal ions detection. The collective information presented herein not only offers a comprehensive understanding of the existing technologies but also inspires future research endeavors to address the evolving demands in the realm of trace metal ion detection.
Collapse
Affiliation(s)
- Jehangir Khan
- Department of Chemistry, University of Malakand, Chakdara, Dir (Lower), Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
2
|
Li H, Yan J, Jiang L, Zhao Y, Song Y, Yu J, Cheng L. Selective and Sensitive Detection of Hg 2+ and Ag + by a Fluorescent and Colorimetric Probe with Large Stokes Shift. J Fluoresc 2024; 34:2793-2806. [PMID: 37922113 DOI: 10.1007/s10895-023-03478-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 10/16/2023] [Indexed: 11/05/2023]
Abstract
Development of fluorescent sensors with large Stokes shift for selective detection of heavy metals is of great importance. A novel fluorescent probe with extremely large Stokes shift (212 nm) was synthesized for selective and simultaneous detection of Hg2+ and Ag+ ions. The deep yellow probe turned colorless or pale yellow after addition of Hg2+ or Ag+. The new probe could be utilized for absorption spectral detection of Hg2+ and Ag+ both in ethanol and aqueous solution. Addition of Hg2+ and Ag+ ions caused significant decrease in the fluorescence intensity of the new probe and the selective recognition of Hg2+ and Ag+ was not interfered by common competitive metal ions including Li+, Na+, K+, Cu2+, Fe2+, Zn2+, Co2+, Ni2+, Mn2+, Sr2+, Ca2+, Mg2+, Al3+, Cr3+ and Fe3+. The detection limit for Hg2+ and Ag+ was calculated to be 4.68 μM and 4.29 μM, respectively. Application of the new probe for quantitative determination of Hg2+ and Ag+ concentrations in real water samples was accomplished.
Collapse
Affiliation(s)
- Hongqi Li
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China.
| | - Jiabao Yan
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Lin Jiang
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Yong Zhao
- School of Chemistry and Material Engineering, Huainan Normal University, Huainan, 232038, Anhui Province, China
| | - Yanxi Song
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Jirui Yu
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Lang Cheng
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
3
|
Ding Q, Wang F, Yang W, Xing X, Lin H, Xu L, Li S. Ultrasensitive and highly selective Co 2+ detection based on the chiral optical activities of L-glutathione-modified gold nanoclusters. Front Chem 2024; 12:1478021. [PMID: 39444637 PMCID: PMC11496063 DOI: 10.3389/fchem.2024.1478021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024] Open
Abstract
Developing highly sensitive and selective detection methods is crucial for environmental and healthcare monitoring. In this study, the chiral and fluorescent signals of L-glutathione-modified gold nanoclusters (L-GSH-Au NCs) were discovered to be responsive to Co2+, which displayed linear correlations with the concentration changes of Co2+. Notably, the chiral signal was more sensitive than the FL signal, whose limit of detection (LOD) was calculated to be 0.37 μM and 3.93 times lower than the LOD obtained with fluorescent signals. Moreover, the chiral signals exhibited unexpectedly high selectivity towards Co2+, effectively avoiding interference from other metal ions and biomolecules. Furthermore, the concentrations of Co2+ in various samples, such as Taihu water, tap water, bottled water, and animal serum, were accurately quantified using the chiral signals of L-GSH-Au NCs without complex pretreatment, with recoveries ranging between 95.64% and 103.22%. This study not only provides an innovative approach for Co2+ detection but also highlights the detection capabilities of chiral signals in complex environments.
Collapse
Affiliation(s)
- Qi Ding
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Fang Wang
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Weimin Yang
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Xinhe Xing
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Hengwei Lin
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Si Li
- International Joint Research Center for Photo-responsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Minaberry YS, Medina LS, Cataneo D, Stripeikis J, Tudino M. Bifunctional magnetic nanoparticles with ion imprinting for improving the flow through determination of ultratraces of Cd(II) using magnetic preconcentration. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4178-4186. [PMID: 38874550 DOI: 10.1039/d3ay02047a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
A novel bifunctional magnetic sorbent with mercapto and amino groups and ion imprinting (MBII) was synthesized using a one-step aqueous sol-gel process for preconcentration and determination of Cd(II) ions. MBII was employed as a microcolumn (MC) filler in a flow-through system coupled to GFAAS. The magnetic properties of the solid allowed microcolumn magnetic solid-phase extraction (MCMSPE) to be performed by simply including a single circular magnet around the MC. This assembly enabled complete attachment of the solid to the MC wall leaving a central void to facilitate higher sample flow rates without blockage or material loss. For comparison, a bifunctional magnetic solid without imprinting (MBNI) was also synthesized and evaluated. Both MBII and MBNI were characterized by FTIR, SEM, EDX, BET and magnetization measurements. The results showed the preservation of the magnetic core, its superparamagnetism and the functional groups in the solid. Batch studies revealed a maximum adsorption capacity for both materials at pH around 6 with equilibrium reached within 5 minutes. The advantages were reflected in the maximum adsorption capacity of MBII, which was found to be 2.5 times greater than that of MBNI. Both adsorbents were compared as MC fillers for dynamic preconcentration in MCMSPE systems. Under optimized conditions, MBNI showed a PCF of 125 and MBII of 250. The higher selectivity of MBII was corroborated by interfering ion studies. The analytical performance parameters for the proposed method using MBII as an adsorbent showed a detection limit of 0.05 ng L-1, a linear range of 2.0-80 ng L-1, an RSD% of 2.2 (n = 7; 20 ng L-1) and a lifetime of more than 300 preconcentration-elution cycles without loss of sensitivity or need for refilling. The method was successfully applied to the determination of trace Cd(II) in osmosis, lake and tap water with recoveries ranging from 98 to 105%. Comparison of these results with those of similar reported methods showed a considerable improvement primarily attributed to the combined effect of MBII's higher retention capacity and its magnetic properties that allowed higher sample flow rates and, thus, enhanced figures of merit.
Collapse
Affiliation(s)
- Yanina Susana Minaberry
- DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. II, Ciudad de Buenos Aires, C1428EHA, Argentina.
- Instituto Tecnológico de Buenos Aires, ITBA, Iguazú 341, Ciudad de Buenos Aires, Argentina
| | - Leila Saleh Medina
- DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. II, Ciudad de Buenos Aires, C1428EHA, Argentina.
- INQUIMAE, Instituto de Química Inorgánica Analítica y Química Física, Ciudad Universitaria Pab. II, Ciudad de Buenos Aires, C1428EHA, Argentina
| | - Daiana Cataneo
- DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. II, Ciudad de Buenos Aires, C1428EHA, Argentina.
| | - Jorge Stripeikis
- Instituto Tecnológico de Buenos Aires, ITBA, Iguazú 341, Ciudad de Buenos Aires, Argentina
| | - Mabel Tudino
- DQIAQF, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. II, Ciudad de Buenos Aires, C1428EHA, Argentina.
| |
Collapse
|
5
|
Moreira Naves DF, Dos Reis Feliciano C, Santos MG. Restricted double access ionic imprinted polymer for online extraction and determination of copper from milk samples via FIA-FAAS system. Anal Chim Acta 2024; 1296:342308. [PMID: 38401938 DOI: 10.1016/j.aca.2024.342308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/25/2024] [Accepted: 01/29/2024] [Indexed: 02/26/2024]
Abstract
BACKGROUND Determining metals in complex biological samples, such as milk, typically involves dry or wet decomposition. However, these techniques have limitations, including low selectivity, risk of contamination, and the use of large reagent volumes. To solve these problems, solid-phase extraction (SPE) using multifunctional sorbents has been extensively explored. In this context, this work proposed synthesizing a new restricted double access ionic imprinted polymer (RAIIP-BSA), for online SPE and determination of Cu2+ from untreated milk samples via flow injection analysis and flame atomic absorption spectrometry (FIA-FASS). RESULTS Firstly, the polymer was obtained by bulk polymerization using Cu2+ as a template, 4-vinyl pyridine as a functional monomer, and glycidyl methacrylate as a hydrophilic comonomer. Subsequently, it was covered with bovine serum albumin, creating the restricted double access barrier. The obtained material could exclude 97 % of the proteins from milk samples. RAIIP-BSA was chemically and physically characterized. The main extraction variables were optimized via multivariate optimization. The method showed good figures of merit, such as linearity ranging from 0.05 to 1.0 mg L-1, LoD and LoQ of 0.03 and 0.05 mg L-1, intra- and interday precision ranging from 0.73 to 4.14 % and 0.16-3.68 %, and an intra- and interday accuracy ranging from 97.0 to 115.0 % and 103.0-119.0 %, respectively. SIGNIFICANCE The developed method demonstrates the effective extraction of Cu2+ from untreated milk samples, exhibiting selectivity, high extraction capacity, prolonged sorbent (RAIIP-BSA) durability, simplicity, and swift operation. This method holds promise as an alternative to conventional metal analysis approaches in complex matrices.
Collapse
Affiliation(s)
- Daysla Fernanda Moreira Naves
- Instrumental Analytical Chemistry Research Group - GPQAI, Institute of Chemistry, Federal University of Alfenas - Unifal-MG, Alfenas, MG, 37130-000, Brazil
| | - Cristiane Dos Reis Feliciano
- Instrumental Analytical Chemistry Research Group - GPQAI, Institute of Chemistry, Federal University of Alfenas - Unifal-MG, Alfenas, MG, 37130-000, Brazil
| | - Mariane Gonçalves Santos
- Instrumental Analytical Chemistry Research Group - GPQAI, Institute of Chemistry, Federal University of Alfenas - Unifal-MG, Alfenas, MG, 37130-000, Brazil.
| |
Collapse
|
6
|
Ibor OR, Khan EA, Arkuwe A. A bioanalytical approach for assessing the effects of soil extracts from solid waste dumpsite in Calabar (Nigeria) on lipid and estrogenic signaling of fish Poeciliopsis lucida hepatocellular carcinoma-1 cells in vitro and in vivo African catfish ( Clarias gariepinus). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:774-789. [PMID: 37504673 DOI: 10.1080/15287394.2023.2240839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
In applying bioanalytical approaches, the aim of this study was to determine the toxicity of contaminants derived from a solid waste dumpsite in Calabar (Nigeria), by investigating the alterations of lipid and estrogen signaling pathways in Poeciliopsis lucida hepatocellular carcinoma-1 (PLHC-1) cells and compared to in vivo African catfish (Clarias gariepinus), using polar, nonpolar and elutriate extraction methods. Cells were exposed for 48 hr period to different concentrations of the contaminant extracts. The PLHC-1 cells were evaluated for lipid responses as follows adipoRed assay, retinoid x receptor (rxr), peroxisome proliferator-activated receptor isoforms (ppar-α and γ), estrogen receptor (er-α) and vitellogenin (vtg) transcripts. The lipid signaling activation was also assessed in vivo using C. gariepinus, where hepatic levels of ppar-α were determined at both transcript and functional proteins levels. Data showed variable-, extract type and concentration-specific elevations in mRNA and protein levels for lipidomic and estrogenic effects. These effects were either biphasic at low and high concentrations, depending upon extract type, or concentration-dependent elevations. In general, these toxicological responses may be attributed to soil organic and inorganic contaminants burden previously derived from the dumpsite. Thus, our data demonstrate a unique lipid and endocrine-disruptive chemical (EDC) effects of each soil extract, suggesting multiple and complex contaminant interactions in the environment and biota. Analysis of numerous soil- or sediment-bound contaminants have numerous limitations and cost implications for developing countries. Our approach provides a bioanalytical protocol and endpoints for measuring the metabolic and EDC effects of complex environmental matrices for ecotoxicological assessment and monitoring.
Collapse
Affiliation(s)
- Oju Richard Ibor
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Zoology and Environmental Biology, University of Calabar, Calabar, Nigeria
| | - Essa Ahsan Khan
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Augustine Arkuwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
7
|
Zhou L, Wu F, Meng Y, Byrne P, Ghomshei M, Abbaspour KC. Modeling transport and fate of heavy metals at the watershed scale: State-of-the-art and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163087. [PMID: 36996980 DOI: 10.1016/j.scitotenv.2023.163087] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 05/13/2023]
Abstract
A predictive understanding of the source-specific (e.g., point and diffuse sources) land-to-river heavy metal (HM) loads and HM dynamics in rivers is essential for mitigating river pollution and developing effective river basin management strategies. Developing such strategies requires adequate monitoring and comprehensive models based on a solid scientific understanding of the watershed system. However, a comprehensive review of existing studies on the watershed-scale HM fate and transport modeling is lacking. In this review, we synthesize the recent developments in the current generation of watershed-scale HM models, which cover a wide range of functionalities, capabilities, and spatial and temporal scales (resolutions). Existing models, constructed at various levels of complexity, have their strengths and weaknesses in supporting diverse intended uses. Additionally, current challenges in the application of watershed HM modeling are covered, including the representation of in-stream processes, organic matter/carbon dynamics and mitigation practices, the issues of model calibration and uncertainty analysis, and the balance between model complexity and available data. Finally, we outline future research requirements regarding modeling, strategic monitoring, and their combined use to enhance model capabilities. In particular, we envisage a flexible framework for future watershed-scale HM models with varying degrees of complexity to accommodate the available data and specific applications.
Collapse
Affiliation(s)
- Lingfeng Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yaobin Meng
- School of National Safety and Emergency Management, Beijing Normal University, Beijing 100875, China
| | - Patrick Byrne
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, L3 3AF, UK
| | - Mory Ghomshei
- Department of Mining and Mineral Resources Engineering, British Columbia Institute of Technology, Canada
| | | |
Collapse
|
8
|
King DCP, Watts MJ, Hamilton EM, Mortimer R, Kilgour DPA, Di Bonito M. The present and potential future of aqueous mercury preservation: a review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:351-363. [PMID: 36723022 DOI: 10.1039/d2em00409g] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Mercury is considered to be one of the most toxic elements to humans. Due to pollution from industry and artisanal gold mining, mercury species are present globally in waters used for agriculture, aquaculture, and drinking water. This review summarises methods reported for preserving mercury species in water samples and highlights the associated hazards and issues with each. This includes the handling of acids in an uncontrolled environment, breakage of sample containers, and the collection and transport of sample volumes in excess of 1 L, all of which pose difficulties for both in situ collection and transportation. Literature related to aqueous mercury preservation from 2000-2021 was reviewed, as well as any commonly cited and relevant references. Amongst others, solid-phase extraction techniques were explored for preservation and preconcentration of total and speciated mercury in water samples. Additionally, the potential as a safe, in situ preservation and storage method for mercury species were summarised. The review highlighted that the stability of mercury is increased when adsorbed on a solid-phase and therefore the metal and its species can be preserved without the need for hazardous reagents or materials in the field. The mercury species can then be eluted upon return to a laboratory, where sensitive analytical detection and speciation methods can be better applied. Developments in solid phase extraction as a preservation method for unstable metals such as mercury will improve the quality of representative environmental data, and further improve toxicology and environmental monitoring studies.
Collapse
Affiliation(s)
- David C P King
- Nottingham Trent University, Nottingham, UK
- Inorganic Geochemistry Facility, Centre for Environmental Geochemistry, British Geological Survey, Nottingham, UK.
| | - Michael J Watts
- Inorganic Geochemistry Facility, Centre for Environmental Geochemistry, British Geological Survey, Nottingham, UK.
| | - Elliott M Hamilton
- Inorganic Geochemistry Facility, Centre for Environmental Geochemistry, British Geological Survey, Nottingham, UK.
| | | | | | - Marcello Di Bonito
- Nottingham Trent University, Nottingham, UK
- Unversità di Bologna, Bologna, Italy
| |
Collapse
|
9
|
Badawy MEI, El-Nouby MAM, Kimani PK, Lim LW, Rabea EI. A review of the modern principles and applications of solid-phase extraction techniques in chromatographic analysis. ANAL SCI 2022; 38:1457-1487. [PMID: 36198988 PMCID: PMC9659506 DOI: 10.1007/s44211-022-00190-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022]
Abstract
Analytical processes involving sample preparation, separation, and quantifying analytes in complex mixtures are indispensable in modern-day analysis. Each step is crucial to enriching correct and informative results. Therefore, sample preparation is the critical factor that determines both the accuracy and the time consumption of a sample analysis process. Recently, several promising sample preparation approaches have been made available with environmentally friendly technologies with high performance. As a result of its many advantages, solid-phase extraction (SPE) is practiced in many different fields in addition to the traditional methods. The SPE is an alternative method to liquid-liquid extraction (LLE), which eliminates several disadvantages, including many organic solvents, a lengthy operation time and numerous steps, potential sources of error, and high costs. SPE advanced sorbent technology reorients with various functions depending on the structure of extraction sorbents, including reversed-phase, normal-phase, cation exchange, anion exchange, and mixed-mode. In addition, the commercial SPE systems are disposable. Still, with the continual developments, the restricted access materials (RAM) and molecular imprinted polymers (MIP) are fabricated to be active reusable extraction cartridges. This review will discuss all the theoretical and practical principles of the SPE techniques, focusing on packing materials, different forms, and performing factors in recent and future advances. The information about novel methodological and instrumental solutions in relation to different variants of SPE techniques, solid-phase microextraction (SPME), in-tube solid-phase microextraction (IT-SPME), and magnetic solid-phase extraction (MSPE) is presented. The integration of SPE with analytical chromatographic techniques such as LC and GC is also indicated. Furthermore, the applications of these techniques are discussed in detail along with their advantages in analyzing pharmaceuticals, biological samples, natural compounds, pesticides, and environmental pollutants, as well as foods and beverages.
Collapse
Affiliation(s)
- Mohamed E I Badawy
- Department of Pesticide Chemistry and Technology, Laboratory of Pesticide Residues Analysis, Faculty of Agriculture, Alexandria University, Aflatoun St., 21545-El-Shatby, Alexandria, Egypt.
| | - Mahmoud A M El-Nouby
- Department of Pesticide Chemistry and Technology, Laboratory of Pesticide Residues Analysis, Faculty of Agriculture, Alexandria University, Aflatoun St., 21545-El-Shatby, Alexandria, Egypt
- Department of Engineering, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Paul K Kimani
- Department of Engineering, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Lee W Lim
- International Joint Department of Materials Science and Engineering Between National University of Malaysia and Gifu University, Graduate School of Engineering, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Entsar I Rabea
- Department of Plant Protection, Faculty of Agriculture, Damanhour University, Damanhour, 22516, Egypt
| |
Collapse
|
10
|
Minaberry YS, Costa C, Diz V, Tudino M. An ion imprinted magnetic organosilica nanocomposite for the selective determination of traces of Cd(II) in a minicolumn flow-through preconcentration system coupled with graphite furnace atomic absorption spectroscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2920-2928. [PMID: 35861161 DOI: 10.1039/d2ay00804a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this paper we present the determination of ultratraces of cadmium ions in water by means of a minicolumn (MC) flow-through preconcentration system coupled with graphite furnace atomic absorption spectrometry. The core of the system is a lab-made ion imprinted magnetic organosilica nanocomposite which is employed as filler of the MC for the selective retention of the analyte. In this case superparamagnetic magnetite nanoparticles were coated with an amine-functionalized shell and ion imprinted with Cd(II) by a simple sol-gel co-condensation method. The setup was completed with the inclusion of a magnet fixed around the packed MC. This assembly - which is studied with an MII material for the first time here - allowed a homogeneous distribution of the solid on the walls of the MC, leaving a hole in the center and enabling the absence of material bleeding or obstructions to the free movement of fluids. Ion imprinted (MII) and non-imprinted (MNI) materials were studied for comparison purposes. Both were characterized and compared by DRX, FTIR, and SEM and their magnetic behavior by magnetization curves. Batch experiments showed an equilibration time of less than 10 minutes and a maximum adsorption pH of around 7 for both solids. The maximum capacity for MII was greater than that of MNI (200 mg g-1 and 30 mg g-1 respectively) and thus, the former was chosen for analytical purposes. Under MC dynamic conditions, sample and elution flow rates, volumes of the sample and eluant, and type and concentration of the most suitable eluant have been thoroughly investigated and optimized. Under the optimal experimental conditions, the MII filler showed a preconcentration factor of 200, a limit of detection of 0.64 ng L-1, a linear range of 2.5-100 ng L-1, RSD% of 1.9 (n = 6; 10 ng L-1) and a lifetime of more than 800 cycles of concentration-elution with no loss of sensitivity or need for refilling. The effect of potentially interfering ions on the percent recovery of cadmium was also studied. The proposed method was successfully applied to the determination of traces of Cd(II) in osmosis and tap water with recoveries of 98.0-101.3%. A comparison with similar methods is also provided.
Collapse
Affiliation(s)
- Yanina Susana Minaberry
- Laboratorio de Trazas, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. II, C1428EHA, Buenos Aires, Argentina.
| | - Cecilia Costa
- Departamento de Química Inorgánica, Analítica y Química Física,, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. II, C1428EHA, Buenos Aires, Argentina
| | - Virginia Diz
- Departamento de Química Inorgánica, Analítica y Química Física,, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. II, C1428EHA, Buenos Aires, Argentina
| | - Mabel Tudino
- Laboratorio de Trazas, Departamento de Química Inorgánica, Analítica y Química Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria Pab. II, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
11
|
Bagheri AR, Aramesh N, Chen J, Liu W, Shen W, Tang S, Lee HK. Polyoxometalate-based materials in extraction, and electrochemical and optical detection methods: A review. Anal Chim Acta 2022; 1209:339509. [PMID: 35569843 DOI: 10.1016/j.aca.2022.339509] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023]
Abstract
Polyoxometalates (POMs) as metal-oxide anions have exceptional properties like high negative charges, remarkable redox abilities, unique ligand properties and availability of organic grafting. Moreover, the amenability of POMs to modification with different materials makes them suitable as precursors to further obtain new composites. Due to their unique attributes, POMs and their composites have been utilized as adsorbents, electrodes and catalysts in extraction, and electrochemical and optical detection methods, respectively. A survey of the recent progress and developments of POM-based materials in these methods is therefore desirable, and should be of great interest. In this review article, POM-based materials, their properties as well as their identification methods, and analytical applications as adsorbents, electrodes and catalysts, and corresponding mechanisms of action, where relevant, are reviewed. Some current issues of the utilization of these materials and their future prospects in analytical chemistry are discussed.
Collapse
Affiliation(s)
| | - Nahal Aramesh
- Department of Chemistry, Isfahan University, Isfahan, 81746-73441, Iran
| | - Jisen Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Wenning Liu
- Department of Environmental Toxicology, University of California, Davis, CA, 95616, USA
| | - Wei Shen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China
| | - Sheng Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, Jiangsu Province, China.
| | - Hian Kee Lee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| |
Collapse
|
12
|
Bagheri AR, Aramesh N, Gong Z, Cerda V, Lee HK. Two-dimensional materials as a platform in extraction methods: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
13
|
Chen G, Zhao H, Li X, Xia S. Theoretical insights into the adsorption mechanism of Cd(II) on the basal surfaces of kaolinite. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126795. [PMID: 34399208 DOI: 10.1016/j.jhazmat.2021.126795] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/25/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
Retardation of Cd(II) migration is an ongoing concern for environmental remediation, but a prevalent obstacle of the procedure originates from the lack of an atomic-scale description of the inherent mechanism for Cd(II) adsorption at mineral-water interfaces. Herein, we performed first-principles calculations and ab initio molecular dynamics (AIMD) simulations to explore the adsorption mechanism of Cd(II) on the basal surfaces of kaolinite. Representative monodentate and bidentate Cd(II) complexes were constructed on the Kln-Al(001) and Kln-Si(001̅) surfaces. The results showed that bidentate coordination of Cd(II) on the Kln-Al(001) surface was superior to all other studied models due to the favorable formation energy and better agreement with EXAFS data. The calculated electron density difference revealed the charge transfer from surface oxygen (Os) to Cd(II) upon adsorption. In particular, partial density of states (PDOS) analysis indicated that the Cd-Os bond exhibited covalent characteristics, attributed to the overlaps of Cd-5p and Os-2p orbitals in the valence band. Furthermore, radial distribution functions supported by AIMD simulations were employed to confirm the structural features of Cd(II) coordination shell at kaolinite-water interfaces. This theoretical study provides insightful guidance for future Cd(II) research to improve current assessments of contaminant remediation.
Collapse
Affiliation(s)
- Guobo Chen
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Haizhou Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266003, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China
| | - Xia Li
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266003, China.
| | - Shuwei Xia
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266003, China; Open Studio for Marine Corrosion and Protection, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266237, China.
| |
Collapse
|
14
|
Bagheri AR, Aramesh N, Haddad PR. Applications of covalent organic frameworks and their composites in the extraction of pesticides from different samples. J Chromatogr A 2021; 1661:462612. [PMID: 34844738 DOI: 10.1016/j.chroma.2021.462612] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 12/07/2022]
Abstract
Pesticides are used extensively in a wide range of applications and due to their high rate of consumption, they are ubiquitous in the different media and samples like environment, water sources, air, soil, biological materials, wastes (liquids, solids or sludges), vegetables and fruits, where they can persist for long periods. Pesticides often have hazardous side effects and can cause a range of harmful diseases like Parkinson, Alzheimer, asthma, depression and anxiety, cancer, etc, even at low concentrations. To this end, extraction, pre-concentration and determination of pesticides from various samples presents significant challenges caused by sample complexity and the low concentrations of them in many samples. Often, direct extraction and determination of pesticides are impossible due to their low concentrations and the complexity of samples. The main goals of sample preparation are removing interfering species, pre-concentrating target analyte/s and converting the analytes into more stable forms (when needed). The most popular approach is solid-phase extraction due to its simplicity, efficiency, ease of operation and low cost. This method is based on using a wide variety of materials, among which covalent organic frameworks (COFs) can be identified as an emerging class of highly versatile materials exhibiting advantageous properties, such as a porous and crystalline structure, pre-designable structure, high physical and chemical stability, ease of modification, high surface area and high adsorption capacity. The present review will cover recent developments in synthesis and applications of COFs and their composites for extraction of pesticides, different synthesis approaches of COFs, possible mechanisms for interaction of COFs-based adsorbents with pesticides and finally, future prospects and challenges in the fabrication and utilization of COFs and their composites for extraction of pesticides.
Collapse
Affiliation(s)
| | - Nahal Aramesh
- Chemistry Department, Isfahan University, Isfahan 81746-73441, Iran.
| | - Paul R Haddad
- Australian Center for Research on Separation Science (ACROSS), School of Natural Sciences, University of Tasmania, Hobart, Tasmania 7001, Australia.
| |
Collapse
|
15
|
Highly effective pre-concentration of thymol and carvacrol using nano-sized magnetic molecularly imprinted polymer based on experimental design optimization and their trace determination in summer savoury, Origanum majorana and Origanum vulgare extracts. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1182:122941. [PMID: 34534848 DOI: 10.1016/j.jchromb.2021.122941] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/31/2021] [Accepted: 09/07/2021] [Indexed: 01/15/2023]
Abstract
To ascertain thymol and carvacrol in pharmaceutical syrups, a valid and effective magnetic molecular imprinted polymer dispersive solid phase microextraction (MMIP-DSPME) process was developed in this study, which was in combination with a high performance liquid chromatography-ultra violet (HPLC-UV) technique for the assessment of thymol and carvacrol separation and pre-concentration. Contact time, eluent kind and volume, pH, the mass of the MMIP were all taken into consideration as key factors. Design expert and multi-objective response surface methodology (RSM) were used to optimize these variables. The mass of the MMIP, sample pH, eluent kind, time of sorption, the volume of eluent, and time of elution were 10 mg, 6, acetonitrile, 28 min, 200 µL, and 5.5 min, respectively, for the maximum extraction recovery of the analytes. The limit of detection (LOD) was 0.042 ng mL-1 at the optimal conditions, while the value for the limit of quantification (LOQ) was 0.140 ng mL-1. At the optimized conditions for thymol and carvacrol, the suggested MMIP sorbent had sorption capacities of 64.1 and 72.6 mg g-1, respectively. Furthermore, for triplicate measurements, the linear dynamic range (LDR) was 0.40-5000 ng mL-1, and the method's accuracy (RSD %) was 6.26%. The saturation magnetization for the MMIP was 19.0 emu g-1 obtained by VSM, allowing the sorbent to be separated quickly. The sorption experiments confirmed the large sorption capacity of the MMIP for thymol and carvacrol, as well as its homogeneous binding sites. The extraction recovery for thymol and carvacrol was 96.9-103.8% and 96.6-105.4%, respectively, at all spiked amounts (20, 100, 200, and 500 ng mL-1). The findings of seven desorption-regeneration cycles using MMIP demonstrated the high stability of the sorbent. The MMIP revealed a particular behavior of sorption for thymol and carvacrol, implying a selective, simple, effective, and flexible analytical method.
Collapse
|
16
|
Tian C, Zhao L, Zhu J, Zhang S. Ultrasensitive detection of trace Hg 2+ by SERS aptasensor based on dual recycling amplification in water environment. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126251. [PMID: 34492994 DOI: 10.1016/j.jhazmat.2021.126251] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/18/2021] [Accepted: 05/25/2021] [Indexed: 05/07/2023]
Abstract
Due to the nonbiodegradability and accumulation of mercury ion, even in extremely small amount, it will cause varying degrees of harm to environment and human health. Although researchers have developed many strategies to detect and monitor trace Hg2+, only a few provide sensitivities of less than 1.0 pM. Surface Enhanced Raman Spectroscopy (SERS) is a common method to detect mercury ion due to its high sensitivity, rapid detection and easy operation. In this work, we report a new SERS aptasensor based on dual recycling amplification for the detection of trace mercury ion, which combines SERS with nucleic acid signal amplification through functional aptamer and elaborately designed hairpin DNA. Under the optimal experimental conditions, this SERS aptasensor exhibits excellent selectivity and high sensitivity. A linear range (0.2-125 fM) and a low detection limit (0.11 fM) are obtained. By using specific aptamers, the strategy will provide a new idea for the trace detection of toxic contaminants in water environment.
Collapse
Affiliation(s)
- Cheng Tian
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210023, P. R. China
| | - Lei Zhao
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China
| | - Jin Zhu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210023, P. R. China.
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, P. R. China.
| |
Collapse
|
17
|
Ding Q, Li C, Wang H, Xu C, Kuang H. Electrochemical detection of heavy metal ions in water. Chem Commun (Camb) 2021; 57:7215-7231. [PMID: 34223844 DOI: 10.1039/d1cc00983d] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Heavy metal ions are one of the main sources of water pollution. Most heavy metal ions are carcinogens that pose a threat to both ecological balance and human health. With the increasing demand for heavy metal detection, electrochemical detection is favorable due to its high sensitivity and efficiency. Here, after discussing the pollution sources and toxicities of Hg(ii), Cd(ii), As(iii), Pb(ii), UO2(ii), Tl(i), Cr(vi), Ag(i), and Cu(ii), we review a variety of recent electrochemical methods for detecting heavy metal ions. Compared with traditional methods, electrochemical methods are portable, fast, and cost-effective, and they can be adapted to various on-site inspection sites. Our review shows that the electrochemical detection of heavy metal ions is a very promising strategy that has attracted widespread attention and can be applied in agriculture, life science, clinical diagnosis, and analysis.
Collapse
Affiliation(s)
- Qi Ding
- The Key Laboratory of Food Colloids and Biotechnology, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | | | | | | | | |
Collapse
|
18
|
Bono MS, Hanhauser EB, Vaishnav C, Hart AJ, Karnik R. Iron oxide xerogels for improved water quality monitoring of arsenic(III) in resource-limited environments via solid-phase extraction, preservation, storage, transportation, and analysis of trace contaminants (SEPSTAT). ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2165-2174. [PMID: 33876813 DOI: 10.1039/d0ay02365e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Arsenic is a widespread trace groundwater contaminant that presents a range of health risks and has an acceptable level of only 10 μg L-1 in drinking water. However, in many countries arsenic quantification in water is limited to centralized laboratories because it requires the use of elemental analysis techniques with high capital cost. As a result, routine water samples are frequently not tested for trace contaminants such as arsenic. In order to facilitate improved arsenic monitoring, we present the use of iron oxide xerogels for adsorption of arsenic(iii) from water samples at neutral pH, dry storage for over 120 days, and desorption of stored arsenic at elevated pH. Iron oxide xerogels offer high surface area (340 m2 g-1) and an As(iii) adsorption capacity of 165 mg g-1. Using an extraction solution of 100 mM sodium hydroxide and 1 mM sodium phosphate, As(iii) is reliably eluted from iron oxide xerogels for initial As(iii) concentrations from 10 μg L-1 to 1000 μg L-1, with a calculated detection limit of less than 4 μg L-1 and less than 17% difference in recovered As(iii) between test solutions with low and high interfering ion concentrations. By demonstrating the ability for iron oxide xerogels to reliably adsorb, store, and release arsenic, we enable the development of protocols for solid-phase extraction, preservation, storage, transportation, and analysis of trace contaminants (SEPSTAT), where arsenic would be adsorbed from water samples onto xerogel-based sorbents and shipped to centralized laboratories for recovery and quantification.
Collapse
Affiliation(s)
- Michael S Bono
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. and Tata Center for Technology and Design, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Emily B Hanhauser
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. and Tata Center for Technology and Design, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chintan Vaishnav
- Tata Center for Technology and Design, Massachusetts Institute of Technology, Cambridge, MA 02139, USA and Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - A John Hart
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Rohit Karnik
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
19
|
Liu S, Xue XX, Yu YL, Wang JH. "Insert-and-Go" Activated Carbon Electrode Tip for Heavy Metal Capture and In Situ Analysis by Microplasma Optical Emission Spectrometry. Anal Chem 2021; 93:6262-6269. [PMID: 33825451 DOI: 10.1021/acs.analchem.1c00819] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The miniaturized optical emission spectrometry (OES) devices based on various microplasma excitation sources provide reliable tools for on-site analysis of heavy metal pollution, while the development of convenient and efficient sample introduction approaches is essential to improve their performances for field analysis. Herein, a small activated carbon electrode tip is employed as solid support to preconcentrate heavy metals in water and subsequently served as an inner electrode of the coaxial dielectric barrier discharge (DBD) to generate microplasma. In this case, heavy metal analytes in water are first adsorbed on the surface of the activated carbon electrode tip via a simple liquid-solid phase transformation during the sample loading process, and then, fast released to produce OES during the DBD microplasma excitation process. The corresponding OES signals are synchronously recorded by a charge-coupled device (CCD) spectrometer for quantitative analysis. This activated carbon electrode tip provides a new tool for sample introduction into the DBD microplasma and facilitates "insert-and-go" in subsequent DBD-OES analysis. With a multiplexed activated carbon electrode tip array, a batch of water samples (50 mL) can be loaded in parallel within 5 min. After drying the activated carbon electrode tips for 5 min, the DBD-OES analysis is maintained at a rate of 6 s per sample. Under the optimized conditions, the detection limits of 0.03 and 0.6 μg L-1 are obtained for Cd and Pb, respectively. The accuracy and practicability of the present DBD-OES system have been verified by measuring several certified reference materials and real water samples. This analytical strategy not only simplifies the sample pretreatment steps but also significantly improves the sensitivity of the DBD-OES system for heavy metal detection. By virtue of the advantages of high sensitivity, fast analysis speed, simple operation, low cost, and favorable portability, the upgraded DBD-OES system provides a more powerful tool for on-site analysis of heavy metal pollution.
Collapse
Affiliation(s)
- Shuang Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| | - Xin-Xin Xue
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, P.O. Box 332, Shenyang 110819, China
| |
Collapse
|
20
|
Jia H, Luo KQ. Fluorescence resonance energy transfer-based sensor zebrafish for detecting toxic agents with single-cell sensitivity. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124826. [PMID: 33421851 DOI: 10.1016/j.jhazmat.2020.124826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/01/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Zebrafish are widely used for detecting toxic agents because of their unique advantages. The conventional zebrafish-based tests use lethal rates and morphological changes as criteria to evaluate the toxicity. To increase the sensitivity of using zebrafish to detect toxic agents, a fluorescence resonance energy transfer-based apoptotic biosensor was introduced into zebrafish genome to generate transgenic sensor zebrafish. Seven chemicals including heavy metals, nanomaterials and DNA-damaging agents were used to treat the sensor zebrafish to determine the sensitivity of the sensor zebrafish. The results showed that sensor zebrafish can detect the toxicity of the tested agents with single-cell sensitivity. Using the sensor zebrafish, we found that, at 100 nM, heavy metal cadmium (Cd) induced apoptosis of zebrafish cells, while no obvious morphological or behavioral changes were observed from the sensor zebrafish. Even at 44.5 nM (the maximum allowable concentration in drinking water), Cd induced a significant increase of apoptosis in sensor zebrafish. ZnO nanoparticles caused apoptosis in sensor zebrafish at a very low concentration of 100 ng/mL. DNA-damaging agents induced the apoptosis of many cells in sensor zebrafish. The sensor zebrafish are much more sensitive than the conventional zebrafish-based tests and can serve as a powerful tool for detecting toxic agents.
Collapse
Affiliation(s)
- Hao Jia
- Faculty of Health Sciences, University of Macau, Taipa, Macao
| | - Kathy Qian Luo
- Faculty of Health Sciences, University of Macau, Taipa, Macao.
| |
Collapse
|
21
|
Liu J, Zhu N, Zhang Y, Ren T, Shao C, Shi R, Li X, Ju M, Ma T, Yu Q. Transcription profiling-guided remodeling of sulfur metabolism in synthetic bacteria for efficiently capturing heavy metals. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123638. [PMID: 32805554 DOI: 10.1016/j.jhazmat.2020.123638] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Heavy metal contamination is becoming a global problem threatening human health. Heavy metal removal by engineered microbes by cellular adsorption and uptake is a promising strategy for treatment of heavy metal contamination. However, this strategy is confronted with limited heavy metal-capturing elements. In this study, we performed a transcription profiling-guided strategy for construction of heavy metal-capturing synthetic bacteria. Transcription profiling of a heavy metal-tolerating Cupriavidus taiwanensis strain revealed up-regulation of sulfur metabolism-related operons (e.g., iscSAU and moaEDAB) by Pb2+ and Cd2+. A synthetic Escherichia coli strain, EcSSMO, was constructed by design of a synthetic sulfur metabolism operon (SSMO) based on iscSAU/moaEDAB. Biochemical analysis and X-ray photoelectron spectroscopy (XPS) revealed that the synthetic bacteria had remodeled sulfur metabolism and enhanced heavy metal-tolerating capacity, with higher surviving EcSSMO cells than the surviving control cells Ec0 (not containing SSMO) at 50 mg/L of Pb2+ and Cd2+ (>92 % versus <10 %). Moreover, EcSSMO exhibited much higher heavy metal-capturing capacity than Ec0, removing>90 % of Pb2+ and Cd2+ at 5 mg/L of Pb2+ and Cd2+, and >40 % of both heavy metals even at 50 mg/L of Pb2+ and Cd2+. This study reveals emphasizes feasibility of transcription profiling-guided construction of synthetic organisms by large-scale remodeling metabolic network.
Collapse
Affiliation(s)
- Jinpeng Liu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China; National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Nali Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Youjun Zhang
- Tianjin North China Geological Exploration Bureau, 67, Guang-rui-xi-lu Rd., Tianjin, 300170, China; School of Environmental Science and Engineering, Tianjin University, 92, Weijin Rd., Nankai District, 300350, China
| | - Tongtong Ren
- Beijing Institute of Biological Products Company, Beijing, China
| | - Chaofeng Shao
- National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Rongguang Shi
- Agro-environmental Protection Institute Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Xiaohua Li
- Rural Energy & Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China
| | - Meiting Ju
- National & Local Joint Engineering Research Center on Biomass Resource Utilization, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
22
|
Ibor OR, Khan EA, Arukwe A. Toxicity assessment of Lemna solid waste dumpsite (Calabar, Nigeria) using different extraction methods and toxicological responses of PLHC-1 cells. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 82:103554. [PMID: 33290873 DOI: 10.1016/j.etap.2020.103554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/03/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
In the present study, we have investigated the effects of three (elutriate, polar and non-polar) different soil extraction methods from the Lemna solid waste dumpsite (Calabar, Nigeria) on the biotransformation, antioxidant and cellular defense responses of PLHC-1 cell line. Following a 48 h exposure period to different concentrations of each extract, the PLHC-1 cells were evaluated for enzymatic activities - glutathione peroxidase (Gpx), glutathione reductase (Gr), glutathione S-transferase (Gst), 7-ethoxy-, pentoxy-, and benzyloxyresorufin O-deethylase (EROD, PROD and BROD) and mRNA expressions for catalase (cat), gpx, gst, cyp1a, cyp3a, mammalian target of rapamycin (mtor), nuclear factor erythroid 2-related factor 2 (nrf2) and Kelch-like erythroid cell-derived protein (keap-1). Overall, our results showed parameter-, extract- and concentration-specific increases in transcripts and functional product levels for biotransformation, antioxidant and cellular defense/cytoprotective responses, compared with control. These responses were mostly characterized by a biphasic pattern of effects by either, increasing at low concentration, and thereafter decrease, as the concentration increases or vice versa, depending on the extract type. These observations paralleled soil contaminants (organics and inorganics) burden from the dumpsite. Principal component analysis (PCA) showed that cells treated with the non-polar extract produced more pronounced effects on the measured toxicological responses, compared with the polar and elutriate extracts. Thus, our data highlight peculiar risks to cells exposed to each soil extract, indicating complex and multiple chemical interactions with diverse functional groups that contaminants may have in mixture scenarios. Given the limitations and cost implications of contaminants analysis for the numerous soil- or sediment-bound compounds, we propose that this approach represents an analytical benchmark and endpoints for assessing the risk of complex environmental matrices such as soil and sediments, for ecotoxicological monitoring programs.
Collapse
Affiliation(s)
- Oju R Ibor
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, N-7491, Trondheim, Norway; Department of Zoology and Environmental Biology, University of Calabar, Calabar, Nigeria
| | - Essa A Khan
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, N-7491, Trondheim, Norway
| | - Augustine Arukwe
- Department of Biology, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, N-7491, Trondheim, Norway.
| |
Collapse
|