1
|
Chen A, Zhang T, Cheng F, Yang H, Guo Z, Zhao S, Zhang YN, Qu J. Comprehensive analysis and risk assessment of Antibiotic contaminants, antibiotic-resistant bacteria, and resistance genes: Patterns, drivers, and implications in the Songliao Basin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124852. [PMID: 39216670 DOI: 10.1016/j.envpol.2024.124852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/28/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The pervasive use of antibiotics has raised substantial environmental concerns, especially regarding their temporal and spatial distribution across diverse water systems. This study addressed the gap in comprehensive research on antibiotic contamination during different hydrological periods, focusing on the Jilin section of the Songliao Basin in Northeast China, an area with severe winter ice cover. The study examined the occurrence, distribution, influencing factors, and potential ecological risks of prevalent antibiotic contaminants. Findings revealed antibiotic concentrations ranging from 239.64 to 965.81 ng/L, with antibiotic resistance genes (ARGs) at 5.22 × 10-2 16S rRNA-1 and antibiotic-resistant bacteria (ARB) up to 5.76 log10 CFU/mL. Ecological risk assessments identified significant risks to algae from oxytetracycline, erythromycin, and amoxicillin. Redundancy analysis and co-occurrence networks with ordinary least squares (OLS) demonstrated that the dispersion of ARGs and ARB is significantly influenced by environmental factors such as total organic carbon (TOC), total phosphorus (TP), total nitrogen (TN), fluoride (F⁻), and nitrate (NO₃⁻). These elements, along with mobile genetic elements (MGEs), play crucial roles in ARG patterns (R2 = 0.94, p ≤ 0.01). This investigation offers foundational insights into antibiotic pollution dynamics in cold climates, supporting the development of targeted mitigation strategies for aquatic systems.
Collapse
Affiliation(s)
- Anjie Chen
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Tingting Zhang
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Fangyuan Cheng
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Hao Yang
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Zhengfeng Guo
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Siyu Zhao
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Ya-Nan Zhang
- School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Jiao Qu
- School of Environment, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
2
|
Shi L, Zhang D, Yang M, Li F, Zhao J, He Z, Bai Y. New discovery of extremely high adsorption of environmental DNA on cuttlefish bone pyrolysis derivative via large pore structure and carbon film. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 175:286-293. [PMID: 38237404 DOI: 10.1016/j.wasman.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/29/2024]
Abstract
Environmental DNA (eDNA) carrying antibiotic resistance gene (ARG) has attracted a great deal of attention because of its threat to the ecology and human health. Traditional porous adsorbents, such as microporous biochar and natural mineral, are low-effective in removing eDNA from sewage. This study used cuttlefish-bone (CB), a fishery waste, as an anticipated material to adsorb a model compound of eDNA from herring sperm (hsDNA). An interesting result was firstly observed that extremely high DNA adsorption on cuttlefish-bone pyrolysis derivative (CCB) was up to 88.7 mg/g, 3-10 folds higher than that of most other adsorbents in the existing literatures, which was attributed to the carbon film and large pores. To achieve an adsorption rate of 75 %, hsDNA adsorption took 96 h on CB but only 24 h on CCB, which was attributed to the fluent channel of CCB. The ligand exchange, Ca2+ bridge and π-π interaction were identified as dominated adsorption mechanisms, based on FTIR and phosphate competition experiments. This study exploited a high-efficient, environmentally friendly, and low-cost adsorbent for treating ARG-contaminated soil and water.
Collapse
Affiliation(s)
- Lin Shi
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276005, China.
| | - Di Zhang
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276005, China; Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Mingyi Yang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Fangfang Li
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Jinfeng Zhao
- Shandong Provincial Key Laboratory of Water and Soil Conservation and Environmental Protection, College of Resources and Environment, Linyi University, Linyi, 276005, China.
| | - Zhaohui He
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| | - Yangwei Bai
- Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| |
Collapse
|
3
|
Luo M, Zhang H, Ren Y, Zhou H, Zhou P, He CS, Xiong Z, Du Y, Liu Y, Lai B. In Situ Regulation of MnO 2 Structural Characteristics by Oxyanions to Boost Permanganate Autocatalysis for Phenol Removal. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12847-12857. [PMID: 37578486 DOI: 10.1021/acs.est.3c02167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Oxyanions, a class of constituents naturally occurring in water, have been widely demonstrated to enhance permanganate (Mn(VII)) decontamination efficiency. However, the detailed mechanism remains ambiguous, mainly because the role of oxyanions in regulating the structural parameters of colloidal MnO2 to control the autocatalytic activity of Mn(VII) has received little attention. Herein, the origin of oxyanion-induced enhancement is systematically studied using theoretical calculations, electrochemical tests, and structure-activity relation analysis. Using bicarbonate (HCO3-) as an example, the results indicate that HCO3- can accelerate the degradation of phenol by Mn(VII) by improving its autocatalytic process. Specifically, HCO3- plays a significant role in regulating the structure of in situ produced MnO2 colloids, i.e., increasing the surface Mn(III)s content and restricting particle growth. These structural changes in MnO2 facilitate its strong binding to Mn(VII), thereby triggering interfacial electron transfer. The resultant surface-activated Mn(VII)* complexes demonstrate excellent degrading activity via directly seizing one electron from phenol. Further, other oxyanions with appropriate ionic potentials (i.e., borate, acetate, metasilicate, molybdate, and phosphate) exhibit favorable influences on the oxidative capability of Mn(VII) through an activation mechanism similar to that of HCO3-. These findings considerably improve our fundamental understanding of the oxidation behavior of Mn(VII) in actual water environments and provide a theoretical foundation for designing autocatalytically boosted Mn(VII) oxidation systems.
Collapse
Affiliation(s)
- Mengfan Luo
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yi Ren
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Hongyu Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Peng Zhou
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chuan-Shu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Ye Du
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Cheng L, Mao Y, Jiang L, Ma R, Ma J, Zhuo Y, Shen Q, Liu C, Zhao L, Xu X, Ji F. Mn(VII) enhanced by CaSO 3 to remove trace organic pollutants in high salt organic wastewater: Further enhancement of salinity. CHEMOSPHERE 2023; 334:138964. [PMID: 37211162 DOI: 10.1016/j.chemosphere.2023.138964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/23/2023]
Abstract
The high concentration of salt in organic wastewater has a strong inhibitory effect on the removal of pollutants. A method for the efficient removal of trace pollutants in high-salinity organic wastewater was developed. This study investigated the effect of the combination of permanganate [Mn(VII)] and calcium sulfite [S(IV)] on pollutant removal in hypersaline wastewater. The Mn(VII)-CaSO3 system removed more pollutants from high-salinity organic wastewater than from normal-salinity wastewater. Chloride (increasing from 1 M to 5 M) and low concentration of sulfate (increasing from 0.05 M to 0.5 M) significantly enhanced the system's resistance to pollutants under neutral conditions. Despite the fact that Cl- can combine with the free radicals in the system and reduce their efficiency in removing pollutants, the presence of chloride ions greatly enhances the electron transfer rate in the system, promoting the conversion of Mn(VII) to Mn(III) and significantly increasing the reaction rate of Mn(III) as the primary active species. Therefore, chloride salts can greatly enhance the removal of organic pollutants by Mn(VII)-CaSO3. Although sulfate does not react with free radicals, a high concentration of sulfate (1 M) will affect the formation of Mn(III), which greatly weakens the removal effect of the entire system on pollutants. The system can still have a good pollutant removal effect with mixed salt. Altogether, this study demonstrates that the Mn(VII)-CaSO3 system offers new possibilities for the treatment of organic pollutants in hypersaline wastewater.
Collapse
Affiliation(s)
- Linsong Cheng
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Yuanxiang Mao
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Lei Jiang
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Rui Ma
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Jiangsen Ma
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Yiyuan Zhuo
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Qiushi Shen
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Caocong Liu
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Liuwei Zhao
- China Southwest Architectural Design and Research Institute Co., Ltd., Chengdu, 610042, China
| | - Xiaoyi Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215001, China.
| | - Fangying Ji
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, China; Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
5
|
Zhang S, Xu B, Chen M, Zhang Q, Huang J, Cao Y, Li B. Profile and actual transmissibility of Carbapenem resistance genes: Intracellular and extracellular DNA in hospital wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117085. [PMID: 36571956 DOI: 10.1016/j.jenvman.2022.117085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 05/10/2023]
Abstract
The current worldwide spread of carbapenem resistance genes (CRGs) has posed a major public health threat, which continues to grow in severity. Hospital wastewaters (HWWs) are major reservoirs for antibiotic resistance genes, while resistomes in HWWs are still poorly characterized when it comes to CRGs. We comprehensively characterized the profile and actual transmissibility of extracellular CRGs (eCRGs) and intracellular CRGs (iCRGs) in HWWs for the first time. In this study, CRGs showed similar relative abundance in treated and untreated HWWs. Meanwhile, HWWs treatments led to the enrichment of blaIMP-8, probably attributed to the promotion of Novosphingobium and Prosthecobacter after treatment. To evaluate the transmission potential of CRGs, extracellular and intracellular carbapenem-resistant plasmids were captured from HWWs by transformation and conjugation, respectively. We found an interesting phenomenon regarding the transmission characteristics of CRGs: blaKPC-carrying plasmids could only be captured by transformation, while blaNDM-carrying plasmids were captured by conjugation. Further experiments showed that HWW treatments increased the conjugation ability of blaNDM. In conclusion, our study demonstrated that HWWs are significant reservoirs of CRGs and various CRGs exhibit different modes of transmission in HWWs. CRGs cannot be removed by membrane bioreactor and chlorine disinfection. An urgent need is to develop more efficient wastewater treatments to limit CRG dissemination.
Collapse
Affiliation(s)
- Shengcen Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Binbin Xu
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Mo Chen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, Fujian,350001, China
| | - Qianwen Zhang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Jiangqing Huang
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Yingping Cao
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Bin Li
- Department of Clinical Laboratory, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China.
| |
Collapse
|
6
|
Zahmatkesh S, Rezakhani Y, Arabi A, Hasan M, Ahmad Z, Wang C, Sillanpää M, Al-Bahrani M, Ghodrati I. An approach to removing COD and BOD based on polycarbonate mixed matrix membranes that contain hydrous manganese oxide and silver nanoparticles: A novel application of artificial neural network based simulation in MATLAB. CHEMOSPHERE 2022; 308:136304. [PMID: 36096310 DOI: 10.1016/j.chemosphere.2022.136304] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/20/2022] [Accepted: 08/29/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to determine the efficacy of novel ultrafiltration and mixed matrix membrane (MMM) composed of hydrous manganese oxide (HMO) and silver nanoparticles (Ag-NPs) for the removal of biological oxygen demand (BOD) and chemical oxygen demand (COD). In the polycarbonate (PC) MMM, the weight percent of HMO and Ag-NP has been increased from 5% to 10%. A neural network (ANN) was used in this study to compare PC-HMO and Ag-NP. MMM was evaluated in combination with HMO and Ag-NP loadings in order to assess their effects on pure water flux, mean pore size, porosity, and efficacy in removing BOD and COD. HMO and Ag-NPs can decrease membrane porosity in the casting solution while increasing mean pore size. According to the study's findings, the artificial neural network model appears to be highly appropriate for predicting the removal of BOD and COD. To develop a successful model, a suitable input dataset was selected, which consisted of BOD and COD. An ideal model architecture for MMM was proposed based on an optimal number of hidden layers (2 layers) and neurons (5-8 neurons). Experiments and predicted data show a strong correlation between the developed models. BOD was predicted with an excellent R2 and a low root mean square error (RMSE) of 0.99 and 0.05%, respectively, while COD was predicted with an excellent R2 and a low RMSE of 0.99 and 0.09%, respectively. Based on the results, Ag-NP was found to be an excellent candidate for the preparation of MMMs as well as convenient for the removal of BOD and COD from polluted water sources.
Collapse
Affiliation(s)
- Sasan Zahmatkesh
- Department of Chemical Engineering, University of Science and Technology of Mazandaran, P.O. Box 48518-78195, Behshahr, Iran.
| | - Yousof Rezakhani
- Department of Civil Engineering, Pardis Branch, Islamic Azad University, Pardis, Iran
| | - Alireza Arabi
- Center for Processing and Characterization of Nanostructured Materials, School of Mechanical Engineering, University of Tehran, P.O.B.14399-57131,1450, Iran
| | - Mudassir Hasan
- College of Engineering, Department of Chemical Engineering, King Khalid University, Abha, 61411, Saudi Arabia
| | - Zubair Ahmad
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea.
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Mika Sillanpää
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India; Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa; Zhejiang Rongsheng Environmental Protection Paper Co. LTD, NO.588 East Zhennan Road, Pinghu Economic Development Zone, Zhejiang, 314213, PR China
| | - Mohammed Al-Bahrani
- Air Conditioning and Refrigeration Techniques Engineering Department, Al-Mustaqbal University College, Babylon, 51001, Iraq
| | - Iman Ghodrati
- Department of Computer Engineering, Bojnourd Branch, Islamic Azad University, Bojnourd, Iran
| |
Collapse
|
7
|
Duan S, Dong H, Hou P, Han G, Zhang B, Qiang Z. Simultaneous oxidation of trace organic contaminant and Mn(II) by Mn(VII): Accelerating role of dissolved oxygen. CHEMOSPHERE 2022; 308:136321. [PMID: 36084823 DOI: 10.1016/j.chemosphere.2022.136321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Permanganate (Mn(VII)) is a widely used oxidant in water treatment, which can oxidize trace organic contaminants (TrOCs) and Mn(II). Interestingly, this study found that presence of Mn(II) could accelerate the abatement of bisphenol A by Mn(VII) only under oxic condition. Herein, the effects of Mn(II) and dissolved oxygen (DO) on the abatement of TrOCs by Mn(VII) oxidation and the related mechanism were investigated. Results indicate that DO was involved in the Mn(VII)/Mn(II) reaction, with the reaction stoichiometry of Δ[Mn(VII)]:Δ[Mn(II)] determined to be 1:2 and 1:1.5 in the presence and absence of DO, respectively. Quenching and electron paramagnetic resonance tests verified that both superoxide radicals (O2•-) and reactive Mn species contributed to the accelerated abatement of TrOCs (bisphenol A, methyl phenyl sulfoxide, and methyl phenyl sulfone) in the Mn(VII)/Mn(II) process. Specifically, O2•- was produced through the one-electron reduction of DO and made an important contribution (32.4%-100%) to the abatement of selected TrOCs. This study reveals that Mn(II) could enhance TrOC abatement by Mn(VII) oxidation, and DO played a pivotal role in the Mn(VII)/Mn(II) process.
Collapse
Affiliation(s)
- Shule Duan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huiyu Dong
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Pin Hou
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China
| | - Gangsheng Han
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085, China; School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China
| | - Bochao Zhang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085, China; School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China
| | - Zhimin Qiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuang-qing Road, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
Zhao J, Jiang W, Wang H, Zhang H, Wang J, Yang J, Lin D, Liang H. Ferrate-enhanced electrocoagulation/ultrafiltration system on municipal secondary effluent treatment: Identify synergistic contribution of coagulant and oxidation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Yang B, Wen Q, Chen Z, Tang Y. Potassium ferrate combined with ultrafiltration for treating secondary effluent: Efficient removal of antibiotic resistance genes and membrane fouling alleviation. WATER RESEARCH 2022; 217:118374. [PMID: 35398806 DOI: 10.1016/j.watres.2022.118374] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 05/09/2023]
Abstract
Antibiotic resistance genes (ARGs) are considered as emerging environmental contaminants, which should be controlled by wastewater treatment plants to prevent their discharge into the environment. However, conventional treatment techniques generally fail to successfully reduce ARGs, and the release of cell-free ARGs was underestimated. In this study, potassium ferrate (Fe(VI)) pretreatment combined with ultrafiltration (UF) process was developed to remove both cell-associated and cell-free ARGs in real secondary effluent, compared to ferric chloride (Fe(III)) and poly-aluminum chloride (PACl) pretreatment processes. It was found that total ARGs especially cell-free ARGs were effectively removed by Fe(VI) oxidation. However, due to the poor settleability of the negatively charged particles formed by Fe(VI) in the secondary effluent, the removal of cell-associated ARGs was less compared to Fe(III) and PACl pretreatments. The combination of Fe(VI) and UF removed the most ARGs (3.26 - 5.01 logs) due to the efficient removal of cell-free ARGs by Fe(VI) (> 2.15 logs) and co-interception of both cell-associated ARGs and Fe(VI) formed particles of the UF. High-throughput sequencing revealed that Fe(VI) decreased the viability and relative abundances of the potential ARGs hosts. Fe(VI)-UF exhibited the best performance on humic-like fluorescent organic matters removal, as well as the least phytotoxicity in the effluent. Moreover, membrane fouling was remarkably alleviated by Fe(VI) pretreatment because (1) Fe(VI) removed macromolecules such as protein-like and polysaccharide-like substances which would block the membrane pores, (2) Fe(VI) improved the hydrophilicity of foulants and reduced the hydrophobic adsorption between foulants and membrane. In short, Fe(VI)-UF is a promising technology to efficiently remove ARGs (especially cell-free ARGs) and alleviate UF membrane fouling in wastewater reclamation.
Collapse
Affiliation(s)
- Boxuan Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Qinxue Wen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| | - Yingcai Tang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| |
Collapse
|
10
|
Li K, Xu W, Han M, Cheng Y, Wen G, Huang T. Integration of iron-manganese co-oxide (FMO) with gravity-driven membrane (GDM) for efficient treatment of surface water containing manganese and ammonium. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Patidar R, Srivastava VC. Ultrasound-assisted electrochemical treatment of cosmetic industry wastewater: Mechanistic and detoxification analysis. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126842. [PMID: 34416687 DOI: 10.1016/j.jhazmat.2021.126842] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 08/04/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
This study aims to investigate the mineralization of cosmetics producing industrial wastewater (CW) using sono-electrochemical (US-EC) treatments. The influence of operating parameters such as current density (j), electrolyte (Na2SO4) concentration (m), initial pH (pHo), and ultrasonic power was investigated using Ti/RuO2 dimensionally stable electrodes. The results demonstrated 80.9% chemical oxygen demand (COD) removal efficiency, 433.5 kWh (kg COD removed)-1 of specific energy consumption at the optimum conditions of P = 100 W, j = 213 A m-2, pHo= 7.6 (natural pH), and m = 1.5 g L-1. With the application of ultrasound, COD removal efficiency increases from 60.2% to 80.9%, with a synergistic effect of 1.1. Kinetics study analysis confirms that mineralization follows the nth order kinetics model. In the presence of ultrasound, the performance of electrochemical treatment gets enhanced due to higher electron transfer, the enhanced production of •OH radicals, and sulfate radicals (SO4•-). The pathway for the degradation of the compound was suggested by quadrupole time of flight mass spectroscopy (QToF-MS). The operating cost of the process was also evaluated to establish the applicability of the US-EC process at the industrial scale.
Collapse
Affiliation(s)
- Ritesh Patidar
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Vimal Chandra Srivastava
- Department of Chemical Engineering, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
12
|
Zhao Y, Qiu Y, Mamrol N, Ren L, Li X, Shao J, Yang X, van der Bruggen B. Membrane bioreactors for hospital wastewater treatment: recent advancements in membranes and processes. Front Chem Sci Eng 2021; 16:634-660. [PMID: 34849268 PMCID: PMC8617552 DOI: 10.1007/s11705-021-2107-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/15/2021] [Indexed: 11/26/2022]
Abstract
Discharged hospital wastewater contains various pathogenic microorganisms, antibiotic groups, toxic organic compounds, radioactive elements, and ionic pollutants. These contaminants harm the environment and human health causing the spread of disease. Thus, effective treatment of hospital wastewater is an urgent task for sustainable development. Membranes, with controllable porous and nonporous structures, have been rapidly developed for molecular separations. In particular, membrane bioreactor (MBR) technology demonstrated high removal efficiency toward organic compounds and low waste sludge production. To further enhance the separation efficiency and achieve material recovery from hospital waste streams, novel concepts of MBRs and their applications are rapidly evolved through hybridizing novel membranes (non hydrophilic ultrafiltration/microfiltration) into the MBR units (hybrid MBRs) or the MBR as a pretreatment step and integrating other membrane processes as subsequent secondary purification step (integrated MBR-membrane systems). However, there is a lack of reviews on the latest advancement in MBR technologies for hospital wastewater treatment, and analysis on its major challenges and future trends. This review started with an overview of main pollutants in common hospital waste-water, followed by an understanding on the key performance indicators/criteria in MBR membranes (i.e., solute selectivity) and processes (e.g., fouling). Then, an in-depth analysis was provided into the recent development of hybrid MBR and integrated MBR-membrane system concepts, and applications correlated with wastewater sources, with a particular focus on hospital wastewaters. It is anticipated that this review will shed light on the knowledge gaps in the field, highlighting the potential contribution of hybrid MBRs and integrated MBR-membrane systems toward global epidemic prevention.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Chemical Engineering, KU Leuven, B-3001 Leuven, Belgium
| | - Yangbo Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Natalie Mamrol
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Longfei Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Xin Li
- Department of Chemical Engineering, KU Leuven, B-3001 Leuven, Belgium
| | - Jiahui Shao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Xing Yang
- Department of Chemical Engineering, KU Leuven, B-3001 Leuven, Belgium
| | | |
Collapse
|
13
|
Zhao X, Su H, Xu W, Hu X, Xu Y, Wen G, Cao Y. Removal of antibiotic resistance genes and inactivation of antibiotic-resistant bacteria by oxidative treatments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146348. [PMID: 34030387 DOI: 10.1016/j.scitotenv.2021.146348] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/15/2021] [Accepted: 03/03/2021] [Indexed: 06/12/2023]
Abstract
The persistence of antibiotics in the environment because of human activities, such as seafood cultivation, has attracted great attention as they can give rise to antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). In this study, we explored the inactivation and removal efficiencies of Escherichia coli SR1 and sul1 (plasmid-encoded ARGs), respectively, in their extracellular and intracellular forms (eARGs and iARGs) by three commonly used fishery oxidants, namely chlorine, bromine, and potassium permanganate (KMnO4), at the practical effective concentration range (0.5, 5, and 15 mg/L). Kinetics data were obtained using laboratory phosphate-buffered saline (PBS). Following the same fishery oxidation methods, the determined kinetics models were tested by studying the SR1 and sul1 disinfection efficiencies in (sterilized) pond water matrix. At concentrations of 5 and 15 mg/L, all three oxidants achieved sufficient cumulative integrated exposure (CT values) to completely inactivate SR1 and efficiently remove sul1 (up to 4.0-log). The oxidation methods were then applied to an unsterilized pond water matrix in order to study and evaluate the indigenous ARB and ARGs disinfection efficiencies in aquaculture, which reached 1.4-log and 1.0-log during treatment with fishery oxidants used in pond preparation at high concentrations before stocking (5-15 mg/L), respectively. A high chlorine concentration (15 mg/L) could efficiently remove ARGs (or iARGs) from pond water, and the iARG removal efficiency was higher than that of eARGs in pond water. The method and results of this study could aid in guiding future research and practical disinfection to control the spread of ARGs and ARB in aquaculture.
Collapse
Affiliation(s)
- Xiaoyu Zhao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, P.R.China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China
| | - Haochang Su
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, P.R.China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Shenzhen Base South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China
| | - Wujie Xu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, P.R.China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Shenzhen Base South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China
| | - Xiaojuan Hu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, P.R.China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Shenzhen Base South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China
| | - Yu Xu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, P.R.China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Shenzhen Base South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China
| | - Guoliang Wen
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, P.R.China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Shenzhen Base South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China
| | - Yucheng Cao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, P.R.China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Shenzhen Base South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China.
| |
Collapse
|
14
|
Li X, Cheng Z, Dang C, Zhang M, Zheng Y. Metagenomic and viromic data mining reveals viral threats in biologically treated domestic wastewater. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2021; 7:100105. [PMID: 36160698 PMCID: PMC9488056 DOI: 10.1016/j.ese.2021.100105] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/02/2021] [Accepted: 06/02/2021] [Indexed: 05/07/2023]
Abstract
Activated sludge (AS), a common biological secondary treatment process in wastewater treatment plants (WWTPs), is known to remove a large spectrum of microorganisms. Yet little is known about its effect on the entire viral community. After compiling 3 Tbp of next-generation sequencing (NGS) metagenomic/viromic datasets consisted of 119 sub-datasets of influent, effluent, and AS samples from 27 WWTPs, viral removal efficacy is evaluated through data mining. The normalized abundance of viruses suggests effluents exhibit the highest viral prevalence (3.21 ± 3.26%, n = 13) followed by the AS (0.48 ± 0.25%, n = 57) and influents (0.23 ± 0.17%, n = 17). In contrast, plasmids, representing genetic element of bacteria, show higher average prevalence (0.73 ± 0.82%, n = 17) in influents than those of the AS (0.63 ± 0.26%, n = 57) and effluents (0.35 ± 0.42%, n = 13). Furthermore, the abundance-occupancy analysis identifies 142 core phage viruses and 17 non-phages core viruses, including several pathogenic viruses in the AS virome. The persistent occurrence of pathogenic viruses, coupled with non-favorable virus removal by the AS treatment, reveals the hidden virus threats in biologically treated domestic wastewater. The mechanisms for why viruses persist and the possibility that WWTPs are potential hotspots for viral survival deserve attention.
Collapse
Affiliation(s)
- Xiang Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhanwen Cheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chenyuan Dang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Miao Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yan Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Corresponding author. School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055 China.
| |
Collapse
|
15
|
Pre-depositing PAC-birnessite cake layer on gravity driven ceramic membrane (GDCM) reactor for manganese removal: The significance of stable flux and biofilm. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.118623] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Yu Z, Rabiee H, Guo J. Synergistic effect of sulfidated nano zerovalent iron and persulfate on inactivating antibiotic resistant bacteria and antibiotic resistance genes. WATER RESEARCH 2021; 198:117141. [PMID: 33895590 DOI: 10.1016/j.watres.2021.117141] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Antimicrobial resistance continues to be a rising global threat to public health. It is well recognized that wastewater treatment plants are reservoirs of antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs). However, traditional disinfection techniques are not effective to simultaneously remove ARB and ARGs, and the dynamic analysis of ARB inactivation have also been deficient. In this study, sulfidated nano zerovalent iron (S-nZVI) coupled with persulfate (PS) was applied to simultaneously remove both ARB (E. coli K-12 with RP4 plasmid) and ARGs (extra- and intracellular ARGs). S-nZVI/PS completely inactivated ARB (~7.8-log reduction) within 10 min and degraded all extracellular ARGs (~8.0-log reduction) within 5 min. These efficiencies were significantly higher (decay rate constant, k = 0.138 min-1) than those achieved individually (S-nZVI: k = 0.076 min-1; PS: k = 0.008 min-1), implying a synergistic effect between S-nZVI and PS against ARB and ARGs. The efficient removal rate of ARB was also supported by confocal microscopy and microfluidics at a single-cell level. The complete inactivation of ARB by S-nZVI/PS was also demonstrated in real drinking water and real wastewater effluent that contained natural organic matter and suspended solids. Regrowth assays showed that the treated ARB was not observed after 72 h or longer incubation, suggesting that ARB was permanently inactivated by radicals such as SO4•- and •OH. The destruction of bacterial cells compromised the removal efficiency of the intracellular ARGs, with only ~4.0-log reduction after 60 min treatment by S-nZVI/PS. Collectively, our results suggest the feasibility of S-nZVI coupled with PS for simultaneous ARB and ARGs removal in real water matrices.
Collapse
Affiliation(s)
- Zhigang Yu
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Hesamoddin Rabiee
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia.
| |
Collapse
|
17
|
Wang M, Chen H, Liu S, Xiao L. Removal of pathogen and antibiotic resistance genes from waste activated sludge by different pre-treatment approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:143014. [PMID: 33190880 DOI: 10.1016/j.scitotenv.2020.143014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/12/2020] [Accepted: 10/07/2020] [Indexed: 05/13/2023]
Abstract
In wastewater treatment plants, most of the pathogens and antibiotic resistant genes (ARGs) transferred into and concentrated in waste activated sludge (WAS), which would cause severe public health risks. In this study, the capabilities of several WAS pre-treatment approaches to inactivate coliforms/E. coli and ARGs, as well as the subsequent regrowth of coliforms/E. coli and ARGs/intI1 in treated sludge were investigated. The results showed that electro-Fenton (EF), with continuous hydroxyl radical generation, could efficiently inactivate coliforms/E. coli in 60 min (about 4 log units), followed by methanol (MT), anode oxidization (AO), and acidification (AT). Kinetic analysis showed that the inactivation mainly occurred in the first 10 min. However, the efficiencies of all studied pre-treatment approaches on inactivating ARGs/intI1 (<2 log units) were lower than coliforms/E. coli, whilst EF still had the highest efficiency of ARGs/intI1 reduction. Mechanical ultrasound treatment (ULS) could not inactivate coliforms/E. coli in WAS, but it could efficiently reduce ARGs/intI1. High regrowth rates of coliforms/E. coli were observed in the treated WAS in 10 days, but the abundances of ARGs/intI1 continuously reduced during the after-treatment incubation. Our study showed that EF could efficiently disinfect potential pathogens, however, the reduction of ARGs/intI1 in WAS need further investigation.
Collapse
Affiliation(s)
- Min Wang
- State Key laboratory of Pollution Control & Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Huiping Chen
- State Key laboratory of Pollution Control & Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Shulei Liu
- State Key laboratory of Pollution Control & Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China
| | - Lin Xiao
- State Key laboratory of Pollution Control & Resources Reuse, School of the Environment, Nanjing University, Nanjing 210023, PR China.
| |
Collapse
|
18
|
Triggiano F, Calia C, Diella G, Montagna MT, De Giglio O, Caggiano G. The Role of Urban Wastewater in the Environmental Transmission of Antimicrobial Resistance: The Current Situation in Italy (2010-2019). Microorganisms 2020; 8:E1567. [PMID: 33053645 PMCID: PMC7600224 DOI: 10.3390/microorganisms8101567] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/05/2020] [Accepted: 10/10/2020] [Indexed: 12/12/2022] Open
Abstract
Scientific studies show that urban wastewater treatment plants (UWWTP) are among the main sources of release of antibiotics, antibiotic resistance genes (ARG) and antibiotic-resistant bacteria (ARB) into the environment, representing a risk to human health. This review summarizes selected publications from 1 January 2010 to 31 December 2019, with particular attention to the presence and treatment of ARG and ARB in UWWTPs in Italy. Following a brief introduction, the review is divided into three sections: (i) phenotypic assessment (ARB) and (ii) genotypic assessment (ARG) of resistant microorganisms, and (iii) wastewater treatment processes. Each article was read entirely to extract the year of publication, the geographical area of the UWWTP, the ARB and ARG found, and the type of disinfection treatment used. Among the ARB, we focused on the antibiotic resistance of Escherichia coli, Klebsiella pneumoniae, and Enterococci in UWWTP. The results show that the information presented in the literature to date is not exhaustive; therefore, future scientific studies at the national level are needed to better understand the spread of ARB and ARG, and also to develop new treatment methods to reduce this spread.
Collapse
Affiliation(s)
| | | | | | | | - Osvalda De Giglio
- Department of Biomedical Science and Human Oncology, University of Bari Aldo Moro, Piazza G. Cesare 11, 70124 Bari, Italy; (F.T.); (C.C.); (G.D.); (M.T.M.); (G.C.)
| | | |
Collapse
|
19
|
Yu X, Tang Y, Pan J, Shen L, Begum A, Gong Z, Xue J. Physico-chemical processes. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2020; 92:1751-1769. [PMID: 32762110 DOI: 10.1002/wer.1430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/19/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
By summarizing 187 relevant research articles published in 2019, the review is focused on the research progress of physicochemical processes for wastewater treatment. This review divides into two sections, physical processes and chemical processes. The physical processes section includes three sub-sections, that is, adsorption, granular filtration, and dissolved air flotation, whereas the chemical processes section has five sub-sections, that is, coagulation/flocculation, advanced oxidation processes, electrochemical, capacitive deionization, and ion exchange. PRACTITIONER POINTS: Totally 187 research articles on wastewater treatment have been reviewed and discussed. The review has two major sections with eight sub-topics.
Collapse
Affiliation(s)
- Xiaoxuan Yu
- China Construction Science & Technology Co. Ltd., Shenzhen Branch, Shenzhen, China
| | - Yao Tang
- Ebo Environmental Protection Group, Guangzhou, China
| | - Jian Pan
- Hangzhou Bertzer Catalyst Co., Ltd., Hangzhou, China
- Environmental Technology Innovation Center of Jiande, Hangzhou, China
| | - Lin Shen
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Afruza Begum
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK, Canada
| | | | - Jinkai Xue
- Environmental Systems Engineering, Faculty of Engineering and Applied Science, University of Regina, Regina, SK, Canada
| |
Collapse
|