1
|
Liu Z, Li C, Tan K, Li Y, Tan W, Li X, Zhang C, Meng S, Liu L. Study of natural attenuation after acid in situ leaching of uranium mines using isotope fractionation and geochemical data. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161033. [PMID: 36574851 DOI: 10.1016/j.scitotenv.2022.161033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/22/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Acid in situ leaching (AISL) is a subsurface mining approach suitable for low-grade ores which does not generate tailings, and has been adopted widely in uranium mining. However, this technique causes an extremely high concentration of contaminants at post-mining sites and in the surroundings soon after the mining ceases. As a potential AISL remediation strategy, natural attenuation has not been studied in detail. To address this problem, groundwater collected from 26 wells located within, adjacent, upgradient, and downgradient of a post-mining site were chosen to analyze the fate of U(VI), SO42-, δ34S, and δ238U, to reveal the main mechanisms governing the migration and attenuation of the dominant contaminants and the spatio-temporal evolutions of contaminants in the confined aquifer of the post-mining site. The δ238U values vary from -0.07 ‰ to 0.09 ‰ in the post-mining site and from -1.43 ‰ to 0.03 ‰ around the post-mining site. The δ34S values were found to vary from 3.3 ‰ to 6.2 ‰ in the post-mining site and from 6.0 ‰ to 11.0 ‰ around the post-mining site. Detailed analysis suggests that there are large differences between the range of isotopic composition variation and the range of pollutants concentration distribution, and the estimated Rayleigh isotope fractionation factor is 0.9994-0.9997 for uranium and 1.0032-1.0061 for sulfur. The isotope ratio of uranium and sulfur can be used to deduce the migration history of the contaminants and the irreversibility of the natural attenuation process in the anoxic confined aquifer. Combining the isotopic fractionation data for U and S with the concentrations of uranium and sulfate improved the accuracy of understanding of reducing conditions along the flow path. The study also indicated that as long as the geological conditions are favorable for redox reactions, natural attenuation could be used as a cost-effective remediation scheme.
Collapse
Affiliation(s)
- Zhenzhong Liu
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Chunguang Li
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China; China Institute of Atomic Energy, Beiing 102413, PR China; R&D Center of Radioactive Waste Treatment, Disposal and Modeling, University of South China, Hengyang 421001, PR China.
| | - Kaixuan Tan
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Yongmei Li
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Wanyu Tan
- Hunan City University, Yiyang 413000, PR China
| | - Xiqi Li
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China
| | - Chong Zhang
- School of Resource Environment and Safety Engineering, University of South China, Hengyang 421001, PR China; Beijing Research Institute of Chemical Engineering Metallurgy, Beijing 101149, PR China
| | - Shuo Meng
- R&D Center of Radioactive Waste Treatment, Disposal and Modeling, University of South China, Hengyang 421001, PR China
| | - Longcheng Liu
- China Institute of Atomic Energy, Beiing 102413, PR China; R&D Center of Radioactive Waste Treatment, Disposal and Modeling, University of South China, Hengyang 421001, PR China; Department of Chemical Engineering, Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
2
|
Visible Light-Responsive Sulfone-Based Covalent Organic Framework as Metal-Free Nanoenzyme for Visual Colorimetric Determination of Uranium. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Covalent organic framework (COF) has been attracting considerable attention as a novel crystalline material owing to its extended π-electron conjugation and excellent spectral behavior. In this study, we present an imine-linked two-dimensional (2D) crystalline sulfone-based covalent organic framework (TAS-COF) synthesized by 2,4,6-triformylphloroglucinol (Tp) and 3,7-diaminodibenzo[b,d]thiophene (DAS) via a Schiff base condensation reaction. The benzothiophene sulfone endows the as-synthesized TAS-COF with excellent oxidase-like activity under visible light irradiation, ascribed to the generation of superoxide radicals (O2•−) by photo-generated electron transfer. TAS-COF can efficiently oxidase the colorless substrate 3,3′,5,5′-tetramethylbenzydine (TMB) into blue oxidized TMB (oxTMB) when exposed to visible light, and the presence of uranium (UO22+) leads to clear color fading due to the coordination between the imine of oxTMB and UO22+. A colorimetric strategy is thus developed for UO22+ determination with a detection limit of 0.07 μmol L−1. Moreover, a paper-based visual sensing platform is also constructed to offer simple and fast UO22+ content evaluation in water samples. The present study not only provides a promising strategy to prepare visible light-triggered COF-based metal-free nanoenzymes but also extends the applications of COF material in radionuclide detection.
Collapse
|
3
|
Fan YY, Tang Q, Li FH, Sun H, Min D, Wu JH, Li Y, Li WW, Yu HQ. Enhanced Bioreduction of Radionuclides by Driving Microbial Extracellular Electron Pumping with an Engineered CRISPR Platform. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11997-12008. [PMID: 34378391 DOI: 10.1021/acs.est.1c03713] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Dissimilatory metal-reducing bacteria (DMRB) with extracellular electron transfer (EET) capability show great potential in bioremediating the subsurface environments contaminated by uranium through bioreduction and precipitation of hexavalent uranium [U(VI)]. However, the low EET efficiency of DMRB remains a bottleneck for their applications. Herein, we develop an engineered CRISPR platform to drive the extracellular electron pumping of Shewanella oneidensis, a representative DMRB species widely present in aquatic environments. The CRISPR platform allows for highly efficient and multiplex genome editing and rapid platform elimination post-editing in S. oneidensis. Enabled by such a platform, a genomic promoter engineering strategy (GPS) for genome-widely engineering the EET-encoding gene network was established. The production of electron conductive Mtr complex, synthesis of electron shuttle flavin, and generation of NADH as intracellular electron carrier are globally optimized and promoted, leading to a significantly enhanced EET ability. Applied to U(VI) bioreduction, the edited strains achieve up to 3.62-fold higher reduction capacity over the control. Our work endows DMRB with an enhanced ability to remediate the radionuclides-contaminated environments and provides a gene editing approach to handle the growing environmental challenges of radionuclide contaminations.
Collapse
Affiliation(s)
- Yang-Yang Fan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Qiang Tang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Feng-He Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Hong Sun
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Di Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Jing-Hang Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Yang Li
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
4
|
Zhong X, Liang W, Wang H, Xue C, Hu B. Aluminum-based metal-organic frameworks (CAU-1) highly efficient UO 22+ and TcO 4- ions immobilization from aqueous solution. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124729. [PMID: 33333387 DOI: 10.1016/j.jhazmat.2020.124729] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/16/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
In this research, an Al-based metal-organic framework (MOFs), CAU-1 was prepared through complexation between 2-aminoterephthalic acid and Al (III) by solvothermal approach, and simple operation and cost-effective synthetic route. The objective was to immobilize the typical positive/negative radionuclide ions (UO22+/TcO4-) in aqueous solution. The synthesized CAU-1 was characterized by XRD, FT-IR, TGA, FESEM, TEM-SAED, pHpzc, XPS and N2 physisorption analysis. The structure of CAU-1 possessed excellent thermostability, rich functional groups (‒NH2 and ‒OH groups), as well as large surface area (1636.3 m2/g) and the micropore volume (0.51 m3/g). Furthermore, batch experiments demonstrated that CAU-1 with superior adsorption capacity was 648.37 (UO22+) mg/g and 692.33 (ReO4-) mg/g calculating from Langmuir isotherm model, respectively. Thermodynamic investigation showed the adsorption process was endothermic and spontaneous. In addition, the adsorption mechanism of ReO4- ion onto CAU-1 could be electrostatic attraction and chelation effect, while for UO22+ ion, was mainly chelation effect induced by nitrogen-containing and oxygen-containing functional groups. Hence, the inexpensive and high-capacity CAU-1 could be considered as a practical material for sequestrations of radioactive pollutants from water environment.
Collapse
Affiliation(s)
- Xin Zhong
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China
| | - Wen Liang
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China
| | - Huifang Wang
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China
| | - Chao Xue
- School of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian Province 350007, PR China.
| | - Baowei Hu
- School of Life Science, Shaoxing University, Huancheng West Road 508, Shaoxing 312000, PR China.
| |
Collapse
|
5
|
Comparison of Uranium Isotopes and Classical Geochemical Tracers in Karst Aquifer of Ljubljanica River catchment (Slovenia). WATER 2020. [DOI: 10.3390/w12072064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The karst aquifer of the Ljubljanica River catchment, which has numerous springs and sinks, presents an interesting environment for studying hydrogeological processes. This study aims to explore the behavior of U isotopes and to evaluate their use as tracers of hydrogeochemical processes as an alternative to classical geochemical tracers (i.e., physicochemical parameters, elemental ratios, and alkalinity) involved in water–rock interactions and water flow in this karst water system. Basic hydrochemical parameters, as well as the spatiotemporal variations of total U concentrations, 234U/238U activity ratios, and δ238U values, were monitored in water samples from springs and sinks under different hydrological conditions. The bedrock as the source of dissolved and detrital U was also analyzed. Multi-collector inductively couple plasma-mass spectrometry results reveal variations of the 234U/238U activity ratios, which are consistently negatively correlated with the discharge at most analyzed sites. Large 238U/235U isotope fractionation occurred during bedrock weathering, and the large variability of the measured δ238U values is seemingly unrelated to the lithological characteristics of the bedrock or discharge. Our results confirm that 234U/238U activity ratios in water can be used as a tracer for studying changes in groundwater flows and the mixing of waters of different origins under different hydrological conditions.
Collapse
|