1
|
Yang X, Lei Z, Wang L, Chen R. A deeper investigation of membrane fouling in anaerobic membrane bioreactors for wastewater treatment: Influencing factors and fouling layer characteristics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123223. [PMID: 39509970 DOI: 10.1016/j.jenvman.2024.123223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/24/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024]
Abstract
Identifying the core parameters affecting membrane fouling and analyzing fouling layer characteristics are crucial for membrane fouling mitigation of anaerobic membrane bioreactors (AnMBRs). This study investigated the influence of various operating parameters on membrane fouling and the characteristics of different fouling layers. The ratio of flux to specific gas demand per unit of membrane area (SGD) was proposed as a key parameter for membrane fouling control and was applicable under various flux, SGD, and sludge concentration conditions. The membrane resistance and specific filtration resistance of foulants at high flux and sludge concentration reached 1.56 × 1012 m-1 and 3.56 × 1015 m-1/kg, respectively. Solid foulants accumulated on the membrane surface during rapid fouling stage. Protein-like pollutants accounted for a higher proportion (85%) of soluble foulants on the membrane surface. Humic acids were enriched on the cake/gel layer and the longitudinal enrichment process from the cake layer to the gel layer was uneven. Proteocatella (>45%) at the phylum level, Desulfovibrio (>3.1%), Syntrophobacter (>2.8%), and Treponema (>0.25%) at the genus level colonized in the gel layer and were the pioneers of membrane biofouling. Their enrichment on the membrane surface was primarily based on their own characteristics and was less sensitive to the operating conditions of AnMBRs. Therefore, this study provides a deeper understanding of membrane fouling formation process, which contributes to the long-term stable operation of AnMBR and scales up its engineering application.
Collapse
Affiliation(s)
- Xiaohuan Yang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China
| | - Zhen Lei
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China.
| | - Lianxu Wang
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China
| | - Rong Chen
- Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, No.13 Yanta Road, Xi'an, 710055, PR China.
| |
Collapse
|
2
|
Zhang JX, Li YS, Du WJ, Tian T, Xuan L, Yu HQ. Driving force shapes the biocake characteristics in membrane-based bioreactors. WATER RESEARCH 2024; 268:122592. [PMID: 39418803 DOI: 10.1016/j.watres.2024.122592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/04/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
The operation of membrane-based reactors is inevitably challenged by fouling. The driving force in these reactors is not only critical for water passage through membranes but also significantly influences fouling, such as biocake formation. This study investigated the differences between biocakes formed under transmembrane pressure (TMP) and forward osmosis (FO) conditions, specifically focusing on their components, spatial structures, and microbial communities. The findings reveal that the MF-biocake, formed under TMP conditions, contained a greater diversity of foulants, microbes, and metabolic products compared to the FO-biocake. Clustering and correlation analyses indicated that MF-biocake formation was predominantly influenced by dead cells, extracellular polymeric substances, and physicochemical parameters, whereas FO-biocake formation was mainly affected by live cells and adhesion forces. Particle image velocimetry tests further highlighted nonselective foulant adsorption in MF-biocake formation versus selective adhesion in FO-biocake formation. These insights enhance our understanding of the distinct characteristics of biocakes formed under TMP- and FO-driven conditions, aiding in the development of more targeted strategies to control biocake formation based on the driving forces.
Collapse
Affiliation(s)
- Jing-Xiao Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Yu-Sheng Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wen-Jie Du
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Tian Tian
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China; Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Liang Xuan
- East China Engineering Science and Technology Co., Ltd., Hefei, 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
3
|
AbuKhadra D, Dan Grossman A, Al-Ashhab A, Al-Sharabati I, Bernstein R, Herzberg M. The effect of temperature on fouling in anaerobic membrane bioreactor: SMP- and EPS-membrane interactions. WATER RESEARCH 2024; 260:121867. [PMID: 38878312 DOI: 10.1016/j.watres.2024.121867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/20/2024] [Accepted: 06/02/2024] [Indexed: 07/27/2024]
Abstract
Biofouling is the main challenge in the operation of anaerobic membrane bioreactors (AnMBRs). Biofouling strongly depends on temperature; therefore, we hypothesize that the interactions and viscoelastic properties of soluble microbial products (SMP) and extracellular polymeric substances (EPS) vary with temperature, consequently influencing membrane permeability. This study compares the performance of an AnMBR operated at a similar permeate flux at two temperatures. The transmembrane pressure (TMP) rose rapidly after 5 ± 2 days at 25 °C but only after 18 ± 2 days at 35 °C, although the reactor's biological performance was similar at both temperatures, in terms of the efficiency of dissolved organic carbon removal and biogas composition, which were obtained by changing the hydraulic retention time. Using confocal laser scanning microscopy (CLSM), a higher biofilm amount was detected at 25 °C than at 35 °C, while quartz crystal microbalance with dissipation (QCM-D) showed a more adhesive, but less viscous and elastic EPS layer. In situ optical coherence tomography (OCT) of an ultra-filtration membrane, fed with the mixed liquor suspended solids (MLSS) at the two temperatures, revealed that while a higher rate of TMP increase was obtained at 25 °C, the attachment of biomass from MLSS was markedly less. Increased EPS adhesion to the membrane can accelerate TMP increase during the operation of both the AnMBR and the OCT filtration cell. EPS's reduced viscoelasticity at 25 °C suggests reduced floc integrity and possible increased EPS penetration into the membrane pores. Analysis of the structures of the microbial communities constituting the AnMBR flocs and membrane biofilms reveals temperature's effects on microbial richness, diversity, and abundance, which likely influence the observed EPS properties and consequent AnMBR fouling.
Collapse
Affiliation(s)
- Diaa AbuKhadra
- Zuckerberg Institute for Water Research (ZIWR), The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel
| | - Amit Dan Grossman
- Zuckerberg Institute for Water Research (ZIWR), The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel
| | - Ashraf Al-Ashhab
- The Dead Sea and Arava Science Center, Masada 86190, Israel; Ben-Gurion University of the Negev, Eilat campus, Israel
| | | | - Roy Bernstein
- Zuckerberg Institute for Water Research (ZIWR), The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel.
| | - Moshe Herzberg
- Zuckerberg Institute for Water Research (ZIWR), The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion 84990, Israel.
| |
Collapse
|
4
|
Jiang Z, Xia Z, Li Y, Ao Z, Fan H, Qi L, Liu G, Wang H. Effectiveness of cloth media filters on mitigating membrane fouling in anaerobic filter membrane bioreactors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174600. [PMID: 38986708 DOI: 10.1016/j.scitotenv.2024.174600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/30/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Membrane fouling is a persistent challenge that has impeded the broader application of anaerobic membrane bioreactors (AnMBRs). To mitigate membrane fouling, between the outlet of the UASB anaerobic bioreactor and the PVDF membrane to form the anaerobic filter membrane bioreactor (AnFMBR) system. Through comprehensive experiments, the optimal pore size for cloth filters was determined to be 50 μm. A comprehensive assessment over 140 days of operation shows that the novel AnFMBR had significantly greater resistance to membrane pollution than the traditional AnMBR. The AnFMBR system membrane tank exhibited lower mixed liquor suspended solid and mixed liquor volatile suspended solid concentrations, smaller sludge particle sizes, increased hydrophilicity of sludge flocs, and optimized microbial community distribution compared to those of conventional AnMBRs. The total solids foulant accumulation rate in the AnMBR was 5.1 g/m2/day, while in the AnFMBR, the rate was 2.4 g/m2/day, marking a 53.7 % decrease in fouling rate for the AnFMBR compared with the AnMBR. This decrease indicates that integrating the filtration assembly significantly lowered the rate of solid foulant accumulation on the membrane surface, primarily by controlling the buildup of solid foulants in the cake layer, thereby alleviating membrane fouling. AnFMBR compared to AnMBR, the membrane fouling rate halved, effectively doubled the interval between membrane cleaning from seven days, as observed in the AnMBR system, to fourteen days. These findings underscore the potential of integrating cloth media filters into AnMBRs to improve operational efficiency, economic viability, and sustainability.
Collapse
Affiliation(s)
- Zhao Jiang
- Low-carbon Water Environment Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Zhiheng Xia
- Low-carbon Water Environment Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Yinghao Li
- Low-carbon Water Environment Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Ziding Ao
- Low-carbon Water Environment Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Haitao Fan
- Low-carbon Water Environment Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Lu Qi
- Low-carbon Water Environment Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Guohua Liu
- Low-carbon Water Environment Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China
| | - Hongchen Wang
- Low-carbon Water Environment Technology Research Center, School of Environment & Natural Resources, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
5
|
Zhang Y, Gu K, Zhao K, Deng H, Hu C. Enhancement of struvite generation and anti-fouling in an electro-AnMBR with Mg anode-MF membrane module. WATER RESEARCH 2023; 230:119561. [PMID: 36623383 DOI: 10.1016/j.watres.2022.119561] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Severe membrane fouling and the inability to remove/recover nitrogen and phosphorus are bottlenecks of anaerobic membrane bioreactors (AnMBRs) for large-scale application in wastewater treatment. Herein, an electrochemical AnMBR with a Mg anode-membrane module (electro-AnMBR) was built and showed good performance in terms of membrane fouling mitigation and nutrient recovery during sewage treatment. Compared with the traditional AnMBR, membrane fouling in the electro-AnMBR was reduced by up to 30%. The application of an electric field decreased the zeta potential, viscosity, and EPS concentration of the sludge-water liquor in the electro-AnMBR, which could improve the cake layer structure and thus enhance water permeability. Meanwhile, 26% of NH4+ and 48% of PO43- co-precipitated with Mg2+ generating from the sacrificial Mg anode and were recovered as struvite deposited onto cathode in the electro-AnMBR. Hydrogen evolution provided a relatively alkaline pH environment, resulting in struvite electrodeposition on the graphic cathode, which partly separated the formed struvite from the sludge with a purity of 77%. In the electro-AnMBR, the electrochemical reactions provided alkalinity and effectively inhibited anaerobic acidification. The applied voltage of 0.6 V reduced the relative abundance of methanosaeta, but increased that of methanosarcina, which is also beneficial for the membrane anti-fouling.
Collapse
Affiliation(s)
- Yuhan Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kanghui Gu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Kai Zhao
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Haiqian Deng
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
6
|
Ziemann E, Qin J, Coves T, Bernstein R. Effect of branching in zwitterionic polymer brushes grafted from PES UF membrane surfaces via AGET-ATR(c)P. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
7
|
Jiao C, Hu Y, Zhang X, Jing R, Zeng T, Chen R, Li YY. Process characteristics and energy self-sufficient operation of a low-fouling anaerobic dynamic membrane bioreactor for up-concentrated municipal wastewater treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:156992. [PMID: 35772537 DOI: 10.1016/j.scitotenv.2022.156992] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 05/27/2023]
Abstract
Up-concentration of municipal wastewater using physico-chemical methods can effectively enrich organic matter, facilitating subsequent anaerobic digestion of up-concentrated wastewater for enhanced methanogenesis at reduced energy consumption. An anaerobic dynamic membrane bioreactor (AnDMBR) assisted with biogas-sparging was developed to treat up-concentrated municipal wastewater, focusing on the effects of operating temperature and hydraulic retention time (HRT) as well as COD mass balance and energy balance. The COD removal stabilized at about 98 % over the experimental period, while gaseous and dissolved methane contributed 43-49 % and 2-3 % to the influent COD reducing greenhouse gas emissions. The formed dynamic membrane exists mainly as a heterogeneous cake layer with a uneven distribution feature, ensuring the stable effluent quality. Without adopting any physico-chemical cleaning, the transmembrane pressure (TMP) maintained at a low range (2.7 to 14.67 kPa) with the average TMP increasing rate of 0.089 kPa/d showing a long-term low-fouling operation. Increasing the concentration ratio, the methane production rate decreased from 0.18 to 0.15 L CH4/gCOD likely due to the accumulation of particulate organics. Microbial community analysis indicated the predominant methanogenic pathway shifted from hydrogenotrophic to acetoclastic methanogenesis in response to the temperature change. Net energy balance (0.003-0.600 kWh/m3) can be achieved only under room temperature (25 °C) rather than mesophilic conditions (36 °C).
Collapse
Affiliation(s)
- Chengfan Jiao
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Yisong Hu
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, PR China.
| | - Xiaoling Zhang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Ruosong Jing
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Ting Zeng
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Rong Chen
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an 710055, PR China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| |
Collapse
|
8
|
Qi S, Grossman AD, Ronen A, Bernstein R. Low-biofouling anaerobic electro-conductive membrane bioreactor: The role of pH changes in bacterial inactivation and biofouling mitigation. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Yang Y, Bar-Zeev E, Oron G, Herzberg M, Bernstein R. Biofilm Formation and Biofouling Development on Different Ultrafiltration Membranes by Natural Anaerobes from an Anaerobic Membrane Bioreactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10339-10348. [PMID: 35786926 DOI: 10.1021/acs.est.2c02007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biofouling in anaerobic membrane bioreactors (AnMBRs) has not been studied widely. Moreover, the effect of membrane surface properties on biofilm formation beyond initial deposition is controversial. We investigated biofouling with polyvinyldifluoride, polyacrylonitrile, and zwitterion-modified polyethersulfone ultrafiltration membranes having different properties during 72 h filtration using natural anaerobes isolated from AnMBR and analyzed biofilm characteristics by physicochemical and molecular techniques. A decrease in membrane performance was positively correlated with biofilm formation on polyvinyldifluoride and polyacrylonitrile membranes, and as expected, physical cleaning effectively mitigated biofilm on hydrophilic and low-roughness membranes. Surprisingly, while the biofilm on the hydrophilic and low-surface roughness zwitterion-modified membrane was significantly impaired, the impact on transmembrane pressure was the highest. This was ascribed to the formation of a soft compressible thin biofilm with high hydraulic resistance, and internal clogging and pore blocking due to high pore-size distribution. Anaerobe community analysis demonstrated some selection between the bulk and biofilm anaerobes and differences in the relative abundance of the dominant anaerobes among the membranes. However, correlation analyses revealed that all membrane properties studied affected microbial communities' composition, highlighting the system's complexity. Overall, our findings indicate that the membrane properties can affect biofilm formation and the anaerobic microbial population but not necessarily alleviate biofouling.
Collapse
Affiliation(s)
- Yang Yang
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| | - Edo Bar-Zeev
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| | - Gideon Oron
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| | - Moshe Herzberg
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| | - Roy Bernstein
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Midreshet Ben-Gurion 8499000, Israel
| |
Collapse
|
10
|
Jiang T, Tian T, Guan YF, Yu HQ. Contrasting behaviors of pre-ozonation on ceramic membrane biofouling: Early stage vs late stage. WATER RESEARCH 2022; 220:118702. [PMID: 35665674 DOI: 10.1016/j.watres.2022.118702] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/27/2022] [Accepted: 05/29/2022] [Indexed: 06/15/2023]
Abstract
Pre-ozonation coupled with ceramic membrane filtration has been widely used to alleviate membrane fouling. However, information on the efficiency and underlying mechanism of pre-ozonation in the evolution of ceramic membrane biofouling is limited. Herein, filtration experiments with a synthesis wastewater containing activated sludge were conducted in a cross-flow system to evaluate the effects of pre-ozonation on ceramic membrane biofouling. Results of flux tests show that pre-ozonation aggravated biofouling at the early stage, but alleviated the biofouling at the late stage. In situ FTIR spectra show that the aggravated biofouling with pre-ozonation was mainly caused by the enhanced complexation between phosphate group from DNA and Al2O3 surface and the increased rigid of proteins' structure. At the early stage, more severe pore blockage further substantiated the higher permeate resistance. By contrast, more dead cells were observed on membrane surface at the late stage, indicating the prevention of biofouling development after long-term pre-ozonation. Additionally, the structures and compositions of cake layers at the early and late stages exhibited considerable differences accompanied by the variation in microbial community with the evolution of biofouling. Therefore, this work demonstrates the effectiveness of pre-ozonation in biofouling in long-term operation and provides mechanistic insights into the evolution of biofouling on ceramic membrane.
Collapse
Affiliation(s)
- Ting Jiang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| | - Tian Tian
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| | - Yan-Fang Guan
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei, 230026, China.
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
11
|
Waheed H, Mehmood CT, Yang Y, Tan W, Fu S, Xiao Y. Dynamics of biofilms on different polymeric membranes – A comparative study using five physiologically and genetically distinct bacteria. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120000] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
12
|
Xu B, Ng TCA, Huang S, He M, Varjani S, Ng HY. Quorum quenching affects biofilm development in an anaerobic membrane bioreactor (AnMBR): from macro to micro perspective. BIORESOURCE TECHNOLOGY 2022; 344:126183. [PMID: 34710612 DOI: 10.1016/j.biortech.2021.126183] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/17/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
The first experimental study on the influence of acyl homoserine lactones (AHLs) degrading quorum quenching (QQ) consortium on the dynamics of biofilm bio-communities (i.e., from suspended biomass to initial biofilm and mature biofilm) in an anaerobic membrane bioreactor (AnMBR) at a microscopic scale (denoted as QQAnMBR) was reported. QQ did not change the overall bacterial community of the suspended biomass, inclusive of the key functional bacteria. Moreover, the retarded initial biofilm formation was attributed to not only the lower extracellular polymeric substance content of suspended biomass, but also the decelerated colonization of the AHL-regulated low-abundance in suspended biomass but pioneering keystone taxa Rhodocyclaceae;g- on membrane surface. However, pioneering fouling-related taxa such as Sulfurovum and Rhodocyclaceae;g- still played paramount roles in the delayed initial biofilm formation in the QQAnMBR. Furthermore, the microbial assemblies of the mature biofilm were changed in the QQAnMBR, probably attributable to the abiotic microbial floc attachment.
Collapse
Affiliation(s)
- Boyan Xu
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore.
| | - Tze Chiang Albert Ng
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore.
| | - Shujuan Huang
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore.
| | - Meibo He
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore.
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India.
| | - How Yong Ng
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore 117576, Singapore; National University of Singapore Environmental Research Institute, 5A Engineering Drive 1, 117411, Singapore.
| |
Collapse
|
13
|
New insight into the membrane fouling of anaerobic membrane bioreactors treating sewage: Physicochemical and biological characterization of cake and gel layers. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119383] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|