1
|
Chen G, Rosolina S, Padilla-Crespo E, He G, Chen Q, Arosemena A, Rosado-Maldonado BE, Swift CM, Coelho PB, Whelton AJ, Taggart D, Löffler FE. Natural Attenuation Potential of Vinyl Chloride and Butyl Acrylate Released in the East Palestine, Ohio Train Derailment Accident. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:17743-17755. [PMID: 39344962 DOI: 10.1021/acs.est.4c04198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
The East Palestine, Ohio train derailment released toxic vinyl chloride (VC) and butyl acrylate (BA), which entered the watershed. Streambed sediment, surface water, and private well water samples were collected 128 and 276 days postaccident to assess the natural attenuation potential of VC and BA by quantifying biodegradation biomarker genes and conducting microcosm treatability studies. qPCR detected the aerobic VC degradation biomarkers etnC in ∼40% and etnE in ∼27% of sediments collected in both sampling campaigns in abundances reaching 105 gene copies g-1. The 16S rRNA genes of organohalide-respiring Dehalococcoides and Dehalogenimonas were, respectively, detected in 50 and 64% of sediment samples collected 128 days postaccident and in 63 and 88% of sediment samples collected 276 days postaccident, in abundances reaching 107 cells g-1. Elevated detection frequencies of VC degradation biomarker genes were measured immediately downstream of the accident site (i.e., Sulphur Run). Aerobic VC degradation occurred in all sediment microcosms and coincided with increases of etnC/etnE genes and Mycobacterium, a genus comprising aerobic VC degraders. The conversion of VC to ethene and an increased abundance of VC reductive dechlorination biomarker genes were observed in microcosms established with sediments collected from Sulphur Run. All anoxic microcosms rapidly degraded BA to innocuous products with intermediate formation of n-butanol and acrylate. The results indicate that microbiomes in the East Palestine watershed have natural attenuation capacity for VC and BA. Recommendations are made to improve first-response actions in future contaminant release accidents of this magnitude.
Collapse
Affiliation(s)
- Gao Chen
- Department of Civil and Environmental Engineering, The University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
| | - Sam Rosolina
- Microbial Insights, Incorporated, 10515 Research Drive, Knoxville, Tennessee 37932, United States
| | - Elizabeth Padilla-Crespo
- Science and Technology Department, Inter American University of Puerto Rico, Aguadilla 00605, Puerto Rico
| | - Guang He
- Department of Civil and Environmental Engineering, The University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
| | - Qiao Chen
- Department of Civil and Environmental Engineering, The University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
| | - Ana Arosemena
- Science and Technology Department, Inter American University of Puerto Rico, Aguadilla 00605, Puerto Rico
| | - Bryan E Rosado-Maldonado
- Science and Technology Department, Inter American University of Puerto Rico-Metropolitan Campus, San Juan 00926, Puerto Rico
| | - Cynthia M Swift
- Department of Civil and Environmental Engineering, The University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
| | - Paula Belmont Coelho
- Division of Environmental and Ecological Engineering, College of Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Andrew J Whelton
- Division of Environmental and Ecological Engineering, College of Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Dora Taggart
- Microbial Insights, Incorporated, 10515 Research Drive, Knoxville, Tennessee 37932, United States
| | - Frank E Löffler
- Department of Civil and Environmental Engineering, The University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
- Department of Microbiology, The University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
- Department of Biosystems Engineering and Soil Science, The University of Tennessee Knoxville, Knoxville, Tennessee 37996, United States
| |
Collapse
|