1
|
Liu Y, Li N, Cui X, Yan W, Su J, Jin L. A Review on the Morphology and Material Properties of the Gas Separation Membrane: Molecular Simulation. MEMBRANES 2022; 12:1274. [PMID: 36557181 PMCID: PMC9783095 DOI: 10.3390/membranes12121274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Gas membrane separation technology is widely applied in different industry processes because of its advantages relating to separation performance and economic efficiency. It is usually difficult and time consuming to determine the suitable membrane materials for specific industrial separation processes through traditional experimental research methods. Molecular simulation is widely used to investigate the microscopic morphology and macroscopic properties of materials, and it guides the improvement of membrane materials. This paper comprehensively reviews the molecular-level exploration of the dominant mechanism and influencing factors of gas membrane-based separation. The thermodynamics and kinetics of polymer membrane synthesis, the molecular interactions among the penetrated gases, the relationships between the membrane properties and the transport characteristics of different gases in the composite membrane are summarized and discussed. The limitations and perspectives of the molecular simulation method in the study of the gas membrane separation process are also presented to rationalize its potential and innovative applications. This review provides a more comprehensive reference for promoting the materials' design and engineering application of the gas separation membrane.
Collapse
Affiliation(s)
- Yilin Liu
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an 710049, China
| | - Na Li
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an 710049, China
| | - Xin Cui
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an 710049, China
| | - Weichao Yan
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an 710049, China
| | - Jincai Su
- School of Life Sciences & Chemical Technology, Ngee Ann Polytechnic, 535 Clementi Road, Singapore 599489, Singapore
| | - Liwen Jin
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, No. 28 Xianning West Road, Xi’an 710049, China
| |
Collapse
|
2
|
Shahbabaei M, Tang T. Molecular modeling of thin-film nanocomposite membranes for reverse osmosis water desalination. Phys Chem Chem Phys 2022; 24:29298-29327. [PMID: 36453147 DOI: 10.1039/d2cp03839k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The scarcity of freshwater resources is a major global challenge causedby population and economic growth. Water desalination using a reverse osmosis (RO) membrane is a promising technology to supply potable water from seawater and brackish water. The advancement of RO desalination highly depends on new membrane materials. Currently, the RO technology mainly relies on polyamide thin-film composite (TFC) membranes, which suffer from several drawbacks (e.g., low water permeability, permeability-selectivity tradeoff, and low fouling resistance) that hamper their real-world applications. Nanoscale fillers with specific characteristics can be used to improve the properties of TFC membranes. Embedding nanofillers into TFC membranes using interfacial polymerization allows the creation of thin-film nanocomposite (TFNC) membranes, and has become an emerging strategy in the fabrication of high-performance membranes for advanced RO water desalination. To achieve optimal design, it is indispensable to search for reliable methods that can provide fast and accurate predictions of the structural and transport properties of the TFNC membranes. However, molecular understanding of permeability-selectivity characteristics of nanofillers remains limited, partially due to the challenges in experimentally exploring microscopic behaviors of water and salt ions in confinement. Molecular modeling and simulations can fill this gap by generating molecular-level insights into the effects of nanofillers' characteristics (e.g., shape, size, surface chemistry, and density) on water permeability and ion selectivity. In this review, we summarize molecular simulations of a diverse range of nanofillers including nanotubes (carbon nanotubes, boron nitride nanotubes, and aquaporin-mimicking nanochannels) and nanosheets (graphene, graphene oxide, boron nitride sheets, molybdenum disulfide, metal and covalent organic frameworks) for water desalination applications. These simulations reveal that water permeability and salt rejection, as the major factors determining the desalination performance of TFNC membranes, significantly depend on the size, topology, density, and chemical modifications of the nanofillers. Identifying their influences and the physicochemical processes behind, via molecular modeling, is expected to yield important insights for the fabrication and optimization of the next generation high-performance TFNC membranes for RO water desalination.
Collapse
Affiliation(s)
- Majid Shahbabaei
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada.
| | - Tian Tang
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
3
|
Mocci F, de Villiers Engelbrecht L, Olla C, Cappai A, Casula MF, Melis C, Stagi L, Laaksonen A, Carbonaro CM. Carbon Nanodots from an In Silico Perspective. Chem Rev 2022; 122:13709-13799. [PMID: 35948072 PMCID: PMC9413235 DOI: 10.1021/acs.chemrev.1c00864] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Carbon nanodots (CNDs) are the latest and most shining rising stars among photoluminescent (PL) nanomaterials. These carbon-based surface-passivated nanostructures compete with other related PL materials, including traditional semiconductor quantum dots and organic dyes, with a long list of benefits and emerging applications. Advantages of CNDs include tunable inherent optical properties and high photostability, rich possibilities for surface functionalization and doping, dispersibility, low toxicity, and viable synthesis (top-down and bottom-up) from organic materials. CNDs can be applied to biomedicine including imaging and sensing, drug-delivery, photodynamic therapy, photocatalysis but also to energy harvesting in solar cells and as LEDs. More applications are reported continuously, making this already a research field of its own. Understanding of the properties of CNDs requires one to go to the levels of electrons, atoms, molecules, and nanostructures at different scales using modern molecular modeling and to correlate it tightly with experiments. This review highlights different in silico techniques and studies, from quantum chemistry to the mesoscale, with particular reference to carbon nanodots, carbonaceous nanoparticles whose structural and photophysical properties are not fully elucidated. The role of experimental investigation is also presented. Hereby, we hope to encourage the reader to investigate CNDs and to apply virtual chemistry to obtain further insights needed to customize these amazing systems for novel prospective applications.
Collapse
Affiliation(s)
- Francesca Mocci
- Department
of Chemical and Geological Sciences, University
of Cagliari, I-09042 Monserrato, Italy,
| | | | - Chiara Olla
- Department
of Physics, University of Cagliari, I-09042 Monserrato, Italy
| | - Antonio Cappai
- Department
of Physics, University of Cagliari, I-09042 Monserrato, Italy
| | - Maria Francesca Casula
- Department
of Mechanical, Chemical and Materials Engineering, University of Cagliari, Via Marengo 2, IT 09123 Cagliari, Italy
| | - Claudio Melis
- Department
of Physics, University of Cagliari, I-09042 Monserrato, Italy
| | - Luigi Stagi
- Department
of Chemistry and Pharmacy, Laboratory of Materials Science and Nanotechnology, University of Sassari, Via Vienna 2, 07100 Sassari, Italy
| | - Aatto Laaksonen
- Department
of Chemical and Geological Sciences, University
of Cagliari, I-09042 Monserrato, Italy,Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden,State Key
Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China,Centre
of Advanced Research in Bionanoconjugates and Biopolymers, PetruPoni Institute of Macromolecular Chemistry, Aleea Grigore Ghica-Voda 41A, 700487 Iasi, Romania,Division
of Energy Science, Energy Engineering, Luleå
University of Technology, Luleå 97187, Sweden,
| | | |
Collapse
|
4
|
Engineering of macroscale graphene oxide quantum dots skeleton membrane via electrostatic spraying method. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Bayrami A, Bagherzadeh M, Navi H, Nikkhoo M, Amini M. Zwitterion-functionalized MIL-125-NH 2-based thin-film nanocomposite forward osmosis membranes: towards improved performance for salt rejection and heavy metal removal. NEW J CHEM 2022. [DOI: 10.1039/d2nj02608b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Incorporating zwitterion-functionalized MIL-125-NH2 nanoparticles in the rejection layer of TFN FO membranes improves their water/ion separation performance and antifouling ability.
Collapse
Affiliation(s)
- Arshad Bayrami
- Chemistry Department, Sharif University of Technology, P.O. Box 11155-3615, Tehran, Iran
| | - Mojtaba Bagherzadeh
- Chemistry Department, Sharif University of Technology, P.O. Box 11155-3615, Tehran, Iran
| | - Hossein Navi
- Chemistry Department, Sharif University of Technology, P.O. Box 11155-3615, Tehran, Iran
| | - Mohammad Nikkhoo
- Institute for Nanoscience and Nanotechnology (INST), Sharif University of Technology, Tehran, Iran
| | - Mojtaba Amini
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
6
|
Tanis I, Kostarellou E, Karatasos K. Molecular dynamics simulations of hyperbranched poly(ethylene imine)-graphene oxide nanocomposites as dye adsorbents for water purification. Phys Chem Chem Phys 2021; 23:22874-22884. [PMID: 34668493 DOI: 10.1039/d1cp02461b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Atomistically detailed molecular dynamics simulations were employed to study the adsorption capacity of graphene-oxide-based (GO) aqueous systems for the methylene blue (MB) dye in the presence of branched poly(ethylene imine) (BPEI) polymers. The polymeric component was either freely mixed or chemically attached to GO. The main focus was the elucidation of the effects originating from the presence of BPEI molecules in the association of MB with the formed GO complexes. The effect of temperature was also examined. It was found that the presence of the cationic BPEI molecules results in the formation of a distinct microenvironment characterized by a polymer-mediated interconnected morphology which promotes the development of larger-sized MB clusters. These clusters were found to form in the vicinity of the GO flakes, increasing thus the adsorption capacity of the dye molecules in the polymer-containing systems. Particularly in the system with the BPEI-functionalized GO flakes, a persistent percolated structure is formed, which results in a more restricted diffusion of the MB molecules, increasing thus significantly their residence time close to the GO surface. The clustering behavior of MB was found to be temperature-dependent in the BPEI-based models, providing useful information regarding the conditions for optimal adsorption performance of such membranes, in nanofiltration processes.
Collapse
Affiliation(s)
- I Tanis
- Laboratory of Physical Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - E Kostarellou
- Laboratory of Physical Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - K Karatasos
- Laboratory of Physical Chemistry, Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
7
|
Akther N, Kawabata Y, Lim S, Yoshioka T, Phuntsho S, Matsuyama H, Shon HK. Effect of graphene oxide quantum dots on the interfacial polymerization of a thin-film nanocomposite forward osmosis membrane: An experimental and molecular dynamics study. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
8
|
Mollahosseini A, Abdelrasoul A. Molecular dynamics simulation for membrane separation and porous materials: A current state of art review. J Mol Graph Model 2021; 107:107947. [PMID: 34126546 DOI: 10.1016/j.jmgm.2021.107947] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 01/29/2023]
Abstract
Computational frameworks have been under specific attention within the last two decades. Molecular Dynamics (MD) simulations, identical to the other computational approaches, try to address the unknown question, lighten the dark areas of unanswered questions, to achieve probable explanations and solutions. Owing to their complex microporous structure on one side and the intricate biochemical nature of various materials used in the structure, separative membrane materials possess peculiar degrees of complications. More notably, as nanocomposite materials are often integrated into separative membranes, thin-film nanocomposites and porous separative nanocomposite materials could possess an additional level of complexity with regard to the nanoscale interactions brought to the structure. This critical review intends to cover the recent methods used to assess membranes and membrane materials. Incorporation of MD in membrane technology-related fields such as desalination, fuel cell-based energy production, blood purification through hemodialysis, etc., were briefly covered. Accordingly, this review could be used to understand the current extent of MD applications for separative membranes. The review could also be used as a guideline to use the proper MD implementation within the related fields.
Collapse
Affiliation(s)
- Arash Mollahosseini
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan, S7N 5A9, Canada
| | - Amira Abdelrasoul
- Department of Chemical and Biological Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan, S7N 5A9, Canada; Division of Biomedical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, Saskatchewan, S7N 5A9, Canada.
| |
Collapse
|
9
|
Goh PS, Wong KC, Ismail AF. Nanocomposite Membranes for Liquid and Gas Separations from the Perspective of Nanostructure Dimensions. MEMBRANES 2020; 10:E297. [PMID: 33096685 PMCID: PMC7589584 DOI: 10.3390/membranes10100297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/11/2020] [Accepted: 10/19/2020] [Indexed: 11/16/2022]
Abstract
One of the critical aspects in the design of nanocomposite membrane is the selection of a well-matched pair of nanomaterials and a polymer matrix that suits their intended application. By making use of the fascinating flexibility of nanoscale materials, the functionalities of the resultant nanocomposite membranes can be tailored. The unique features demonstrated by nanomaterials are closely related to their dimensions, hence a greater attention is deserved for this critical aspect. Recognizing the impressive research efforts devoted to fine-tuning the nanocomposite membranes for a broad range of applications including gas and liquid separation, this review intends to discuss the selection criteria of nanostructured materials from the perspective of their dimensions for the production of high-performing nanocomposite membranes. Based on their dimension classifications, an overview of the characteristics of nanomaterials used for the development of nanocomposite membranes is presented. The advantages and roles of these nanomaterials in advancing the performance of the resultant nanocomposite membranes for gas and liquid separation are reviewed. By highlighting the importance of dimensions of nanomaterials that account for their intriguing structural and physical properties, the potential of these nanomaterials in the development of nanocomposite membranes can be fully harnessed.
Collapse
Affiliation(s)
- Pei Sean Goh
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; (K.C.W.); (A.F.I.)
| | | | | |
Collapse
|