1
|
Li G, Wang Y, Pang Y, Wang X, Li X, Leng H, Yu Y, Yang X, Cai Q. Magnesium-gallate MOF integrated conductive cryogel for inflammation regulation and boosting bone regeneration. Int J Biol Macromol 2025; 306:141672. [PMID: 40043977 DOI: 10.1016/j.ijbiomac.2025.141672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/20/2025] [Accepted: 02/28/2025] [Indexed: 03/10/2025]
Abstract
The regeneration and repair of natural bone is a complex and multifaceted process. Potentially, multifunctional scaffolds that exhibit synergistic effects of various biological activities and align with the dynamic bone healing process, are highly expected to achieve desirable bone repairing outcomes. Bioavailable magnesium (Mg) is an essential element taking part in bone regeneration via promoting angiogenesis and osteogenesis. Polyphenol gallic acid (GA) is an anti-inflammatory molecule that can modulate immune microenvironment. To control their release behaviors, Mg2+ and GA can react with each other to form metal-organic frameworks (MOF), which are then embedded into conductive porous scaffolds made of gelatin cryogel and poly(3,4-ethyldioxyethiophene): polystyrene sulfonate (PEDOT:PSS). In in vitro cell culture, the MOF-integrated conductive scaffold can simultaneously provide sustained supply of Mg2+ and GA to modulate the biological responses of a variety of cells. In in vivo evaluations, it shows remarkably enhanced new bone formation, as compared to groups of only MOF-contained non-conductive scaffold or conductive scaffold without MOF in rat calvarial defect model. In summary, conductive scaffold associated with sustained release of bioactive factors can serve as an effective treatment for inducing neo-bone growth benefiting from the synergistical contributions of diverse bioactive factors.
Collapse
Affiliation(s)
- Guangyu Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yue Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yanyun Pang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Shandong University, Shandong Key Laboratory of Oral Tissue Regeneration, Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
| | - Xinyu Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaomin Li
- SINOPEC Beijing Research Institute of Chemical Industry Co. Ltd., Beijing 100728, China
| | - Huijie Leng
- Department of Orthopedics, Peking University Third Hospital, Beijing 100191, China.
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
2
|
Triana-Camacho DA, D’Alessandro A, Bittolo Bon S, Malaspina R, Ubertini F, Valentini L. Piezoresistive, Piezocapacitive and Memcapacitive Silk Fibroin-Based Cement Mortars. SENSORS (BASEL, SWITZERLAND) 2024; 24:7357. [PMID: 39599133 PMCID: PMC11598710 DOI: 10.3390/s24227357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Water-stable proteins may offer a new field of applications in smart materials for buildings and infrastructures where hydraulic reactions are involved. In this study, cement mortars modified through water-soluble silk fibroin (SF) are proposed. Water-soluble SF obtained by redissolving SF films in phosphate buffer solution (PBS) showed the formation of a gel with the β sheet features of silk II. Electrical measurements of SF indicate that calcium ions are primarily involved in the conductivity mechanism. By exploiting the water solubility properties of silk II and Ca2+ ion transport phenomena as well as their trapping effect on water molecules, SF provides piezoresistive and piezocapacitive properties to cement mortars, thus enabling self-sensing of mechanical strain, which is quite attractive in structural health monitoring applications. The SF/cement-based composite introduces a capacitive gauge factor which surpasses the traditional resistive gauge factor reported in the literature by threefold. Cyclic voltammetry measurements demonstrated that the SF/cement mortars possessed memcapacitive behavior for positive potentials near +5 V, which was attributed to an interfacial charge build-up modulated by the SF concentration and the working electrode. Electrical square-biphasic excitation combined with cyclic compressive loads revealed memristive behavior during the unloading stages. These findings, along with the availability and sustainability of SF, pave the way for the design of novel multifunctional materials, particularly for applications in masonry and concrete structures.
Collapse
Affiliation(s)
- Daniel A. Triana-Camacho
- Department of Civil and Environmental Engineering, University of Perugia, Via G. Duranti, 06125 Perugia, Italy; (D.A.T.-C.); (A.D.); (L.V.)
| | - Antonella D’Alessandro
- Department of Civil and Environmental Engineering, University of Perugia, Via G. Duranti, 06125 Perugia, Italy; (D.A.T.-C.); (A.D.); (L.V.)
| | - Silvia Bittolo Bon
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, 06123 Perugia, Italy; (S.B.B.); (R.M.)
| | - Rocco Malaspina
- Department of Physics and Geology, University of Perugia, Via A. Pascoli, 06123 Perugia, Italy; (S.B.B.); (R.M.)
| | - Filippo Ubertini
- Department of Civil and Environmental Engineering, University of Perugia, Via G. Duranti, 06125 Perugia, Italy; (D.A.T.-C.); (A.D.); (L.V.)
| | - Luca Valentini
- Department of Civil and Environmental Engineering, University of Perugia, Via G. Duranti, 06125 Perugia, Italy; (D.A.T.-C.); (A.D.); (L.V.)
| |
Collapse
|
3
|
Liu X, Ostrovsky-Snider N, Lo Presti M, Kim T, Guidetti G, Omenetto FG. Use of Silk Fibroin Material Composites for Green, Flexible Supercapacitors. ACS Biomater Sci Eng 2024; 10:5390-5398. [PMID: 38991039 DOI: 10.1021/acsbiomaterials.4c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Within the context of seeking eco-friendly and readily available materials for energy storage, there is a pressing demand for energy storage solutions that employ environmentally sustainable, high-performance, and adaptable constituents. Specifically, such materials are essential for use in wearable technology, smart sensors, and implantable medical devices, whereas, more broadly, their use plays a pivotal role in shaping their efficiency and ecological footprint. Here, we demonstrate an entirely biopolymer-based supercapacitor with a remarkable performance, achieving a capacitance greater than 0.2 F cm-2 at a charge-discharge current of 10 mA cm-2 with 94% capacitance retention after 20,000 cycles. The supercapacitor is composed of three distinct silk fibroin (SF) composite materials, namely, photo-cross-linkable SF (Sil-MA) hydrogel, SF-polydopamine (SF-PDA), and SF bioplastic, to create a gel electrolyte, electrode binder, and encapsulation, respectively. Together, these elements form a mechanically and electrochemically robust skeleton for biofriendly energy storage devices. Moreover, these biomaterial-based supercapacitor devices show stretchability, flexibility, and compressibility while maintaining their electrochemical performance. The biomaterials and fabrication techniques presented can serve as a foundation for investigating various aqueous electrochemical energy storage systems, especially for emerging applications in wearable electronics and environmentally friendly material systems.
Collapse
Affiliation(s)
- Xuelian Liu
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Nicholas Ostrovsky-Snider
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Marco Lo Presti
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Taehoon Kim
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Giulia Guidetti
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Fiorenzo G Omenetto
- Silklab, Department of Biomedical Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Department of Physics, Tufts University, Medford, Massachusetts 02155, United States
- Laboratory for Living Devices, Tufts University, Medford, Massachusetts 02155, United States
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
4
|
Lv J, Thangavel G, Xin Y, Gao D, Poh WC, Chen S, Lee PS. Printed sustainable elastomeric conductor for soft electronics. Nat Commun 2023; 14:7132. [PMID: 37932285 PMCID: PMC10628110 DOI: 10.1038/s41467-023-42838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023] Open
Abstract
The widespread adoption of renewable and sustainable elastomers in stretchable electronics has been impeded by challenges in their fabrication and lacklustre performance. Here, we realize a printed sustainable stretchable conductor with superior electrical performance by synthesizing sustainable and recyclable vegetable oil polyurethane (VegPU) elastomeric binder and developing a solution sintering method for their composites with Ag flakes. The binder impedes the propagation of cracks through its porous network, while the solution sintering reaction reduces the resistance increment upon stretching, resulting in high stretchability (350%), superior conductivity (12833 S cm-1), and low hysteresis (0.333) after 100% cyclic stretching. The sustainable conductor was used to print durable and stretchable impedance sensors for non-obstructive detection of fruit maturity in food sensing technology. The combination of sustainable materials and strategies for realizing high-performance stretchable conductors provides a roadmap for the development of sustainable stretchable electronics.
Collapse
Affiliation(s)
- Jian Lv
- School of Materials Science and Engineering, Nanyang Technological University, 50, Nanyang Avenue, Singapore, 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR), Campus for Research Excellence and Technological Enterprise, Singapore, 138602, Singapore
- Frontier Institute of Science and Technology, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, 710049, Xi'an, China
| | - Gurunathan Thangavel
- School of Materials Science and Engineering, Nanyang Technological University, 50, Nanyang Avenue, Singapore, 639798, Singapore
- Advanced Materials Research Center, Technology Innovation Institute (TII), Masdar City, Abu Dhabi, P.O. Box 9639, United Arab Emirates
| | - Yangyang Xin
- School of Materials Science and Engineering, Nanyang Technological University, 50, Nanyang Avenue, Singapore, 639798, Singapore
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR), Campus for Research Excellence and Technological Enterprise, Singapore, 138602, Singapore
| | - Dace Gao
- School of Materials Science and Engineering, Nanyang Technological University, 50, Nanyang Avenue, Singapore, 639798, Singapore
| | - Wei Church Poh
- School of Materials Science and Engineering, Nanyang Technological University, 50, Nanyang Avenue, Singapore, 639798, Singapore
| | - Shaohua Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50, Nanyang Avenue, Singapore, 639798, Singapore
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50, Nanyang Avenue, Singapore, 639798, Singapore.
- Singapore-HUJ Alliance for Research and Enterprise (SHARE), Smart Grippers for Soft Robotics (SGSR), Campus for Research Excellence and Technological Enterprise, Singapore, 138602, Singapore.
| |
Collapse
|
5
|
Fu F, Liu D, Wu Y. Silk-based conductive materials for smart biointerfaces. SMART MEDICINE 2023; 2:e20230004. [PMID: 39188283 PMCID: PMC11236014 DOI: 10.1002/smmd.20230004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/22/2023] [Indexed: 08/28/2024]
Abstract
Silk-based conductive materials are widely used in biointerface applications, such as artificial epidermal sensors, soft and implantable bioelectronics, and tissue/cell scaffolds. Such biointerface materials require coordinated physicochemical, biological, and mechanical properties to meet current practical needs and future sophisticated demands. However, it remains a challenge to formulate silk-based advanced materials with high electrical conductivity, good biocompatibility, mechanical robustness, and in some cases, tissue adhesion ability without compromising other physicochemical properties. In this review, we highlight recent progress in the development of functional conductive silk-based advanced materials with different morphologies. Then, we reviewed the advanced paradigms of these silk materials applied as wearable flexible sensors, implantable electronics, and tissue/cell engineering with perspectives on the application challenges. Silk-based conductive materials can serve as promising building blocks for biomedical devices in personalized healthcare and other fields of bioengineering.
Collapse
Affiliation(s)
- Fanfan Fu
- School of Environmental and Biological EngineeringNanjing University of Science and TechnologyNanjingChina
- School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
| | - Dongmei Liu
- School of Computer Science and EngineeringNanjing University of Science and TechnologyNanjingChina
| | - Yilun Wu
- School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingChina
- School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
| |
Collapse
|
6
|
Zhang S, Shah SAUM, Basharat K, Qamar SA, Raza A, Mohamed A, Bilal M, Iqbal HM. Silk-based nano-hydrogels for futuristic biomedical applications. J Drug Deliv Sci Technol 2022; 72:103385. [DOI: 10.1016/j.jddst.2022.103385] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Gao D, Lv J, Lee PS. Natural Polymer in Soft Electronics: Opportunities, Challenges, and Future Prospects. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105020. [PMID: 34757632 DOI: 10.1002/adma.202105020] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/20/2021] [Indexed: 05/21/2023]
Abstract
Pollution caused by nondegradable plastics has been a serious threat to environmental sustainability. Natural polymers, which can degrade in nature, provide opportunities to replace petroleum-based polymers, meanwhile driving technological advances and sustainable practices. In the research field of soft electronics, regenerated natural polymers are promising building blocks for passive dielectric substrates, active dielectric layers, and matrices in soft conductors. Here, the natural-polymer polymorphs and their compatibilization with a variety of inorganic/organic conductors through interfacial bonding/intermixing and surface functionalization for applications in various device modalities are delineated. Challenges that impede the broad utilization of natural polymers in soft electronics, including limited durability, compromises between conductivity and deformability, and limited exploration in controllable degradation, etc. are explicitly inspected, while the potential solutions along with future prospects are also proposed. Finally, integrative considerations on material properties, device functionalities, and environmental impact are addressed to warrant natural polymers as credible alternatives to synthetic ones, and provide viable options for sustainable soft electronics.
Collapse
Affiliation(s)
- Dace Gao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Jian Lv
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Pooi See Lee
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
8
|
Guo X, Li J, Wang F, Zhang J, Zhang J, Shi Y, Pan L. Application of conductive polymer hydrogels in flexible electronics. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Xin Guo
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Jiean Li
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Fanyu Wang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Jia‐Han Zhang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Jing Zhang
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Yi Shi
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| | - Lijia Pan
- Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering Nanjing University Nanjing Jiangsu China
| |
Collapse
|
9
|
Han Y, Sun L, Wen C, Wang Z, Dai J, Shi L. Flexible conductive silk-PPy hydrogel toward wearable electronic strain sensors. Biomed Mater 2022; 17. [PMID: 35147523 DOI: 10.1088/1748-605x/ac5416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/09/2022] [Indexed: 11/11/2022]
Abstract
Conductive hydrogels have been studied as promising materials for the flexible and wearable bioelectronics, because of their unique electrical and mechanical properties. Addition of conducting polymers in biomaterial-based hydrogel matrix is a simple yet effective way to construct hydrogels with good conductivity and flexibility. In this work, a conductive hydrogel composed by a silk hydrogel and a conducting polymer, polypyrrole (PPy), is developed via in-situ polymerization of pyrrole into the silk fibroin network. The silk-PPy hydrogel shows high conductivity (26 S/m), as well as sensitive and fast responses to corresponding conformation changes. Taking advantages of these properties, flexible and wearable strain sensors are proposed for the monitoring of various body movements, which can detect both the large and subtle human motions with good sensitivity, reproducibility and stability. The hybridization of biomaterials and conducting polymers endows the multifunctions of the conductive hydrogels, thus showing considerable potentials in the advancement of the wearable electronics.
Collapse
Affiliation(s)
- Yuanyuan Han
- Biomedical Engineering, College of Biology , Hunan University, 27 Tianma Road, Changsha, 410082, CHINA
| | - Lu Sun
- Biomedical Engineering, College of Biology , Hunan University, 27 Tianma Road, Changsha, 410082, CHINA
| | - Chenyu Wen
- Department of Engineering Sciences, Uppsala Universitet, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, 751 03, SWEDEN
| | - Zhaohui Wang
- Hunan University College of Materials Science and Engineering, 27 Tianma Road, Changsha, Hunan, 410082, CHINA
| | - Jianwu Dai
- Institute of Genetics and Developmental Biology Chinese Academy of Sciences, No 1 West Beichen Road, Chaoyang District, Beijing, 100101, Beijing, 100101, CHINA
| | - Liyang Shi
- Biomedical Engineering, College of Biology , Hunan University, 27 Tianma Road, Changsha, 410082, CHINA
| |
Collapse
|
10
|
Wang Z, Liu D, Oleksandr S, Li J, Arumugam SK, Chen F. Urushiol-Induced Hydrogels with Long-Term Durability and Long Service Lifespan in Mechanosensation. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zibi Wang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Dong Liu
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Sokolskyi Oleksandr
- Department of Chemical, Polymer and Silicate Engineering, Igor Sikorsky Kyiv Polytechnic Institute, Kyiv 03056, Ukraine
| | - Junfeng Li
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | | | - Fei Chen
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| |
Collapse
|
11
|
Yu P, Yu F, Xiang J, Zhou K, Zhou L, Zhang Z, Rong X, Ding Z, Wu J, Li W, Zhou Z, Ye L, Yang W. Mechanistically Scoping Cell-Free and Cell-Dependent Artificial Scaffolds in Rebuilding Skeletal and Dental Hard Tissues. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 34:e2107922. [PMID: 34837252 DOI: 10.1002/adma.202107922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/11/2021] [Indexed: 02/06/2023]
Abstract
Rebuilding mineralized tissues in skeletal and dental systems remains costly and challenging. Despite numerous demands and heavy clinical burden over the world, sources of autografts, allografts, and xenografts are far limited, along with massive risks including viral infections, ethic crisis, and so on. Per such dilemma, artificial scaffolds have emerged to provide efficient alternatives. To date, cell-free biomimetic mineralization (BM) and cell-dependent scaffolds have both demonstrated promising capabilities of regenerating mineralized tissues. However, BM and cell-dependent scaffolds have distinctive mechanisms for mineral genesis, which makes them methodically, synthetically, and functionally disparate. Herein, these two strategies in regenerative dentistry and orthopedics are systematically summarized at the level of mechanisms. For BM, methodological and theoretical advances are focused upon; and meanwhile, for cell-dependent scaffolds, it is demonstrated how scaffolds orchestrate osteogenic cell fate. The summary of the experimental advances and clinical progress will endow researchers with mechanistic understandings of artificial scaffolds in rebuilding hard tissues, by which better clinical choices and research directions may be approached.
Collapse
Affiliation(s)
- Peng Yu
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 China
- College of Polymer Science and Engineering Sichuan University Chengdu 610017 China
| | - Fanyuan Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Endodontics West China Stomatology Hospital Sichuan University Chengdu 610041 China
| | - Jie Xiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
| | - Kai Zhou
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University Chengdu 610041 China
- Department of Orthopedics West China Hospital Sichuan University Chengdu 610041 China
| | - Ling Zhou
- College of Polymer Science and Engineering Sichuan University Chengdu 610017 China
| | - Zhengmin Zhang
- College of Polymer Science and Engineering Sichuan University Chengdu 610017 China
| | - Xiao Rong
- Department of Orthopedics West China Hospital Sichuan University Chengdu 610041 China
| | - Zichuan Ding
- Department of Orthopedics West China Hospital Sichuan University Chengdu 610041 China
| | - Jiayi Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Endodontics West China Stomatology Hospital Sichuan University Chengdu 610041 China
| | - Wudi Li
- College of Polymer Science and Engineering Sichuan University Chengdu 610017 China
| | - Zongke Zhou
- Department of Orthopedics West China Hospital Sichuan University Chengdu 610041 China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases West China Hospital of Stomatology Sichuan University Chengdu 610041 China
- Department of Endodontics West China Stomatology Hospital Sichuan University Chengdu 610041 China
| | - Wei Yang
- College of Polymer Science and Engineering Sichuan University Chengdu 610017 China
| |
Collapse
|
12
|
Yuan J, Yan B, Zhou M, Wang P, Yu Y, Yuan J, Wang Q. A facile strategy to construct flexible and conductive silk fibroin aerogel for pressure sensors using bifunctional PEG. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Chu W, Nie M, Ke X, Luo J, Li J. Recent Advances in Injectable Dual Crosslinking Hydrogels for Biomedical Applications. Macromol Biosci 2021; 21:e2100109. [PMID: 33908175 DOI: 10.1002/mabi.202100109] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/05/2021] [Indexed: 02/05/2023]
Abstract
Injectable dual crosslinking hydrogels hold great promise to improve therapeutic efficacy in minimally invasive surgery. Compared with prefabricated hydrogels, injectable hydrogels can be implanted more accurately into deeply enclosed sites and repair irregularly shaped lesions, showing great applicable potential. Here, the current fabrication considerations of injectable dual crosslinking hydrogels are reviewed. Besides, the progress of the hydrogels used in corresponding applications and emerging challenges are discussed, with detailed emphasis in the fields of bone and cartilage regeneration, wound dressings, sensors and other less mentioned applications for their more hopeful employments in clinic. It is envisioned that the further development of the injectable dual crosslinking hydrogels will catalyze their innovation and transformation in the biomedical field.
Collapse
Affiliation(s)
- Wenlin Chu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingxi Nie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiang Ke
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China.,State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
14
|
Wang C, Yokota T, Someya T. Natural Biopolymer-Based Biocompatible Conductors for Stretchable Bioelectronics. Chem Rev 2021; 121:2109-2146. [DOI: 10.1021/acs.chemrev.0c00897] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Chunya Wang
- Department of Electrical Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomoyuki Yokota
- Department of Electrical Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takao Someya
- Department of Electrical Engineering and Information Systems, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- Center for Emergent Matter Science, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Thin-Film Device Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
15
|
The State of the Art of Energy Harvesting and Storage in Silk Fibroin-Based Wearable and Implantable Devices. ELECTROCHEM 2020. [DOI: 10.3390/electrochem1040022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The energy autonomy of self-powered wearable electronics depends on the adequate development of new technologies for energy harvesting and energy storage devices based on textile fibers to facilitate the integration with truly flexible and wearable devices. Silk fiber-based systems are attractive for the design of biomedical devices, lithium-ion batteries and flexible supercapacitors, due to their nitrogen-rich structure (for preparation of hierarchical carbon-based structures), and available surface for chemical modification reinforcing electroactive properties for use in batteries and supercapacitors. Herein, this paper reviews recent advances on silk fiber-based systems for harvesting and the storage of energy and the corresponding strategies to reinforce the physical and chemical properties of the resulting composites applied as electrodes and battery separators.
Collapse
|
16
|
Cui C, Fu Q, Meng L, Hao S, Dai R, Yang J. Recent Progress in Natural Biopolymers Conductive Hydrogels for Flexible Wearable Sensors and Energy Devices: Materials, Structures, and Performance. ACS APPLIED BIO MATERIALS 2020; 4:85-121. [DOI: 10.1021/acsabm.0c00807] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Chen Cui
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Qingjin Fu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Lei Meng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Sanwei Hao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Rengang Dai
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jun Yang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
17
|
Zheng X, Ke X, Yu P, Wang D, Pan S, Yang J, Ding C, Xiao S, Luo J, Li J. A facile strategy to construct silk fibroin based GTR membranes with appropriate mechanical performance and enhanced osteogenic capacity. J Mater Chem B 2020; 8:10407-10415. [PMID: 33112359 DOI: 10.1039/d0tb01962c] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A facile method to modify electrospun silk fibroin nanofibrous membranes for enhanced mechanical properties and osteogenic function via polyphenol chemistry.
Collapse
|